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ABSTRACT

Von Neumann-Morgenstern (vN-M) utility theory is the dominant model
of risk preference in decision analysis and in marketing science. Most
applications in both disciplines assess utility parameters by asking a
series of questions which deterministically specify the parameters.
However, any questioning procedure introduces measurement error and
any model is, at best, an approximation.

This paper develops a measurement error theory for vN-M utility esti-
~mation. We examine the relationship among question formats and provide
maximum likelihood estimators for the parameters of vN-M utility functions.
Uncertainty in utility parameters induces uncertainty in the decision out-
come. Thus, we provide estimates of the probability that a given alter-
native maximizes expected utility.

Our general results may require numerical methods, but for the two
most widely used functional forms, we provide analyticformulae that are
easy to use. Since the unique aspect of vN-M theory is risk modeling,
we emphasize -uniattributed utility functions then discuss multiattributed
extensions.

Numerical examples illustrate the results.



1. PERSPECTIVE

The measurement and modeling of how individuals form preferences
among risky alternatives is an important problem in decision analysis,
marketing, and psychology.

In decision analysis, the focus is prescriptive. The decision
maker faces a complex and important problem, say the decision of whether
or not to rely on nuclear power. The outcomes of this decision are
characterized by multiple objectives such as economic, national defense,
environment and safety considerations, and by risk in the sense that the
amount of achievement of each objective is uncertain before the decision
is made. The breference modeling task is to assess the décision maker's
utility function over the risky consequences in order to help the deci-
sion maker decide among his strategic options.

In marketing, the focus is descriptive. The marketing scientist
wishes to predict which product consumers will purchase. Risk becomes
important forlmajor purchases such as a home heating system where the
outcomes, such as annual cost, fuel availability, cleanliness, reliability,
and heating comfort may be uncertain to the consumer. The preference
modeling task is to estimate consumer utility functions to describe how
consumers will respond to marketing strategies such as product modifications
or advertising designed to remove perceived risk.

In psychology, the focus is investigative. The psychologist wants to
understand how individuals really process information. Thus, a paramorphic
model is not sufficient. The psychologist wants to distinguish the process
that best represents cognitive information processing., The preference

modeling task is to distinguish one processing model from another.
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Clearly, the focus and use of preference models varies across the
disciplines. However, each discipline ha§ found von Neumann-Morgenstern
utility theory to provide a theoretical foundation from which to address
the task of modeling preferences among riséy a]térnatives. In decision
analysis, Keeney and Raiffa [3&] and Farquhar [16 ] describe over 20
app]ications; while Fishburn and Kochenberger [}8 ] examine the commonali-
ties in 30 applications. In marketing, Hauser and Urban (B0 ]4have used
vN-M theory to measure functions to describe consumer response to health
care delivery and E{iashberg (1] has described consumer response to the
student housing market, In psychology,Condman, Saltzman, Edwards, and
Krantz [21], Lee [41], and Tversky [52] have investigated the descrip-
tive validity of the thecry. Results aré encouraging and such investi-
gations have led to improved models such as prospect theory (Kahneman
ana Tversky [34]).

To date, in all three disciplines, the theory has been used to
investigate the conditions under which vN-M measurement shouid apply
and to investigate which functional forms are appropriate if behavioral
assumptions apply. Despite the power of the axiomatic theory, measure-
ﬁent has proceeded deterministically. For example, Keeney and Raiffa [38]
provide many procedures for assessing utility functions, but each of
these procedﬁres is deterministic in the sense that measurement error is
not explicitly modeled. The typical situation requires k questions to |
assess the k parameters of a selected utility function. Additional ques-
tions check consistency but to quote Keeney and Raiffa |38, p. 197]:
"Unfortunately, no general procedure exists either for determining
whether a given set of qualitative and quantitative assessments are

consistent or indicating an appropriate functional form of the utility
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function when assessments are consistent". Meyer and Pratt [45] do pro-
vide a prdcedure for "fairing"” a smooth function through a set of points
but their procedure is a fitting procedure, not an estimation based on an
explicit error theory. Even in marketing, which explicitly acknowledges
measurement error, "estimation" of vN-M functions has proceeded by the
solution of algebraic equations, not by statistical inference. See Hauser
and Urban [31,appendix] for illustrative example. Redundant questions are
used to test independence conditions, not to estimate parameters 6r to
estimate measurement error.

Our research seeks to develop the foundations of an error theory for
yN-M utility theory. The key feature of vN-M theory that distinguishes it
from other utility estimation procedures (e.g., conjoint analysis, prefer-
ence regression, logit analysis, expectancy value measurement, preferencé
intensity measures) is that it measures preferences over risky alternatives.
~ Thus, we can illustrate much of the properties of an error theory with the
estimation of a uniattributed function with one unknown parameter which
measures risk preference. For this case we provide maximum likelihood
estimators for various functional forms, questionning formats, and assump-
tions about the nature of measurgpent error. Since any uncertainty in the
parameter of a vN-M utility function induces uncertainty in the utility
function and hence the decision outcome, we also provide a means to charac-
terize this uﬁcértainty and estimate the probabilities that a decision
indeed maximizes expected utility. In marketing, this probability is
interpreted as tie probability a consumer will choose an alternative. In
decision ana]ysiﬁ,vthis probability is the probability that a given
decision is the "correct" decision.

We extend the single parameter, uniattributed results to multiple
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parameters and the multiple attributes. Analytic results are less tractable, but
they are usable, particularly if we allow a clustered questioning format.

After an expository illustration of the theory, we discuss the limitations of
our results and suggest directions for future research on this topic.

He begin a brief review of the literature.

2. EXISTING LITERATURES

The utility assessment or estimation iitereatures in decision analysis, marketing,
and psychology are each extensive. This review is purposively concise emphasizing
the previous work relevant to the development of a vN-M error theory. For more
extensive reviews, see Green and Srinivasan [25], Keeney and Raiffa [38] and Krantz,
Luce, Suppes and Tversky [39].

Deciston Analysis

We draw on decision analysis for axiomatic foundations, derived functional
forms and empirical experience.

Axiomatic Foundaztions. VYN-M utility theory takes its name from a 1947 book by
von-Neumann and Morgenstern [55] who provided three fundamental axioms which, if
satisfied, imply the existence and uniqueness (subject to a scaling change)vof a
utility function that summarizes an individual's preference over risky alternatives.
Such functions have proven useful in decision analysis because, if the axioms apply,
the most preferred strategy 1is that strategy which maximizes expected utility. Thus,
independent quantification of the probability distribution over outcomes and the utilit
function indicates which strategy should be selected. These axioms have been reformu-
Iéted by Friedman and Savage [19], Herstein and Milner [32], Jensen [33], Marshak [43]
and possibly others, but the axioms remain the foundation for prescriptively modeling
preferences among risky alternatives.

Derived Functional Forms. As VN-M theory was applied and extended from prefer-
ences aver money to preferences over multiple objectives, researcher§ recognized that
they must provide a structure with which to assess an individual's utility function.

This area of research, summarized by Keeney and Raiffa [38], provides a set of theorem”
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wﬁich derive specific functional forms from qualitative assumptions.

Uniattributed functions are derived from assumptions about how an individual's
risk preference éhanges as his assets increase. For example, we expect a firm to be
less risk averse for lotteries involving thousands of dollars if their assets are
$100 million than if their assets are $100,000. A key concept is local risk aversion,
R{x), which indicates how an individual's risk attitude depends on assets, x. The
value this function takes on for a given asset level indicates whether a utility
functiqn is risk prone or risk averse at that asset level. Besides providing a mono-
tonic scale of risk aversion, R(x) uniquely determines a utility function subject only
to a change of scale. In particular, if u(x) is the utility function, R(x) is given

by Pratt [48]:

R(x) = - dzugx) / du(x)

dx dx (1a)

Eliashberg and Winkler [12,13] show that this concept is focal for modeling multiple-
person decision'making such as that involved in industrial products. See also dis-=
cussion in Choffray and Lilien [8].

Another important concept in vN-M utility theory is proportional risk aversion,
S{x). It measures an individual's risk attitude when consequences of risky decisions
are expressed in proportion to assets. (E.g., a new product launch with an uncertain
return on investment.) The relationship between local risk aversion, R(x), and
proportional risk aversion, S(x), is given by:

S(x) = xR(x) (1b)

For clarity we refer to R(x) as "absolute" risk aversion for the reﬁainder of thi§
paper.

We will find R(x) and S(x) useful in the development of an error theory. Table
1 summarizes some of the cbmmon]y used functions and the assumptions upon which they
are based. The last column, "inverse function", will be explained in Section 3. Note
that forms 1 to 4 require only one unknown parameter, r, whereas form 5 requires more

than one unknown parameter.
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* TABLE 1

SELECTED UNIATTRIBUTED vN-M UTILITY FUNCTIONS

Behavioral Assumption Functional Form Range Inverse Function
1. Risk aversion indepen- 1 - r>0 0<x<ge -(1/x)1In(1-p)
dent of asset position, (
i.e., constant absolute -r{x-x_)
risk aversion. [1-e o] Xo <X« implicit except for
[]_e-r(x*—xo)] special cases
2. Risk aversion (seekinc)
inversely proportional r r 0
LO asset position above (x—xo) /(x*-xo) > Xgxsx,  log p/log [(x-xo)/(x*-xo)j
, 1.e., constant -
p?oport1ona1 risk aver- ~log (x—xo) r=0 " see note
sion
~{x=x )" r<0 ~ indicate strategic
0 equivalence
3. Risk neutral (x-xo)/(x*—xo) X SX<X, special case of (1) where
r»g and (2) where r-l
4, Decreasingly risk
averse I ]og[(x+r)/(x0+r)] X _SX<Xy implicit except for
o :
log [(x*+r)/(x0+r)] special cases
r>-X,
5. Decreasingly risk ' -TX =TroX
averse 11 1+r3—e -rse O<x<w

(]'”'3)
T1s Tps '3 > 0

Note: For r < 0 in form 2 the form is undefined for x -~ x_.
paper, we assume r > 0,
we deal with X 2 X0

Tnroughout this

Similar results can be derived for r < 0 if
+ ¢ where e1is a small positive finite number.

Multiattributed functions are derived from assumptions of independence

among attributes. There is a portfolic of functions which allow the

analyst to make tradeoffs among generality {less restrictive assumptions,
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more complex assessment) and parsimony (more restrictive assumptions, less
complex assessment). See, for example, Farquhar [15,16]. One widely used
set of functions, developed by Keeney r35,37] and Fishburn [17], provides
a reasonable tradeoff among generality and parsimony. Keeney [35] shows
that if risk preferences for each attribute do not depend upon other
attributes then the utility function, U(x), over a vector of attributes
can be written as:

It X Jupdxy)

U(x)-= Towou (x,) +
2RGS0

Foou. .+w]....Ku](x])u2(x])...uK(xK) (2)

where u (u ) is a uniattributed utility function scaled from 0.0 to 1.0 and

Wes Wopoeo. are scaling constants. This is unknown as the "multilinear" form.
Keeney [37] then shows that if tradeoffs among any two attributes are independent
of the other attributes, Wk = lewk where W is a constant. This is known as

the "multiplicative" form. Fishburn [17] identifies a condition, known as
marginality, which, when true, implies that W = 0. When marginality applies,

the higher order terms in equation (2) disappear and the utility function

becomes an additive representation. Finally, Richard [49] shows that W can

be interpreted as a measure of multiattributed risk aversion.

Empirical Experience. VN-Madti1ity assessment has been applied to a wide
range_of problems in both the public and private sector. See Keeney and Raiffa
[38, Chapter 7] for a review. Fishburn and Kochenberger [18]have examined 30
of the assessments which deal with a uniattributed utility function for
wealth. (Their sources are Barres and Reinmuth [2], Grayson [22], Green [23],

Halter and Dean [27], and Swalm [50]}.) They conclude that:
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(1) There is usually a monetary value, referred to as the target level,
at which the utility function changes shape. The target level is
often the zero-gain point.

(2) Below target utility (usually the.]oss }egion) is frequently risk
prone (convex). _

(3) Above target utility {usually the gain region) is frequently risk
averse (concave).

(4) The uzility is almost always stzeper below terg2t than above.

Fishburn and-Kochenberger -[18] then used a least squares criterion to identify

the single parameter for the constant risk averse, constant proportional risk

averse, and linear utility functions (forms 1, 2, and 3 in Table 1) where
separate fits were used above and below target. .They found that the non-

linear forms (1 and 2) fit substantially better than the linear form (3},

that the constant risk averse form (1) fits better for concave below, convex

above utilities and the constant proportional risk averse form (2) fits better

for convex below, concave above utilities.. However, Fiskburn and Kochenberger

did not develop an explicit error theory,

There is no equivalent study for multiattributed preferences although
researchers found that over certain ranges a multiplicative or additive function
was a reasonable tradeoff among generality and parsimony. As discussed in
Keeney and Raiffa [38], these applications include air pollution control (E11lis
and Keeney [14]), fire department operation (Keeney [36]), corporate objectives,
siting and licensing of nuclear power facilities (Gros [26]), policies for
frozen blood (Bodily [4]), treatment for cleft palate (Krischner [40]), water
quality (0'Connor [47]), foreign policy (Brown and Peterson [6]), and forest
pest management (Bell [3]).

Marketing Science

While much work in marketing science has addressed the estimation of
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consumer preference functions, only recently have researchers addressed the
descriptive validity of vN-M theory.

Preference Estimation. The measurement and modeling of consumer pref-
erences is a necessary step in addressing many marketiné problems, particularly
rroduct development, and there are hundreds of applications yearly. The methods
include conjoint analysis (Green and Srinivasan [25]), preference regression
(Urban [53]), logit analysis (McFadden [44]), intensity theory (Hauser and
Shugan [29 ]), and expectancy values (Wilkie and Pessemier [56]). See Urban
and Hauser [54, Chapter 10] for a review. All methods except expectancy
value are based on astatistical error theory which enables the analyst to
obtain estimates of the underlying parameters. However, since none of these

methods explicitly consider uncertainty in the attributes (risk}, vN-M theory

is valuable when risk is an important consideration.

VYN-M Applications. Hauser [28 ] has shown that with the addition of a
choice axiom, vN-M theory applies axiomatically to descriptive modeling.
Based on this theoretical result, Hauser and Urban [3i] assessed a multi-
plicative, constant]y“risk averse utility function for the attributes of
health care plans. They report that for their sample, vN-M utility assess-
ment predicts better (50% correct prediction) than preference regression
(47%) or logit analysis (43%) and significantly better than an equal weight-
ing scheme (40%). More importantly, vN-M theory correctly predicted market
shares while all other methods were in error at the .05 level of statistical
significance. Eiliashberg [11] assessed multilinear and additive piecewise
Tinear utility functions for the attributes of student housing. He also reports
reasonable prediction (53% correct). Although both studies collected
redundant information, the information was used to test the adequacy of the

behavioral assumptions rather than to estimate parameters.



Mathematical Psychology

Mathematical psychologists are concerned with the question of whether
VN-M theory is an adequate description of human information processing.

That is, they wish to identify and test qualitative properties which imply
the existence of a decision calculus based on expected utility where the
expectation is over subjectiye probability estimates. Goodman, Saltzman,
Edwards, and Krantz [21], Lee [41], and Tversky [52] have all investigated
the descriptive validity of expected utility and Krantz, Luce, Suppes, and
Tversky [39] have investigated axiom systems and representation theorems.
They concluded that although some researchers have investigated alternative
formulations, " expected utility theory has reigned as the major theory of
individual decision making under uncertainty". [39, p. 398].

Recently, Kahneman and Tversky [34] have relaxed some of the assumptions
of.expected utility theory. They (1) allow preference functions which are
conyex in losses but concaye in gains and (2) extend the axioms to include
a transformation of the probabilities used in calculating the expectation.
Their formulation, called "prospect theory", overcomes many of the psycholo-
gists' theoretical objectﬂns to vN-M theory.

Discusston. VN-M theory has received much attention in the Titerature as
the dominant method for modeling preferences with respect to risky alterna-
tives. HoweQer, an error theory can improve applications in each literature.

In decision analysis, assessment qguestions are often difficult to answer
leading to potential measurement error. OCur error theory enables the and]yst
to ask multiple questions to infer the true values (mean) and variances of the

_In marketing science, the analyst is limited in the number of questions
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he can ask in a consumer interview. Our error theory allows him either (1)
to infer risk parameters from multiple questions asked of each individual or
(2) to characterize the risk parameters of a consumer population as a proba-
bility distribution inferred from questions which may or may not vary across
individual consumers. Once the parameters are estimated, our error theory
allows the marketing scientist to forecast the probability that a risky
alternative is chosen.

In mathematical psychology, our error theory provides statistical
statements about the distribution of risk parameters. Such statistics are
useful in testing when vN-M is applicable and when a more general theory,
such as propect theory, must be used. Finally, prospect theory also requires
the estimation of utility-1ike functions. An error theory for vN-M utility
functions could form the basis for an error theory for the more general
prospect functions, once elicitation procedures are developed.

We begin our exposition with the development of an error theory for

single-parameter, uniattributed utility functions.
3. SINGLE-PARAMETER UNIATTRIBUTED UTILITY FUNCTIONS

We provide estimators and choice probabilities for general single-
parameter functions. In the general case, such results may require numerical
techniques for inverting functions and integration. However, since the em-
pirical evidence cited in section 2 suggests that forms 1, 2, and 3 in table
1 are the most commonly used utility functions we provide analytic estimators
and choice probabilities for these special cases. Since theée results are
analytically tractable and forms 1 and 2 are quite flexible, we expect these
results to be useful for most applications in decision analysis and marketing.

Our analysis applies at the individual level or at the population level.



-12-

.

At the individual level, variation in the unknown parameter represents un-
certainty in estimating that parameter. At the population level, variation
in the unknown parametef represents heteroggneitx among individual consumers.
Since these two oroblemsare mathematically equivalent we base our theory on
the assumption that i = 1,2,..., I questions are asked. The index, i, can
characterize variation within or across individuals. For simplicity of ex-
position we discuss variation within individuals.

Following Fishburn and Kocherberger [18], we proceed with separate estima-
tions in the "gains" and in the "loss" regions. Thus, we can assume that
utility function is either concave or convex throughout the region,

Xo S X{ S Xy We state the results for concave risk averse utility func-
tions since the results for convex utility functions are quite similar.
Without loss of generality, we assume that the attribute of interest, x,

has been scaled such that preference is monotonically increasing in x over
the region of estimation,

Estimation

Since the distinguishing feature of vN-M utility theory is its ability

~to model preference for risky alternatives, measurement incorporates at least
one alternative with an uncertain level of the attribute. Since the vN-M
axioms enable us to model risk by standard gambles, we use such gambles as
our basic unit of measurement. The basic conceptual measurement is shown
inFigure 1. The individual is given a lottery which has an outcome of X,
with probability, p;» and an outcome of x  with probability, (l—pi). He

is asked to compare this lottery to a "certainty equivalent" of Xj- The
researcher selects x , x4 and either X; or py. If X3 is given, the individual

is asked to provide the probability, Pis such that he is indifferent among

the two alternatives., If P; is given, the individual supplies X5 See
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Keeney and Raiffa [38] for specific questions for decision makers and Hauser

and Urban [31] andEliashherg [11]for specific questions for consumers.

X

X

Figure 1: Standard Lottery Used as Basic Risk Measure

Let r bé the unknown parameter of the utility function, u(x;f). The
standard procedure of assessment is to solve an algebraic equatiohAderived
from the expected utility property by scaling the utility function such that
u(x,,r) = 1.0 and u(xo,r) = 0.0. Then, if there were no error, the ihp]ica-

tion of Figure 1 would be:

u(xs,r) = psulxesr) + (1-py)ulx ,r) = p; (3)

The utility parameter, r, is determined by inverting equation (3). For example,
if u(xi,r) is given by a special case of form 2, x?, for x; e [0,1], then

r = log pi/]og Xio In general, we can define an inverse function, r(xi,pi)

into a real value, ris determined by the solution of equation (3). In some
cases, such as the power function (form 2 in Table 1) and the infinite range
exponential function (form 1 in Table 1) the inverse function is analytic; in
other cases, such as the logarithmic function (form 4 in Table 1), the function
exists but is not closed form. Various inverse functions are given in Table 1.

Each time we ask a question we introduce error. We choose to model this
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error as inducing a probability distribution on our observation of the
individual's risk preference, r. This assumption is consistent with "random
utility" error theories, e.g., Thurstone [51] and Luce and Suppes [42], but
modified to emphasize the unique strength of.vN~M fheory--risk preference.

Our assumption implies that the observed value, ri,'of the risk para-
meter 1s a random draw from some probability density function, f(ri|A), where
A is a parameter to be estimated. (We allow A to be vector valued.) The
density function for the risk parameter, f(rilk); in turn, induces a density

_function on the utility function, g(ujfk) where u; is the value of the utility

J
function for any given value of the attribute, Xj' In fact:

. M) = fl#lx.,u.)ir]]d . SU. .
g(uy12) = fLxlx;,u5) AT ldrx;,u,) /du; | (4)
where z(xj,uj) is obtained by solving the equation, uj = u(xj,r), for r.
(See Mocd and Greybill [46, p.224].) Since r(xj,uj) = r(xj,pj) for uj =P

we drop the distinction for the remainder of the paper.

Before we estimate A we must further specify f(rilx). The most natural
assumption is that f(rill) is normal with mean, u, and variance,cz. Thus, we
derive estimators for a normal error theory.

While a:nbrma] error theory is appropriate for most cases, it does
have one drawback. Theoretically, if r is normally distributed,it can take
on any value in the range, (-=,=), but some functional forms for u{x,r)
are restricted by qualitative judgements to a more specific range, usually
(0,~). Fer example, if an individual is judged risk averse with risk aversion
independent of asset position (form 1 in Table 1), we expect r to be positive.
When u>>c, this case can be handled with normal error theory since negative
values of r are unlikely. Alternatively, wé can model the error as inducing

a negative exponential distribution on r for the range, (v _,»). Il.e.,

0’
f(r[r) = (A~ro)'] exp[-(r-ro)/(x—ro)].
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We develop an error theory for both normal and exponential assump-
tions. The former is useful when r is unrestricted or when p>>s. The lat-
ter is useful when we restrict r to be greater than o by qualitative
assumptions, and.we are willing to accept the consequences of an exponen-
tial distribution which has its maximum value at rg.

The first issue we address is the question format. Hauser and Urban
[31] advocate setting X; and having the individual specify P The stated
reason is that the scale properties of X may not be known. Specifying
P; simultaneously scales X3 and u(xi,r) thus making it easier to interpret '
what "utility of x." means. Jn_the other hand, Keeney and Raiffa [38] and
“Eliashberg [11] advocate setting p; and having the individual specify x,.
"They believe that this is the easier task.

Qur first result suggests that the estimators do not depend on question
format.

Theorem 1: If the utility function, u(X,r), is a bijection from the range
of ite seingle parameter, r, onto [0,1], if measurement errors are indepen-
dent across measurements, and error is modeled as a density fumetion on T,
the maximun likelihood estimators of the parameters charaterizing the dis-

tribution of r are invariant with respect to the questiomning format.

Proof. Suppose that the researcher specifies X; and the individual provides

P; for each of I measurements. If measurement errors are independent

across measurements, then for any vector of certainty equivalents, X = (x],xz,...,xl),

the joint probability, F(Ejﬁﬁ A), of observing a vector of answers,p = (p],pz,...,pl),

is given by
| d
Flpxaa) = mg FLr(xgopy) W] Igps rixgpy)] (5)
1

where f(+|x) is the distribution of r, r(xi,pi) is the inverse function, and
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|dr(xi,pi)/dpil is the absolute value of the Jacobian transformation
(Mood and Greybill (46, p.2241}.

To obtain the maximum 1ikelihood estimators of the parameter, A
we maximize F(Ejzﬁx)‘with respect to A. Since the Jacobian is indepen-
dent of A, this is equiva]enﬁ to maximizing fhe fé]]owing 1ikelihood

function:
L(xx,p) =z, Tog flr(x,,p;)A] (6)

Finally, by symmetry it is clear that we obtain the same likelihood
function if the researcher provides the probability, Py and the indivi-
dual answers with the certainty eguivalent, X

Theorem 1 does not resolve the debate over question format, but the
result is important because it indicates that choice among formats is not
a statistical issue but rather a debate over the ease of interviewing
and interpretation and the magnitude of error introduced by alternative
formats.

Qur second result specifies the appropriate maximum 1ike11hood estima-
tors for normal and exponential error theories. Although the equation 7 and 8

are well known (Mood and Greybill [46, p. 183], Giri [20, p. 77], we state them

as a theoren for emphasis .

Theorem 2: According to the assumptions of theorem 1, the maximwm likelihood

esttmators for normal error theory are:

w o= (V1) g4

r(x;5p;) o
8 = (1) 1y Trlxgeg) i1 (8)

The maximum likelihood estimators for exponential error theory are:

R /D) 5 r(xaps) (9)

Proof. Equations 7,8, and 9 are obtained by maximizing L(r|x,p) in equation 6,
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Since the résults are well known, we do not repeat the detailed maximization
here.]
Equations 7, 8, and 9 are obvious with hindsight. Once we realize the
power of the inverse function, r(xi,pi), to transform a difficult statistical
problem into standard statistical problem we proceed with standard estimation.

theory. This simplicity does not diminish the usefulness of the result as we
illustrate with the following example.

Suppose that you are considering replacing your antiquated home heating
system with a new 0il, gas, electric or solar systém. You are uncertain about’
unit fuel cost, about heating efficiency, and weather. Thus, the annual sav-
ings of each new system over your present system is characterized by a prob-
~ability distribution over the range of $200 to $1200. You assess your utility
function by supplying a probability, Pi» for each certainty equivalent (in
$00's) between Xo and x,. If your underlying preferences are given by u(x,r) =

(x-2001"/2/(1000)'/2

and you "round-off" to the nearest .05 when giving Py
you would get the answers in Table 2. Since your preferences correspond to
form 2 in Table 1, we use the inverse function in column 4 of Table 1 to
compute eri,pi). This is shown in Table 2. Finally, using Theorem 2 we
estimate 7 = .50 and & = .03 for normal errors and A= .50 for exponential

errors where we have assumed o = 0. Figure 2 compares the estimated utility

function and the observed points from Table 2.

]Equat10n 8 is the maximum likelihood estimate for 02 but it 1s biased
for small I. The more common unbiased estimator is [I/(I 1)]o2. Also,
if we want to estlmate r_ rather than set it by qualitative Judgment
its estimator is r = mif; [r(x 2P;) 1.
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TABLE 2

EXAMPLE ASSESSMENT FOR THE ANNUAL SAVINGS
OF A HOME HEATING SYSTEM

Xs P; r(X;sP;)
(dollars) _ (power function)
300 .30 : .52
400 .45 .50
500 .55 50
600 .65 | 47
700 70 .51
800 .75 .56
900 .85 .46
1000 .90 ' 47

1100 .95 .49

006%¢

00t %~
O0v Sy
00SS¢
009%y
00L%e
0083

no
o
o

000Lsy
ooLLey
002 1%

Filgure 2: Maximuen-1ikelihood Estimate of dssessed Utility Funetion
g
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Because results 1 and 2 transform a vN-M error theory into a known statis-
tical problem, we can apply many of the results of classical statistical in-
ference. For example, if normal theory applies and the analyst believes that
the true value of y is ut, he can test this hypothesis by recognizing that
(n - ut)(I - 1)1/2/3 is distributed as a t-statistic with I-1 degrees of
freedom. For example, for the power function in Table 2, a 95% confidence
interval for u is [.48, .52]. These confidence intervals for u are useful
since they become tighter & the number of observations, I, gets larger. Simi-
larly, we can use a chi-squared distribution (Mood and Greybill [46, p.254])
to compute that a 95% confidence interval for ¢ is [.02, .06].

For exponential error theory the sampling distribution forviihgs a gamma

dénsity with mean, A, and variance, A2/n.

Probabtility of Choice

Once we have estimated the parameters of a utility function, we use that
utility function to model decisions among risky alternatives. If r were known
with certainty, we wou]d know u(x,r) for any x and could compute directly the
expected utility of any alternat{ve. However, r is a random variable inducing
randomness on u(X,r), and hence uncertainty on any decision among risky al-
ternatives. Thus, with measurement error we can at most compute the probability,
Pj, that alternative j is chosen. In marketing we interpret these probabilities
as forecasts of behavior and in decision analysis, as the confidence that a de-
cision 1s correct. Without loss of generality, we focus on alternative 1.

Single random draw. For most marketing problems and some decision analy-
sis problems, we can model randomness as a single random draw from f(r|x).
The interpretation is that our knowledge of the individual's utility function is
uncertain but he is consistent in the sense of using the same utility function

to evaluate all alternatives in his choice set.
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Supposé there are J alternatives, each characterized by some probability
density function, hj(x), on the single attribute. Then if r were known with
certainty, the individual would select alternative that maximizes fu(x,r)hj(x)dx.
However, r is a random variab]e‘and as it varies, different alternatives are

likely to maximize utility. Thus define
s{r) = (1 if fu(x,r)hﬁxkb<2 fu(x,r)hj(x)dx for j = 1,2,...4
C otherwise.

Then, the probability that alternative 1 is chosen is simply the probability
that &(r) = 1. I.e.,

ﬁ] = fﬁ(r)f(rli)dr (10)

In principal we can obtain &(r) by numerical methods for any set of hj(x)'s.
Thus, in princiba], ﬁ] is computable. However, for practical problems we must
obtain more analytic results, |

~_We begin by examining the binary choice problem with dichotomous outcomes
illustrated in Figure 3. MWithout Toss of generality essume X1 > Xge This problem
contain; the essence of riscy chaice; the indivicual rust decice among a potentially
greater peyoff, alternative 1, and a greater likelihood of the payoff, alternative
2. (We assume B > «, otherwise a risk averse individual would always select al-
ternative 1.) For this problem we can obtain an analytic expression for ﬁ]. (Let

¢ [+] be the standardized cumulative normal distribution.)

A]ternative 1 Alternative 2

Figure 3: Binary Choice Problem
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Theorem 3: .For the binary choice problem in Figure 3, assume that w>>oc for

normal and r0=0 for exponential theory. Then for NORMAL theory:

I

Py

e

¢[(ﬁ-!;]1og(8/a))/a]fbr constant proportional risk aversion

e

ﬁ] ¢[(rc-ﬁ)/$] if aX,>BX, for constant absolute risk aversion
(infinite range, 0SX<=)

0 otherwise

where ¢ = 10g [(x]-xo)/(xz-xo)] and r. solves the equation

8 exp(-rcxz) -<:exp(—rcx]) = B-gt

For EXPONENTIAL ERROR theory:
1

P] = [g/a] A for constant proportional risk aversion
ﬁ] = 1—exp[rc/i] if aXy>BX, for constant absolute risk aversion

(infinite range,0Sx = )

0 otherwise
Proof. MWe scale u(x,r) such that u(xo,r) = 0 and u(x4,r) = 1. For the binary
choi;e problem, §(r) =1 if au(x],r) > su(xz,r). Substituting the constanc
proportional risk aversion utility function, u(x,r) = (x-xo)r/(x*—xo)r, yields
8(r) =1 iff r 2 1og(e/a)/log[(xi-x5)/(x2—x])] z K"]log(B/a). Recognizing r ~N(ﬁ,32)
and ¢((u-z)/0) = Prob[r > z] yields the result. ‘The result is only approximate
since we ignore r < 0 which occurs with low probabi]jty when u>>g, Now substituting
the infinite range constant absolute risk aversion utility function, u(x,r) =

-rX

1-e 7, into au(x],r) = Bu(xz,r) yields the equation for r_. Note that as

o
r + =, u(x,r) » 1, and alternative 2 will be preferred since B>a. As r - 0,
alternative 1 will be preferred if ax,>8X, since u(x,r) approaches linearity. Thus,
§(r) = 1 for Osrsrc and §(r) = 0 for r>r.s if there is only one solution to the

equation for re2 0. We provide a proof of this fact in Lemma 1. See appendix.
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If aXy S BX,, then au(x],r) < Bu(xz,r) for r 2 0, hence ﬁ] =0, This also
is formalized in Lemma 1. The results for exporiential theory follow

the same arguments except Prob[r 2z] = exp(-z/i). The result is exact since
Prob[r < 0] =0.

Theorem 3 derives analytic results for alternatives with dichotomous
outcomes, that is, when hj(x) fs a Binomial distribution. Theorem 3 can be
extended to continuous distributions on hj(x). For example, if hj(x) is
.2) and the individual is constantly absolute risk averse, then

J
fu(x,r)hj(x)dx = 1- exp(-ruj+r20j2/2). With a Tittle algebra it is easy

N(Uja Y

to show that alternative 1 will be chosen if r < 2(u]-u2)/(c]2—022). Thus,
if we substitute re = Z(u]-uz)/(c]z-czz) into Theorem 3, we have an estimate
for ﬁ] when hj(x) is normal. (Keeney and Raiffa [38, p. 202] provide a table,
of fu(x,r)hj(x)dx for Beta, Binomial, Cauchy, Exponential, Gamma, Geometric,
Normal, Poisson, and Uniferm distributions for hj(x).)

Theorem 3 is a very usable result. For example, consider the hypothe-
tical aiternatives in Figure 4. Alternative 1 is o0il heat vhere the high
risk reflects voiatile suppiies. Alternative 2 is gas heat where the risk

reflects only uncertainty in the heating characteristics of the home.

e $1200 5 $600

$200 g $ 200
0i1 Heat fas Heat

Figure 4: Hypothetical Characteristics of the Risk Imvolved for Two
Home Heating Systems
Using the utility function in Table 2, y = .5, ¢ = .03. From Figure 4

a = .3, 8=.,5, Xy = 1200, and X, = 600. Assuming & constant proporticnal risk
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averse utility function and substituting these values in Theorem 3 yields

.027 for norsal

- -~ -

P] = ¢[{.5 - log(.5/.3)/10g9(1000/400)3/.03] = &(-1.92)

theory. If this vere a marketinj apb]icaticn we would essien a 027 valuc
to the probability that the consumer would choose 0il heat. If this were

a decision analysis application, we would recommend that the decision maker
choose gas heat. We would also ask him if he were comfortable with a 2.7
percent probability of making a "wrong" decision.

In Theorem 2, we obtained the same estimators of the true value (mean
value) of the risk parameter independent of the error theory we used. I.e.,
the estimator for both normal and exponential error theories is the sample
mean of the inverse function. However, the probability of choice depends
on the complete distribution of f(r|x). Hence, we can expect that the
estimate of 51 will depend upon the error theory that is assumed. In the
above example, the sample standard deviation, g = .03, is much smaller than
the sample mean, u= .5. Normal error theory captures this phenomena. How-
ever, exponential error theory assumes that the mean of f(rlk) equals the
standard deviation for o = 0. Hence, we would expect exponential error
theory to}be less certain in identifying gas.heat as the maximum utility
alternative. Using Theorem 3, we compute ﬁ] = ,33 for exponential error

theory implying that there is less than a 70% chance that gas heat is the
best alternative.

This exahp]e demonstrates that the choice of an error theory cén strbhg]y
affect predictions of choice. Since the appropriate distribution for f(r|x)
is an empirical question, we caution the reader to examine a histogram of
the raw data before selecting an error theory for use in Theorem 3. For
example, a histogram (across individuals) of Fishburn and Kochenberger's
data [18, p. 511] suggests that the risk parameters for constant proportional

risk averse utility functions are normally distributed and the risk parameters
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for constant absolute risk averse utility functions are exponentially
distributed.

Multiple random draws. In Theorem 3 the .individual uses the same
utility function to evaluate all alternatives. The uncertainty is due to
our lack of knowledge about his utility function. The other viewpoint is
that errors are involved every time he evaluates an alternative. In this
case the appropriate model is a series of independent draws from f(r]i)
for every alternative.

Again, if r were known with certainty, he would select the alternative
to maximize fu(x,r)hj(x)dx. However, since r. is now an independent draw

J
for every alternative, the probability that alternative 1 is chosen is:

P] = Prob[fu(x,r)h](x)dx > fu(x,r)hj(x)dx for j = 1,2,...J] (11)

where u(x,r) is a random variable for every x in the range'(xo,x*). Since
the effect on u(x,r) of the randomness on r is obtained directly from
equation 4, the probability in equation 11 is computable, in principal, but
1ike equation 10, numerical integration may be necessary:
- Fortunate]y,'for thé fwo most used functional forms; tﬁé<d{§£riﬁnfién
of u(x,r) can be obtained analytically.
Theorem 4: Suppose we have obtained maximm likelihcod estimates for the risk
parameters of the constant proporticral risk averse utility function (form i,
table 1) and the infinite range (0<x<=) constant absolute risk averse utility
V'J_"u}zction (form 1, table 1) by using result 2. Then, if errors are modeled as

NORMAL, the utility functions have lognormal distributions. In partiecular,

r‘A:«)‘
ulx,r) = A(-k{1,k"0") for constant proportional risk aversion
] Y oA A \2“2 . B
1 = u(x,r) ~ A(=xu,x"0") for constant absolute risk aversion

where k )]

Ma,b) = a lognormal distribution with parameters a, b.

i

tog Elx, = x M/ {x - x
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If errors are modeled as EXPONENTIAL, thq utitlity functions have Beta
distributions. In particular, |
u(x,r) ~ Beta(1/ik, 1) for constant proportional risk aversion
u(x,r) ~ Beta(1l, 1/8x) for constant absolute risk aversion

where Beta(c, d)

a Beta distribution with parameters c, d.

Proof. We begin with Normal error theory. By definition, if z is a normal
random variable with mean, u, and variance, 02, and if z=logy, then y is
a lognormal random variable with parameters p and 02, designated

y ~ A(u;ﬁz). See Aitchison and Brown [1]. For constant proportiona].risk
aversion, r(x,u) = -K'Tog u or log u = -kr(x,u). If r(x,u)~ N(p,oz), then
-kr(x,u) ~ N(-ku,kzgz) which is our first result. For constant absolute

risk aversion log(1-u) = -xr(x,y) yielding the second result.

Now assume ekponentia] error with ro = 0. For constant proportional risk

aversion f(r lx) A exp(r/A), r{x,u) = -k]log u, and [dr/du[ =1/ku Substi-

u(1/Ak) -1

tuting in equation 4 yields g(u|i) = (ik)~ which we recognize

as a Beta distribution which parameters (1/3k) and 1. (A Beta distribution

is proporticnal to uc'](1-u)d_].) For constant absolute risk aversion r(x,u)=
~(1/x) log(1-u) and |dr/du| = 1/[x(1-u)]. Substituting in equation 4 yields
g(u[i) = (ix)'l(l-u)(]/xx)'] which we recognize as a Beta distribution with
parameters 1 and (1/;x).

Theorem 4 is very useful for practical applications. If we are evalu-
ating risk]ess‘qlternatives, then equation 11 becomes a quantal choice
problem similar to logit or probit analysis (MFadden [44]) except we use
lognormal or Beta distributions rather than the Weibull and normal distri-
bution used in logit and probit analysis respectively. Fcr cxerylc, Beva
and Mellman {5] estimated a quantal choice model for automobile choice in
which the distribution of the utility function was lognormal mixture of
Weibull distributions. Since details of quantal choice models are discussed

‘elsewnere e.g., rcFadden [44], we do not discuss them here. For some discussion

of numerical techniques see Daganzo [9].
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A]ternétive]y, if we are modeling risky alternatives, equation 11
suggests that hj(x) be chosen from an appropriate family of distributions.
That is, we as modelers choose hj(x) such that the random variable,
Ihj(x)u(x,r)dx, is analytic or tabled. See Proposition 1. For further
discussions on selecting distributions see DeGroot [10] or Keeney and
Raiffa [38]. The appropriate selection of hj(x) again reduces equation
11 to a quantal choice problem. We do not imply that equation 11 is
always an easy computation. It is not. But an extensive literature,
reviewed by McFadden [44], exists on how to use equation 11 once the
distribution of Ihj(x)u(x,r)dx is specified. The contribution of Theorem
4 is to specify the distribution for u(x,r).

We close this section with a proposition that illustrates how

Theorem 4 and equation 11 are used for a constant proportional risk averse
utility function when the choice problem consists of two dichotomous al-
ternatives. The proof is in the appendix.
Proposition 1. Consider the binary choice problem in Figure & and assume
that the utility function is aq constant proportional rick averse utility
function. Assume further that the risk parameter is independently drawn
from f(r[r) for each aZtefnative, then the probability that alternative

1 is chosen 1s given by:

ﬁ] = o{[i(ky-k;) - log(8/a)1/no} NORMAL ERROR THEORY
where n ﬁ/ k]2+k22 and

ki = ]09[(X*'X0)/(X1"Xo)]

P = [k,/(ky+k,)1l8/ -(1/3kz) EXPONENTIAL ERROR THEORY

1= o/ (kytks) 108 a] . NTIAL ERROR TH
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Swmmary

This completes our discussion of single parameter, uniattributed utility
functions. Together our four theorems provide a foundation of an error
theory. Theorem 1 states that our estimators apply to the question formats
used in marketing and in decision analysis. Theorem 2 provides maximum
likelihood estimators (MLE) for both normal and exponential error theories.
By using MLE's we make efficient use of redundant questionning to obtain
a "best guess" for the utility function.

Theorems 3 and 4 then use these MLE's to estimate choice probabilities.
Theorem 3 provides analytic estimates of ﬁl for the choice problem in Figure
3. Since this problem captures the essense of risky choice, it should ap-
proximate many decision problems. Furthermore, the results are readily
extended to other choice problems. The more general result, Theorem 4,
does not compute ﬁ] analytically, but transforms the von Neumann-Morgenstern
problem so that it is complementary to the well-studied quantal choice prob-
lem. The importance of Theorem 4 is that it characterizes analytically the
distributions of the utility functions once we have the MLE estimates of the
utility parameters. Equation 11 plus Theorem 4 provide a means to compute
31 for the more general problem. This is illustrated with proposition 1.

Throughout our development we have tried to provide the analyst with
flexibility by (1) specifying two error theories, (2) deriving estimators
and choice probabilities for the general case, and (3) deriving practical
analytic results for the two most widely used functional forms.

To select among error theories, we suggest that the analyst obtain
r(xi,pi) for sufficiently large I and plot its histogram. If the histogram
is symmetric and unimodel, normal theory is likely to be a good model; if

o~

the histogram is unimodel and skewed with ¢ =y, then exponential theory is

1ikely to be a good model.
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To select among functional forms we suggest either (1) qua]itative'
judgment and questionning or (2) statistical fit. The former method is
discussed in Keeney and Raiffa [36, p. 191]. For example, if the indivi-
dual suggests that his risk aversion is constant over thé rﬁnge of x, form
1 is a good model; Qhereas if risk aversion decreases as assets increass,
form 2 is the better model, The latter method can depend on minimum

variance of r(xi,pi) or another statistical criterion.
4, MULTIPLE PARAMETER UNIATTRIBUTED UTILITY FUNCTIONS

While the class of single parameter utility functions is quite flexible
and can acconmodate a wide range of interesting problems, occasionally a
researcher may wish to estimate the parameters of a uti]ify function that
is more complex. For example, Keeney and Raiffa [33,p. 209] report that
a computer program which has been used at the Harvard Business School since
1566 is based on the decreasingly risk averse three parameter function in -
Table 1 (form 5). In general, the computation of choice probabilities is
not aﬁa]ytically tractable for multiple parameter functions, but equations
10 and 11 still apply for numerical solutions. Since a reséarcher choosing
a multiple parameter utility function may be willing to sacrifice analy?ic
simplicity for greater flexibility, we provide a means to estimate the'bara-
meters of the utility function recognizing numerical integration may be
necessary for choice probabilities. .A

We provide two methods. The first method requires clustered auestioning,
but provides maximum likelihood estimates. The second method relaxes the
clustering requirement, but provides a regression approximation.
‘CZus tered Questions

Suppose a marketing scientist wishes to estimate a popu]ation.distribu-
tion for the three parameter function (form 5) in Table 5. One procedure
might be to ask each consumer three questions and use that information to

characterize the populaticn by a multivariate distribution on rys Tos T3
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Alternatively, a decision analyst may ask I clusters of three questions
in order to estimate the decision maker's utility function. (In general,
a cluster will contain K questiohs if K parameters are to be estimated.)

Let (xki’ pki) be the certainty equivalent and lottery probability
associated with the ith cluster and kth question within the cluster. By
theorem 1, we can specify either Xki OF Pyj while’the individual responds
with the other value. Let x,; = (x{,, XZi"“XKi) and p. = (pq;» pZi"“’pKi)‘
If a vector-valued function, 3154,24), exists mapping.the vectors x, and p;
onto the range of the K unknown parameters of the utility function, and if
we assume that errors cause gﬂgﬁ,gh).to be distributed with a multivariate
normal distribution with mean, p, and covariance matrix, I, then the maximum
1ikélihood eétimators, ﬁ_and f, are simply the multivariate extensions of the

univariate estimators in theorem 2, That is,

~

B

(1/1) z,r(x;.p;) (12)

(13)

1>
]

(1/1) Zi[f-(ii i) - ﬁ-_][g(_x_]. ,21-) - E)JT

For a formal proof see Giri [20, chapter 15]. As before we can construct
confidence regions with the multivariate extension of a t-test. For example,
the appropriate statistic for ﬁ_is Hotelling's T2 statistic (Giri[]o; chapter 7]
andGreen [24, p. 257]).

Similar results apply for exponential error.
Independeﬁt Questions

If, for whatever reasons, the analyst feels that clustered questions
are not appropriate for his situation, he may wish to ask K x I independent
questions.A In this case, without further specifying the interrelationships
of the question formats we can not obtain maximum likelihood estimators.

-However, we can obtain a practical regression approximation.
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Following Pratt [42] and Keeney and Raiffa 38 , p. 160] define a risk
premium, Mis @S the amount by which the certainty equivalent, xi,-exceeds

the expected value of the Tlottery, ii. For the measurement in Figure 1:

“i(x'l,p'l) = X.i' - P.ix* - (]"P.I)XO (]4)

Keeney and Raiffé [38, p. 161] then consider variation about the expected
value of the lottery and show by Taylor's series expansion that the local

risk averion, R(x,r), is approximately proportional to . (R(x,r) is defined
by equation (1) where we have added the unknown parameters, r, to the nota-

tion.) In particular, Keeney and Raiffa show

m(x5,p5) = (1/2)V§ R(x.sr) + e (15)

- where v? is the variance of the lottery, v? = (1/2)(x*-3'<1.)2 + (1/2)(x0-§i)¢;
and ¢ indicates higher order terms that are assumed to be negligible.

Rearranging terms yields:

or) o+ éi (16)

0 = 2 s 127 . .
where R7(x:,p.) = 4(x; - Pixy -(1-%)&9/[@*"X1) t (x,-%,)"] is a function
of known data because ii = PiXa + (1-pi)x0. Note that we have incorporated

the Taylor's series error, e, in the measurement error, éi.

Equation (16) is now in the form of a regression equétion.'-ff'R(xi,r)
is Tinear in its parameters, ordinary least squares regression applies,
AMternatively, a researcher may use non-linear techniques for non-linear
R(x;sr). Once the parameters of R(x,,r) are estimated, we can recover
u(xi,g) from equation (1) by integration since u(x,r) = f]féxp[-fR(x,ﬁ)dX]dX + 1,
Qhere f]and f, are constants chosen to scale the utility function. ‘-
For example, we might wish to consider utitity functions which combine

constant absolute and proportional risk aversion {forms 1 and 2 in Table 1). In.
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this case, R(xi,gj = r1+r9(xi-xo)'] is linear in the unknown parameters. Since
equation (16) does not require an inverse function, we can allow x, and XS

to vary across measurements, i,
5. MULTIATTRIBUTED UTILITY FUNCTIONS

The theory in section 3 and 4 provides us with an error theory to
estimate and use uniattributed utility functions. For many applications,
such as decisions among alternative financial investments, a uniattributed
theory suffices. 'Howeverf there are many applications in both decision
analysis and marketing where it is necessary to model prescriptively or
descriptively decisions involving multiple attributes, each of which is
risky. For example, the decision to buy a home heating system might involve
reliability, safety, and cleanliness as well as annual dollar savings.
(Choffray and Lilien [7] illustrate empirically a multiattributed preference

problem for solar air-conditioning.)
The most general problem is to estimate the parameters, w, of an

M-valued function, U(x,w), mapping the levels of the attributes, x, onto

a utility measure. In this section we let Xp5 = (xzil,xziz""xziM) be

the levels of the M attributes for the certainty equivalent in the 2th question
in the ith cluster. In assessing U(x,w) we specify either (1) all of X9

or (2) Poi and all but one of the Xgie A multiattributed extension of

theorem 1 lets us choose Pgy Or any of the x

i 28 the value specified by

the individual.

Bstimation. If we ask our questions in I clusters of L questions and if a
canputab]e vector-valued inverse function,_ﬂ(éi, B;), exists mapping the
question set onto the unknown parameters, then the multiattributed problem
is isomorphic to the multiple parameter uniattributed problem. (§1is the
matrix with rows X,i and p; is the vector with elements pzi‘) Equations

12 and 13 can be used to estimate the mean and covariance of a multivariate
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normal distribution on w. Confidence intervals are computed with Hotelling'sg
T2 statistic.
Probability of Choice. Choice probabilities can be obtained with the
appropriate modification of equations 10 and 11, although numerical tech-
niques may be neceésary. For example., one might use equation 10 by sampling
from the multivariate normal distribution then using the sampled Q to compute
the expected utility of each option. Choice probabilities are then the per-
cent of times an alternative is chosen in, say 1000, draws. This computation
method is similar to methods used in probit analysis, e.g., Dagonzo [9], and
has proven feasible in that context.
Estimation Example

e illustrate the multiattributé extension with a hypothetical home

heating system example. Suppose that besides annual savings, x,, the indi-"

'I’

vidual is concerned with reliability as measured by the probability, x,, that

2
no repair will be needed each year. e suppose that the individual plans
to purchase a service contract (a form of insurance policy) such that only
negative effect of a repair is inconvenience (not dollar cost). We wish

to model the decision maker's preferences by a constant provcrtional risk

averse, multilinear utility function. I.e.:
U(§,y) = w3u](x]) + w4u2(x2) +‘(1-w3-w&u](xl)u2(x2) (17)

Wy

W .
u](x]) = [(x] - 200)/1000] ! : u2(x2)'= X,

We estimate the four unknown parameters, W = (w], Wys Wiy w4)by asking
the 1ottery questions shown in Table 3. In each question, the decision maker
~ is asked to give a probability, Peis such that he is indifferent between a

) certainty equivalent, (x 2) and a lettery where the system is described

291 %2
by (X"£11’ x"giz) with probability Peio and by (x'zi], x’ziZ) with probability,

(1-pgi). In other words, the standard Tottery shown in figure 5:
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pi1r X"gi2)

(x* 0570 X' p42)

Figure 5: Schematic of Multivariate Lottery

The reader will note that we have constructed the questions in Table 3

for easy computation of the inverse function, y(5i’91)'

= 1og(p]i)/1og[(x]i] - 200)/ 1000]° (18)
= ]°g(p21)/]°g(x212)
W3; = P33/Pyy |

Wai = Pgi/Po;
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TABLE 3

EXAMPLE ASSESSMENT FOR THE COST AND RELIABILITY

OF A HOME HEATING SYSTEM

it

probability that no repair is needed in a given year

Certainty Equivalent "Win" "Loss" Probability Parameters
3 3 " 1
T4 X5 %42 Xpi1 *piz2  *pi1 *gi2 Py Mg Woq Mg Mgy
11 400 .20 1200 .20 200 .20 45 .50

2 400 .20 400 1.00 400 .00 .60 .32

3 400 .00 1200 1.00 200 .00 .20 44

4 200 .20 1200 1.00 200 .00 .50 .83
21 &G0 .40 1200 .40 200 .40 .65 Ny

2 600 A0 600 1.00 600 .00 .75 .31

3 600 .00 1200 1.00 200 .00 .25 .38

4 200 .40 1200 1.CO 200 .00 .60 .80
31 800 .60 1200 .60 200 .60 .75 .56

2 800 .60 800 1.00 800 .00 .80 A4

3 800 .00 1200 1.00 200 .00 .30 .40

4 200 .60 1200 1.00 200 .00 .65 .81
41 1000 .80 1200 .80 200 .80 .90 47

2 1000 .80 1000 1.00 1000 .00 .95 .23

3 1000 .00 1200 1.00 200 .00 .35 .39

4 200 .80 1200 1.00 200 .00 .75 .79

i = .50 .33 .40 .81
Xy = savings in dollars
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This simplicity is for ease of exposition. Tradeoff questions as well
as lotteries can be used and the inverse function can vary with i as long
as it is computable for all i. Even with our simplification, the sixteen
questions provide the decision maker with a variety of questions. The
fanswers", pL?to the lottery questions were "constructed" by assuming
w = (.50, .33, .40, .80) and rounding off to the nearest .05.

Examination of Table 3 reveals that the estimated parameters, yT, re-
cover the “"known" values quite well. The covariance matrix, [, and the cor-

-~

responding correlation matrix, C, can be readily computed with equations

12 and 13,
# = [Loos4 .0102 .0009 .0009ﬂ< | t = [}.0 93 .27 .41-
' .0226 .0010 .0020 1.0 .15 .44
.0021 .0010 | 1.0 .74
L .0009 | 8 1.0 ]

We note that the high off-diagonal elements in C are partially due to the
small sample size, I=4, and partially due to structural intercorrelation in

equation 18, E.g., Py; appears in the equations for both Wy and w Such

3.
correlations can be avoided with larger sample sizes and judicious choice

of question format.
6. CONCLUSIONS AND FUTURE DIRECTIONS

This completes our development of an initial error theory for von
Neumann-Morgenstern utility theory. Our emphasis is on uniattributed single
parameter functions since they illustrate the unique advantage of vN-M theory.
Our results are practical and flexible. The analyst can choose among ques-
tion formats, error assumptions, and functional forms. Qur analytic results

make the theory usable, Qur more general results are feasible, if difficult
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numerically, and hence encourage further development of analytic theory and
computer software.

Many interesting problems remain including (1) practical algorithms for
quantal choice analysis with lognormal and Beta ‘distributions, (2) analytic
distributions for fhj(x)u(x,r)dx, and (3) analytic solutions for choice
probabilities with selected multiattribute forms.

Assessment has proven feasible in both decision analysis and marketing.
This experience suggests the error theory is based on practical question
formats. Furthermore, once the data is obtained, our illustrative examples
show that the estimators can recover known utility functions. However,
many émpirica] quesfions remain which will ultimately be resolved through
practice. Accumulated experience can suggest conditions when normal (or
exponential) is the better error assumption and indicate which functional

form best represents decision makers and consumers.



APPENDIX

Lemma 1: Assume B > a and Xy > XZ’ then the equation,

B exp(-r x,)-a exp(-r_x,)=8-a, has at most one solution for re >0 .

Proof: First, rewrite the equation in functional form:
E(r) = a[]-exp(-rx])] - 8[1-exp(-rx2)] (A1)

recognizing Xy > X and B > a, Alternative 1 will be chosen whenever
E(r) 2 0.
By a Taylor expansion E(r) 3 ax, - &, as r- 0., Let E(0) = lim E(r.)
12 R C
and let E(=) =r]Ci_gloE(rc), Then E(0) > O 1'1°ozx1 > 8Xx, and E(0) < 0 if
axy < BX,. By direct substitution Ef~) =a -8 < 0 sincea < 8.

Now differentiate E(r) yielding
E'(r) = dE(r)/dr = axqexp(-rx;) - BX,exp(-rx,)

Setting the derivative equal to zero yields r* = (1ogax] - log sz)/(x1- XZ)'
Since xq> X,, r*> 0 1ff'ax] > Bx,. Furthermore E'(0) = ax; = BX, thus
E*(0) > 0 iff axq > sz.

Assume axq < Ekz then E(0) < 0, E(=) < 0, and E(r) is monotonic in the
range (0,~). Thus there is no solution to Al for r.> 0, If axy = gx, the

c 2
only solution for r 2 0 is re © 0.

Assume axy > sxz,then E(0) > 0, E'(0) > O, and'r* > 0, Thus E(r)> O
for r < r*, Now E(r*) > 0, E(») < 0, and E(r) is monotonic in the range
(r*,=}, Thus, there is exactly one solution to Al for re > 0 and it occurs
in the range (r*,»). Note that we have also proven that E(r) > 0 for

r‘-e(O,rc) and E(r) < 0 for re (rc,w), thus alternative 1 will only be

chosen in the range (0,r.).
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PROOF TO PROFPOSITION 1
Alternative 1 will be chosen if au(x],r]) >~3u(x2,r2), Consider first
norma]errortheory.' Rearranging terms this condition becomes log u(x],r]) -
log u(xz,rz) > log(8/a). Using theorem 4, the left hand side of the in-
equality is distributed as N[ﬁ(kz-k]), 82(k]2+k22)] and the result follows.
Now consider exponential error theory. Again rearranging terms indicates

that alternative 1 will be chosen if u(x],r])/u(xz,rz) > B/a., Let u; = u(xi,ri)

then by Theorem 4 and the assumption of independent draws g(u],uz) is given by:

<2

g(uysuy) = (X klkz)-] (u])(llxk)-l. (uz)(l/ik?_)q

Define z=u]/u2 and t=u, then the p.d.f. of z and t is obtained using a

2
Jacobian transfcrmation:

qq-1 qy+q)-1

fzt(z’t) = q]qZ(Z) (t)
where q; = (1/iki)

Integrating out t yielas the marginal distribution for 2:

q,9 q,-1 -
172 z 1 0 <z <]
9479 |
f (z)=
ha, -9l
q]+q2 Z z 21 )

oo -

. q
Since (g/«) > 1, Py = Prob[z > g/a] = f%ﬁlfz(z)dz = [ay/(ay*a,) I(e/a) 2.

Finally, substituting q; = (]/iki) into the above expression yields the

result.



[#}]

10.
11,

12.

13.

14,

15,

REFERENCES

J. Aitchison and J.A.C. Brown, The Lognormal Distribution with_Specja]
Reference to its Uses in Economics (England: Cambridge University
Press, 1969).

Barnes, J.D. and J.E. Reinmuth, "Comparing Inputed and Actual.Uti]ity
Functions in a Competitive Bidding Setting," Decision Sciences,
Vol. 7, No. 4 (October 1976), pp. 801-812.

Bell, D.E., "A Decision Analysis for Objectives of a Forest Pest P(ob1em,"
R.R.-75-43, International Institute for Applied Systems Analysis,
Laxenburg, Austria.

Bodily, S.E., "The Utilization of Frozen Red Cells in Blood Banking Systems:
A Decision Theoretic Approach," Technical Report No. 94, Operations
Research Center, M.I.T., Cambridge, MA, 1974.

J.H. Boyd and R.E. Mellman, "The Effect of Fuel Economy Standards on the U.S.
Automobile Market: A Hedonic Demand Analysis," Transportation Research,

Vol. 14A, No. 5-6 (October-December 1980), pp. 367-278

Brown, R.V. and C. Peterson, "An Analysis of Alternative Mideastern 0il
Agreements," Technical Report, Decisions and Designs, Inc., Mclean,
Virginia, 1975.

J.M. Choffray and G.L. Lilien, "The Market for Solar Cooling:. Perceptions,
Response, and Strategy Implications," Studies in Management Science,
Vol. 10, 1978, pp. 209-226.

J.id. Choffray and G.L. Lilien, Market Planning for New Industrial Products,
New York, John Wiley & Sons, 1980.

Daganzo, C., Multinomial Probit: The Theory and its Applications to Demand
Forecasting (New York: Academic Press, 1979).

Degroot, M.H., Optimal Statistical Decisions, (McGraw Hill, New York), 1970.

Eliashberg, Jehoshua, "Consumer Preference Judgments: An Exposition¢@1th
Empirical Applications,” Management Science, Vol. 26, No.l (January
1980), pp. 60-77.

Eliashberg, J. and Winkler, Robert L., "The Role of Attitude Toward.Risk in
Strictly Competitive Decision-Making Situations," Management Science,
Vol. 24, No. 12, August 1978, pp. 1231-1241.

Eliashberg, J. and Winkler, R.L., "Risk Sharing and Group Decision-Making,"
Management Science, Vol. 27, No. 11, November 1981.

E11is, H.M. qnd R:L. Keeney, "A Rational Approach for Government Decisions
Concerning Air Pollution," in A.W. Drake, R.L. Keeney, and P.M. Morse,
eds., Analysis of Public Systems, (Cambridge, MA: MIT Press, 1972).

Farquhar,.P.H., "A Fractional Hypercube Decomposition Theory for Multi-
attribute Utility Functions," Operations Research, Vol. 23, No. 5
(September-October 1975), pp. 941-967.




16.

17.

18.

19,

22.

23 .

24,

25.

26,

27.

28,

29.

30.

31.

3.

Farquhar, P.H., "A Survey of Multiattribute Utility Theory and Applications,"
Studies in Management Science, Vol. 6 (1977), pp. 59-89.

Fishburn, P.C., "von Neumann-Morgenstern Utility Functions on Two Attributes,
Operations Research, Vol. 22, No. 1 (January-february 1974), pp. 35-45.

Fishburn, P.C., and G.A. Kochenberger, "Two-Piece von Neumann-Morgenstern
Utility Functions,” Decision Sciences, Vol. 10 (1979), pp. 503-518.

Friedman, M. and L.J. Savage, "The Expected-Utility Hypothesis and the
Measureability of Utility," Journal of Political Economy, Vol. 60
(1952), pp. 463-474,

Giri, N.C., Multivariate Statistical Inference, (Academic Press, iY, 1977).

Goodman, B., M. Saltzman, W. Edwards and D.H. Krantz, "Prediction of Bids
for Two-Outcome Gambles in a Casino Setting," Organizational, Behavioral
and Human Performance, Yol. 24 (1979), pp. 382~399.

Grayson, C.J., Decisions under Uncertainty: Drilling Decisions by 0il1 and
Gas Operators (Cambridge, MA: Graduate School of Business, Harvard
University, 1960).

Green, P.E., "Risk Attitudes and Chemical Investment Decisions," Chemical

Green, P. E., Analyzing Multivariate Data (Hinsdale, IL: The Dryden Press,
1978).

Green, P.E. and V. Srinivasan, "Conjeint Analysis in Consumer Research:
Issues and Outlock," Journal of Censumer Research, Vol. &5, No. 2
(September 1978), pp. 103-123.

Gros, J.G., "A Paretian Environmental Approach tc Power Plant Siting in
New England," Doctoral Dissertation, Harvard University, Cambridge, MA,
1974.

talter, A.N. and G.W. Dean, Decisions Under Uncerteinty (Cincinnati, OH:
Southwestern Publishing Co., 1971).

Hauser, J.R., "Consumer Preference Axioms: Behavioral Postulates for

Describing and Predicting Stochastic Choice," Management Science,
Vol. 24, No. 13 (September 1972), pp. 1331-1347. :

Hauser, J.R. and S.M. Shugan, "Intensity Measures of Consumer Preference,"
Operations Research, Vol. 20, No. 2 (March-April 1980), pp. 278-320.

Hauser, J.R. and G.L. Urban, "A Normative Methodology for Modeling Consumer
Response to Innovation," Operations Research, Vol. 25, No. 4 (July-
August 1975), pp. 579-619.

‘Hauser, J.R. and G.L. Urban, "Direct Assessment of Consumer Utility Functions:

von Neumann-Morgenstern Theory Appiied to Marketing," Journal of
Consumer Research, Vol. 5 (March 1979), pp. 251-262.

Herstein, I.N. and J. Milnor, "An Axiomatic Approach to Measureable Utility,"
Ecenometrica, Vol. 21 (1953), pp. 291-297.




3.
34.
35.
36.
37.
38.
39.

40.
41.
42.
43.

a4,

45,
46.

47.

48,

49,

Jensén, N.E., "An Introduction to Bernoullian Utility Theory. I. Utility
Functions," Swedish Journal of Economics, Vol. 69 (1967), pp. 163-183.

Kahneman, D. and A. Tversky, "Prospect Theory: An Analysis of Decision Under
Risk," Econometrica, Vol. 47, No. 2 (March 1979), pp. 263-291.

Keeney, R.L., "Utility Functions for Multiattributed Consequences," Management
Science, 18 (1972), pp. 276-287.

Keeney, R.L., "A Utility Function for the Response Times of Engines and
Ladders to Fires," Urban Analysis, Vol. 1 (1973), pp. 209-222.

Keeney, R.L., "Multiplicative Utility Functions," Operations Research,
Vol. 22, No. 1 (January 1974), pp. 22-33.

Keeney, R.L., and H. Raiffa, Decisions with Mu]tip]e-Objectives: Preferences
and Value Tradeoffs (New York: John Wiley & Sons, 1976).

Krantz, D.H., R.D. Luce, P. Suppes, and A. Tversky, Foundations of Measure-
ment (New York: Academic Press, 1971).

Krischer, J.P., "An Analysis of Patient Management Decisions as Applied to
Cleft Palate," TR-12-74, Center for Research in Computing Technology,
Harvard University, Cambridge, MA, 1974.

Lee, W., ?ecision Theory and Human Behavior (New York: John Wiley & Sons,
1971).

Luce, R.D. and P. Suppes. “'Prefarence, Utility, and Subjective Probability,"
in R.D. Luce, R.R. Busi, and E. Galanter (eds.) Handbook of Mathematical
Psychology, Vol. 3 (‘law York: John Wiley & Sons, 1965), pp. 249-410.

Marschak, J., "Rational Behavior, Uncertain Prospects, and Measureable
Utility," Econometrica, Vol. 18 (1950), pp. 111-141.

McFadden, D., "Quantal Choice Analysis: A Survey," Annals of Economics and
Social Measurement, (1976), pp. 363-390.

Meyer, R.F. and J.W. Pratt, "The Consistent Assessment and Fairing of Prefer-
ence Functions," IEEE Transactions on Systems Science and Cybernetics,
Vol. SSC-4, No. 3 (September 1968), pp. 270-278.

Mood, A.M. and F.A. Graybill, Introduction to the Theory of
Statistics (New York: McGraw-HiTT Book Co., 1963).

0'Connor, M.F., "The Application of Multiattribute Scaling Procedures to the
Development of Indices of Water Quality," Report 7339, Center for
Mathematical Studies in Business and Economics, University of Chicago,
Chicago, IL, 1973.

Pratt, J.W., "Risk Aversion in the Small and the Large," Econometrica, Vol. 32
(1964), pp. 122-136.

Richard, S.F., "Risk Aversion, Utility Independence, and Separable Utility
Functions," Management Science, Vol. 22 (1975), pp. 12-21.




50.
51.
52.
53.
54,

55,

56.

Swalm, R.D., "Utility Theory - Insights into Risk Taking," Harvard Business
Review, Vol. 47 (November-December 1966), pp. 123-136.

Thurstone, L., "A Law of Comparative Judgment," Psychological Review, 34
(1927), pp. 273-286. :

Tversky, A., "Additivity, Utility, and Subjective Probability,” Journal of
Mathematical Psychology, Vol. 4 (1967), pp. 175-201.

Urban, G.L., "PERCEPTOR: A Model for Product Positioning," Management Science,
Vol. 21, No. 8 (April 1975), pp. 858-871.

Urban, Glen L. and John R. Hauser, Design and Marketing of New Products
(Englewood Cliffs, N.J.: Prentice-Hall, 1980).

von Neumann, J. and 0. Morgenstern, Theory of Games and Economic Behavior
Princeton, N.J.: Princeton University Press, 1947,

Wilkie, W.L. and E.A. Pessemier, "Issues in Markéting‘s Use of Multi-
attribute Attitude lModels," Journal of Marketing Research, Vol. 10
{Movember 1973), pp. 428-441.




