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DISCUSSION PAPER NO. 493

TOWARDS A GENUINELY POLYNOMIAL ALGORITHM

*
FOR LINEAR PROGRAMMING

by
Nimrod Megiddo

August 1981

Statistics Department, Tel Aviv University

Tel Aviv, Israel

Abstract. A linear programming algorithm is called genuinely
polynomial if it requires no more than p{(m,n) arithmetic oper-
ations to solve problems of order m x n , where p 1is a polyn-
omial. It is not known whether such an algorithm exists. We

present a genuinely polynomial algorithm for solving linear ine-~
qualities with at most two variables per inequality. The number

of arithmetic operations which we require is O(mn3 log m).

* This work was done while the author was visiting at Northwe-
stern University. The work was supported in part by National
Science Foundation under Grant #ECS7909724.



1. INTRODUCTION

A major result in computational complexity theory was reported by Khachiyan
[K] in 1979, namely, that the feasibilty of linear inequalities can be decided
in polynomial-time. However, many researchers interested in linear programming
have not been completely satisfied with Khachiyan's result. This is because
the fact, that the bound is polynomial in terms of the input size, depends on
the numbers being given in binary encoding. In particular, even for fixed numb-
ers of variables and inequalities, the number of arithmetic operatioms required
by Khachiyan's algorithm is unbounded. This number tends to infinity with the
magnitude of the coefficients even though it is bounded by a polynomial in the
logarithms of these numbers. It is not hard to establish enéoding schemes with
respect to which Khachiyan's algorithm requires an exponential number of opera-
tions, although the operations themselves require polynomial-time. It should

also be mentioned that Khachiyan's algorithm has not yet been proven practical.

An interesting question which is still open is the following: Is there an
algorithm, and is there a polynomial p(m,n) such that every set of m linear
inequalities with n variables is solved* by the algorithm in less than p(m,n)

arithmetic operations? We shall call such an algorithm genuinely polynomial.

It is not even known whether the transportation problem has a genuinely polyno-
mial algorithm. The scaling method for the min-cost flow problem by Edmonds
and Karp [EK] has a polynomial time-bound but, like in Khachiyan's algorithm,

the number of arithmetic operations depends on the magnitude of the coefficients.

In this paper we shall be dealing with a special type of linear inequalities,

* By solving we mean producing a feasible solution or else deciding that the
set is infeasible.



namely, sets of m inequalities with n variables but no more than two variab-
les per inequality. Previous results with respect to this problem are as follows.
Pratt [P] solves the special case of inequalities of the form x -y <c (di.e.,
the dual of a shortest-path problem) in 0(n3) operations. Shostak [S] develo-
ped a nice theory, on which we base our results in this paper, but his algorithm

is exponential in the worst-case. Nelson [N] gave an O(mnrlog2n1+4

log n)
algorithm. Polynomial-time algorithms for this problem were given by Aspvall
and Shiloach [AS] and by Aspvall [A]. The former requires O(mnBI) arithmetic

operations, where I 1is the size of the binary encoding of the input, while the

latter requires O(ngI) operations.

We shall present an algorithm which requires O(mn3 log m) operations, i.e.,
a genuinely polynomial algorithm for solving systems of linear inequalities of
order mXn with at most two variables per inequality. Our algorithm is based
on that of Aspvall and Shiloach [AS] and on Shostak's [S] result. A similar
construction can be based on Aspvall's [A] algorithm but no better complexity is
obtained. Thus, although this paper is aimed to be self-contained, the reader

may find it helpful to refer to [S] and [AS] for further clarificationms.

2. PRELIMINARIES

Given is a set S of m linear inequalities involving n variables but
no more than two variables per inequality. Suppose S = SlLJ S2 where Si is
the set of inequalities involving exéctly i wvariables (i = 1,2). Without
loss of generality, assume that S1 is given in the form 1lo(y) <y < up(y),

where lo(y) and up(y) are the lower and upper bounds, respectively, on the

variable vy ; these bounds may be infinite. It will be convenient to maintain



for every variable y a list of all the inequalities in which y participates.

Throughout the computation there will be derived more and more resrictive
lower and upper bounds, y and §- respectively, for each variable y . The
basic step of updating such bounds makes use of a single inequality from S2 .
Given the current bounds X_,'; on y and any inequality ay + bz < ¢ in
which y participates (a,b + 0 and assuming y and 2z to be distinct) the
bounds on 2z may be updated in an obvious way. We define the routine

FORWARD( y , ay + bz < ¢ ) to be the updating procedure which operates according

to the following case classification:

case (i) t:a,b>0 z <« miﬁ[ z , (c - ay)/b ]
case (ii) : a>0, b < 0 z + max[ z , (c - ay)/b ]
case (iii) : a< 0, b >0 z < min[ z , (c - ay)/b ]
case (iv) :a , b < 0 z + max[ z , (c - ay)/b ]

The routine FORWARD detects infeasibilty when z < z .

The routine FORWARD may repeatedly be applied along '"chains" of inequalities.
Specifically, a sequence of inequalities a;v. + biyi+l < c; i=1l,...,k ,

may be used for updating the bounds on Vi1l by starting from the bounds on Yy

and updating vy +

41 Yis1 according to the updated Yy oo Yy (i=1,...,k).

1

Consider the case where the initial bounds are y = lo(y) , §-= up(y) for

y + Yy and Yy 1 =8 where g 1is any real number. Obviously, the bounds

(=]

that will be derived with respect to Yoo-- will be linear functions of g

Vi1

(not excluding the possibility of infinite bounds).

A special case is that of a "loop", i.e., when Yierl and y, are the same
variable which we now denote by x . Consider, for example, a case where applying

the routine FORWARD around a loop starting and ending at x yields x = ag + B.



Equivalently, a necessary condition for feasibility is that x > oax + 8. This

is an inequality which is "hidden" in our loop and obviously has the following

consequences:

(i) If o =1 and B >0 then S is infeasible; in this case we say that the
loop is infeasible.

(ii) If o < 1 then x.; B/(1 - @) 1is a necessary condition for feasibility.

(iii) If o > 1 then x < B/(1 - a) 1is necessary.

Obviously, the number h = B/(1 - o) (in case « + 1) is the

solution of the equation g = ag + 8 . Suppose we apply the routine FORWARD

around each simple loop and along every simple chain. If either an infeasible

loop is discovered or an infeasibility is detected by FORWARD (in the form

z > 2z) then the problem is infeasible; otherwise, we may adjoin all the necessary

conditions so obtained to our set of inequalities and that of course will not

restrict the set of solutions. By doing this we obtain what Shostak [S] calls

a closure S' of our set of inequalities. Shostak's main theorem states that

S 1is feasible if and only if S' does not have any infeasible simple loop nor

a simple chain along which FORWARD detects infeasibility. This is the essence

of Shostak's algorithm. That algorithm is exponential since it needs to consider

all simple loops.

Aspvall and Shiloach obtained a polynomial-time algorithm by considering

K

*

* %
another extension S of S . Specifically, S = SllJ 82 where Sl is the

set of the most restrictive inequalities in S' with respect to a single vari-

able and S is the original set of inequalities involving exactly two varia-

2

bles. Following Aspvall and Shiloach we denote those most restrictive bounds

*

for a variable x by xlow and xhigh, i.e., Sl consists of the inequalities

xlow < x < xhigh . Once xlow and xhigh have been found, Aspvall and Shilo-

. s . 2 i
ach can find a solution, or else recognize infeasibility, in O(mn~) Operations.



We shall develop an O(mn2 log m) algorithm for finding xlow and xhigh

for a single variable x .

3. THE FUNCTIONS r(g) and r'(g)

It has already been noted that the bounds obtained at the end of a fixed
chain are themselves linear functions of the value g which is assigned to the
variable at the start of the chain. Let x be an arbitrary variable. We define
r(g) to be the largest lower-bound on x. which may be obtained in ome of the
following ways: (i) Apply FORWARD along any chain of length no greater than n ,
with the initial bounds y = lo(y) , y = up(y) . (ii) Apply FORWARD around any
loop of length no greater than n , starting and ending at x, with the same ini-
tial bounds except for x = X = g . Analogously, r'(g) is defined to be the
least upper-bound on x that may be obtained in such a way. It follows that
r(g) 1is a convex piecewise-linear function of g while r'(g) is concave and

piecewise-linear.

By definition, if g 1is a feasible value of x (i.e., there is a solutiom
of S8 1in which x = g ) then, necessarily, r(g) < g < r'(g) . The properties

of the functions r , r'

imply that the set of the values of g such that
r(g) < g < r'(g) 1is convex, i.e., there exist (possibly infinite) numbers a,b
such that r(g) < g < r'(g) if and only if a < g < b . On the other hand,
if h 1is either a lower or an upper bound which is hidden in a loop then
h=och+RB (% 1) where either ag + B < r(g) for all g e [a,b] or

ag + B > r'(g) for all g e [a,b] . Moreover, if h is a bound obtained from
a chain then either h < r(g) or h > r'(g) for every g . It thus follows
(see Fig. 1) that the endpoints a,b are precisely the most restrictive bounds

that may be obtained either along chains or around loops (all of length no gre-

ater than n ), i.e., a = xlow and b = xhigh .
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In other words, xlow = min{ g : r(g) < g < r'(g)} and <xhigh =

max { g : r(g) <g<r'(g) }. We shall develop a search algorithm for =xlow

and xhigh .

4., A USEFUL GENERALIZATION

As a matter of fact, we can handle a more general situation which is more
convenient to describe. Consider the function R(g) = min[ r'(g) - g, g - r(g)l].
Obviously, 1r(g) < g < r'(g) if and only if R(g) > 0 while R 1is concave
and piecewise-linear. We are interested in finding a = min { g : R(g) >0 }
and b =max { g : R(g) > b }. Let R+(g) and R _(g) denote the slopes of R
at g on the right-hand side and on the left-hand side, respectively. Thus,

R _(g) ;:R+(g) and this inequality is strict if and only if g is a breakpoint
of R . If R(g) , R+(g) and R (g) are known at a certain g then the

location of g relative to a and b can be decided according to the following



table:
R(g) > 0 a<gs<h i
R(g) <0, R(g) 20 g < a
R(g) < 0, R+(g)=<___0 g>b
Note that this table exausts all possible cases since R_(g) > R+(g) . Further-

more, if R (g) > O ;:R+(g) and R(g) < 0 then R takes on only negative

values (a=o , b= ~o)

An algorithm for evaluating r(g) and r'(g) was given by Aspvall and Shi-
loach [AS]. To conform with the notation used in the present paper, we state

the following algorithm which is essentially the same as Algorithm 1 in [AS].

procedure EVAL(g) ;
begin
for each variable y [ y < up(y) ; y < lo(y) ] ;
x < min(x,g) x « max(x,g)
for i< 1 until n do

for each y and each aytbz

A

c FORWARD ( y , ay+bz < ¢ )3

end

. 1 -
r<x ; r' <x ;

end

Clearly, EVAL(g) requires O(mn) arithmetic operations. For our purp-
oses we need to know not only r(g) and r'(g) but also the one-sided slopes
of r and r' at g . Thus, we have to modify EVAL a little. Imagine all
the quantities vy , §' (including x and X ) to be themselves functions of g
in some neighborhood of a given value. There exists a neighborhood over which
all these functions consist of at most two linear pieces with the given g
being the unique breakpoint. It is fairly simple to keep track of the slopes

of these linear pieces. At the start, every y has both §. and y with slope



zero on both sides. Then, when we update x < min(x,g) we have one of the
following cases: (i) If g < up(x) then x has slope unity on both sides.
(ii) If g = up(x) then x has slope zero on the éight—hand side and slope
unity on the leff-hand side. (iii) If g > up(x) then x has both slopes
equal to zero. Later, when functions are multiplied by constants (see the
routine FORWARD), the slopes are multiplied by the same constants. Adding

a constant does not affect the slope. The effect of the "min" operation is
also straightforward. Suppose f. <« min(fl,fz) . Then the situation is as

3

follows. 1If fl(g) < fz(g) then f inherits its slopes from f

3 ; otherwise,

1
if fl(g) = fz(g) then f3 inherits the minimum slope on either side of g .
Thus, in general, as long as in the evaluation of R(g) the variable g is

involved only in comparisons, additions and multiplications by constants, we

can evaluate the slopes R+(g) and R _(g) at the same computational complex-

ity as that of R(g) . In our particular case this is 0(mn)

5. SOLVING R(g) > 0

We shall now develop an algorithm for finding a and b . Assume that
we have an algorithm for evaluating R(g) such that g itself is involved
only in comparisons, additions and multiplications by constants, and R is
a concave function of g . In view of the discussion in the preceding section,
we assume without loss of generality that ﬁhis algorithm computes not only

R(g) but also the slopes R+(g) and R_(g)

We maintain bounds g_,'z , b , b which are repeatedly updated and always
satisfy a < a é:g and b <b ézg-. The initial values are a =b = - ®
and a=b =® ., The basic idea is to follow the known algorithm for evaluat-

ing R with g being indeterminate; however, g will always be confined
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to D = [g;g]LJ[PJB] . Whenever the result of the following step depends on
the value of g within D , a test which amounts to one R-evaluation is perf-
ormed, in order to update D appropriately. The fundamental principle used

here was first introduced in [M1] and later applied in [M2].

The details are as follows. At the start, the available quantities are the

indeterminate g together with several constants, while D = [- ®, © ], We

distinguish two phases in Ehe computation: Phase 1 lasts as long as a =b
and a =b ; when this does not hold any more then we are in Phase 2. Consider
a typical point at Phase 1. Assume, by induction on.the number of steps since
the start, that all the available quéntities are linear functions of g over

D, possibly constants. If the next operation is an addition or a multiblica—
tion by a constant then it can be carried out with the indeterminate g over
the entire D . Suppose the next operation is a comparison, f3 < min(fljfz) .

say. If fl and f2 do not intersect over D , or if they coincide over D ,

then the assignment can be carried out symbolically and 'f3 is a linear function
of g over D ; otherwise, denote the intersection point by g' and assume,
without loss of generality, that fl(g) < fz(g) for g < g' while

fz(g) < fl(g) for g > g' (g € D). At this point we test the value g' , i.e.,

we evaluate R(g'), R+(g') and R (g'), and update D as follows:

- - —
R(g') > 0 (enter Phase 2) a<« g' ; b« g' ; f3 <« min(fl,fz)
R(g') <0 and R (g') >0 a+g' ;b<g'; £, €1,

R(g') < 0 and R,(g") <O a<g';b<g'; £, < £

If Phase 1 continues then all the available quantities remain linear functions

of g over the updated D .

Phase 2 will work on the two intervals separately; the assignment will be
different but gconstant over each interval.
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When Phase 2 starts we have a = b and all the quantities consist of at
most two linear pieces with the breakpoint occurring at a = b . During Phase
2 we split the computation of a from that of b . Consider, for example,
the computation of a . We continue with the evaluation of R , where g is
indeterminate but confined to [EJE] . The situation is very similar to that
of Phase 1. If g' and fl, f2 and f3 are as before then the assignments

are according to the following table:

R(g") >0 a < g' f3 « fl
R(g') <0 and R (g) 20 a<g'; f3 « f2
R(g') < 0 and R+(g)_; 0 a<«g'; f3 + f1
At the end we have R(g) as a linear function over [g,z] . It is then stra-

ightforward to decide which of the following is the case: (i) There is a unique
solution to R(g) = 0 over [ggg] ; this solution is then assigned to -a .
(ii) R(g) 2 0 for all ge¢ [éjgj ; this is possible only if a = -« , in
which case a « - ® ., (iii) R(g) < 0 for all g ¢ [QJE] ; this is possible
only if a = , in which case a « ® and R(g) < 0 for every real g .

The computation of b 1is analogous.

If the evaluation of R at a single g requires T operations, including
C comparisons, then the computation of a and b takes O(CT) operations,
since it amounts to O0(C) evaluations of R (see [M1l] for a more detailed

discussion of this point).

6. FINDING xlow AND xhigh

When we solve r(g) < g < r'(g) according to the scheme presented in the
preceding section, we run the routine EVAL with g being indeterminate.

However, here we do not have to test every critical value g' right away.
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Specifically, consider for example the value of z which is obtained at

the end of a single iteration of EVAL (i.e., while i is fixed). As a func-
tion of g over D , this is the maximum envelope of the linear functions
corresponding to the different inequalities in which z participates together
with the previous function corresponding to z . If there are m, such
inequalities then we can find all the breakpoints of the maximum function in
O(mz log mz) time (see the Appendix of [M1]). Thus, the set of all breakpoi-
nts produced during one iteration can be found and sorted in O(m log m) |
time. Assuming that these breakpoints are g1 < .. 2 gq (q = O(m) ), we

may perform a binary search over these q values which amounts to testing
only 0(log q) of them. If this happens during Phase 1 then by testing the
number g[q/Z] we either enter Phase 2 or discard approximately a half of

the set of critical values. During Phase 2 each test cuts the set of critical
values (lying in [2;5], say) in half. Thus, the computation of_ xlow and
xhigh takes n stages during each of which we have to evaluate r(g) and
r'(g) at O0O(log m) values of g . This amounts to O(mn2 log m) arithmetic
operations. This procedure needs to be repeated for every other variable so

that the bounds xlow and =xhigh are found for all variables x in

O(mn3 log m) time.

7. SOLVING S

Let ylow and yhigh denote the bounds obtained in the previous sectiom.
The following routine (which was essentially given by Aspvall and Shiloach [AS])

either discovers that S is infeasible, or else produces a feasible solution

(x,=x, , j=l,...,n )
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procedure FINAL ;
begin
for each variable x [ X © xhigh ; x < xlow ] ;

for j <« 1 until n do

for i+ 1 wntil n do
for each y and (ay+bz < c) FORWARD( y , ay+bz < c ) ;
end

x, then [ x, « £ ;

if there is a finite £ such that xj:i g 5

In

x? « £ §;-+ £ ] else return (INFEASIBLE) ;

end

*

return ( xj =%, , j=l,...,n ) ;

end

The validity of the routine FINAL follows from Shostak's theorem. Since
we are now working with the set of inequalities extended so as to include the
necessary conditions xlow < x < xhigh , if no infeasible loops or chains of

length n are discovered then the problem is feasible.

The routine FINAL takes only O(mnz) operations, i.e., the whole process
is dominated by the computation of the bounds xlow and xhigh for all the
variables. The genuinely polynomial algorithm hence runs in O(mn3 log m)

operations.
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