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ABSTRACT

We study the relation between the core of a given linear programming game
and the dual set of the corresponding linear program. We strenghten a
sufficient condition of Owen as to when the later set is obtained as a finite
intersection of cores of refined games. Our stronger condition is alos
necessary. We give several large classes of linear programming games for
which the core qual the dual set even without refinement. We give necessary
and sufficient conditions for this equality to hold and show that every
totally balanced game can be represented by a linear programming system for

which the core equals the dual set.






I. Iantroduction

Several authors have studied cooperative games with sidepayments which
arise from linear prograuming problems. A general case is considered in Owen,
[7]. In his formulation, each player is endowed with a vector of resources
from which a given set of outputs can be produced subject to linear
constraints. Furthermore, the objective function is linear with the amounts
of outputs produced. The value of each coalition is the maximal value of the
outputs whiéh can be produced from the resources available to the members of
this coalition. We call games which arise in this way LP-games.

A special class of LP-games was studied by Shapley and Shubik, [9], where
the linear program involved is the Assignment problem. Lately, Dubey and
Shapley [4], and independently Kalai and Zemel, [6]}, have considered
generalization of this idea where the games are derived from general
optimization problems having non linear constraints and objective functions.
A natural question which arises in such cases is how to allocate the optimal
profits (or costs) between the various participants. We deal in this paper
with the solution concept of the core. In general, the core of a given game
may be empty. However, for LP games, Owen has shown that this does not
happen. In fact, there exit allocations in the core of the game whose
interpretation is very familiar and appealing. Consider any dual optimal
solution for the linear program. The various components of this solution can
be viewed as (shadow) prices for the various resources. It turns out that if
we pay each player for his resource vector (using the dual prices) than the

resulting allocation vector is in the core. We call allocations which arise

in this way dual-allocations. In this paper we study the relation between the

core and the set of dual allocations of a general LP-game. In general, not



every point in the core is a dual allocation. Owen, [7], has shown thaf by
replicating the game infinitely many times the core shrinks to the set of dual
allocations. WYoreover, he has shown that if the optimal dual solution is a
singleton, it is sufficient to replicate the game a finite number of times.
Billera and Raanan [2] considered LP-games with a continuum of players and
showed that in this case every core allocation is induced by an optimal dual
solution. It is interesting to note that for several classes of LP games
which where studied in the literature, the core and the dual set coincide even
without replication. This is the case for the Assignment Games, [Shapley and
Shubik, [9]), Simple Network Games, [Kalai and Zemel, [5]) and Location Games
on Trees, (Tamir, [10]).

The main tool in our study is the value function of the linear
programming problem involved. Conceptually, this function can be viewed as
representing a game with continuum of players of finitely many types (Billera,
Raanan [2]) or as a fuzzy game {(Aubin, [l]). Value functions of only a subset
of the right hand sides were considered by Samet, Tauman and Zang, [8].

The structure of the paper is as follows. 1In section II we give the
necessary definitions and preliminaries. 1In section III we consider the
conditions under waich the dual set is obtained as a finite interesection of
refined cores. 1In section IV we describe large classes of LP-games for which
the core is equal to the dual set, even without replication. Finally, in
section V we give necessary and sufficient condition for this equality to hold
and demonstrate that every totally balanced game can be represented as arising
from a linear programming problem for which the core of the game and the dual

set of the linear program coincide.



II. Definitions and Preliminaries

Let N = {1,2,...n} be a set of players. A coalition is a non-empty
subset of N. We denote the set of coalitions of N by 2N, We associate

with each coalition Se2N a 0-1 vector tSeR" such that
;1 if ieS
.0 if i¢S.
Conversely, for every 0-1 vector teR" we define the coalition St by:

St = {llti= 1}.
We reserve the letter e to denote the vector (l,1,...,1)eR®. Thus Se = N.

Assume that each player j is endowed with a vector of resources

bd = (bJ, bg,...,bi)eRm. Let B = (bij) be the {m x n) matrix whose jth~

column is bd. For each coalition SeZN, let-b(8) = BtS. Thus b(S) is the
vector of total amount of resources available to the coalition S. Let A be an

m X p matrix and c € R?. For each coalition S consider the linear program:

P(S): nmaximize cy
subject to Ay < b(S)
y 20

Let P = {P(S)ISEZN}. We call a system of linear programs of this type a

Linear Programming System (LP-System). We assume in the sequel that each of




the linear programs P(S) is feasible and bounded!. Under these conditions,
the optimal objective function values for the various coalitions are well
defined. We regard the set of these values as a set function Vp: 2N 5 R i.e.
as a characteristic function of a game. We refer to games which arise in this

fashion as Linear Programming Games (LP—Games)z. In cases where the LP-system

associated with a given game is clear from the context, we suppress the
subscript P and refer to the game simply as V. This counvention is also used
for all other counstructs which are defined with respect to a given LP system
P.

The core of a game V (not necessarily an LP game) is the set

n
{xeRnl T X, = V(N), in > V(S) for every SeZN}
i=1
ie$S

We denote the core of the game Vp by Cpe In geuneral, the core of a given game

may be empty. However for LP-games we have:

Theorem 2.1 (Owen, [7]):

For every LP system P, the core C_ is not empty.

P
Games with non empty cores are called balanced. For a game V let VS be

the game obtained by restricting V to coalitions contained in S. A balanced

game V is called totally balanced if the core of each subgane v3 is not

empty. We note that every subgame of an LP-game is itself an LP-game. It
follows from Theorem 1 that every LP-game is totally balanced. It was shown
in [5] that the converse of this is also true, i.e. that every totally
balanced game can be generated by a certain type of LP system. A different

LP-system assoclated with a given totally balanced game is described in



LP-system associated with a given totally balanced game is described in
section V.

In general, the task of finding an allocation x in the core of a given
game (when this set is not empty) is computationally tedius (one has to solve
a linear program with 2% constraints). However, for an LP-game V we can do
much better. TLet u = (uj,...,u ) be an optimal dual solution for the linear
program P(N). The components of this vector can be viewed as (shadow) prices
of the various resources. Consider the vector x =uB. The n dimensional
vector x can be considered as a payoff vecotr which endows each player the
value of his resources vector according to the price vector u. We call the

vector X, a dual-allocation, and denote by DSp the set of all dual

allocations, i.e.:

DSP= {stnlx = uB for some dual optimal vector u}.

Theorem 2.2 (Owen, [7]) :

Thera are several classes of linear programming systems which yield games
with DSp = Cp. However, this is not the case in general. To illuminate the
relation between these sets it is instructive to observe their behavior when

the players are splitted (or equivalently replicated).

TLet P be a given LP-System. The ™ refinement of P, denoted PY, is

obtained by splitting each original player (column of B) into r identical
players each receiving bj/r as his initial endowment. We call the set of r

identical players which replaces one original player a suit. Let V . be the
P



LP-game generated by the system PY. Note that every coalition of V r which
P
is composed of one representative from each suit must receive an identical

amount  V(N)/r, in every allocation which belongs to C - It follows that all
P
P
the members of each suit must receive the same amount in each core
allocation. We can thus represent each core allocation for V r by a vector
P
th

xeRn where x. 1is the total amount allocated to the i suit (each member in

i
this suit receiving x;/r). Let C; be the set of core allocations for the
game VPr represented in this way. Thus, Crs R®.  Similarly, let DSE € R" be
the set obtained by compressing the dimension of DSPr by adding up the
(identical) amounts allocated to all r members of each suit. It is straight
forward to verify the following relations which are consequences of the

appropriate definitions and of Theorem 1:

Thus, DS [H} C". The converse of this statement is also true:

Theorem 2.3 (Owen [7]) !

Theorem 2.3 can be viewed as a special case of a limit theorem due to
Debrew and Scarf, [3]. However, in the linear case, one can sometimes show an
even stronger result namely a finite convergence of the core. One sufficient

condition for this was given by Owen:



Theorem 2.4 (Owen [7]):
If the linear program P(N) has a unique dual optimal solution,for

sufficiently large r

Below, we study in more detail the conditions under which such a finite

convergence 1is achieved.

ITI. Finite Convergence of the Core

[t is convenient to study the relation between C, Ct and DS using the

following extention of the LP system P. For each teR™ consider the linear

program:
| maximize cy
subject to Ay € B t
y =0

We call a system of the type {PtlteRn} an Extended LP-system. To simplify
notation, we do not distinguish between a given LP-system and its associated
extended system. In particular, we refer to both systems by the same name P.
Let Fp: R" » R {~ =} be the function which assigns to each vector
teR™ the optimal value of P.. We use the convention FP(t) = -0 if the
feasible set of the associated linear program is empty. It is well known that
F is peacewise linear, concave, and homogenous (of degree one). Also, for

every S € ZN we have



F(tS) = v(S)

Since the function F is concave and homogenous, the above relation ensures

: s s . . n
that F is finite over the entire non negative orthant, R+ . Let K denote the

unit cube in RM. For each positive integer r let

GRID"(K) = {teK|ti= q/x, 0<q; <, integer}.
Clearly for every r > 1,

r n r

¢ = {xeR |xe = F(e), xt > F(t) for every teGRID (K)}
Note, that this observation, together with the continuity of F imply that
Theorem 2.3 can be restated as:
Lemma 3.1
xe = F(e), xt > F(t) for every teK}
Furthermore, it follows from the homogeneity and concavity of F that

DS = {xeRnl xe = F(e),xt > F(t), for every teRn}.

Thus, DS is the superdifferential of F at e, i.e., DS is the set of supporting

hyperplanes of the graph of F at e.
We are now ready to examine conditions under which DS can be obtained as

a finite intersection of cores for refined games.



Theorem 3.2
If the matrices A and B, defining an LP system are rational, then there

exists an integer T, such that

DS

]
@}

Proof: For each € > 0, let
K(e) = {t ¢ R" [1-¢ < t; €1, i=1l...n}

be the cube of side & located at the upper corner of K. Since F is piecewise
linear aund concave, the following three conditions hold for sufficiently small

€

(1) There exists a family of convex sets Cl,...,Ck such that
k

U ¢t o= k(e).
i=1

(2) F is linear om Cl, i=1l...k.

(3)  eeC’  i=l,...,k
Let € be a rational which satisfies (1) - (3) and let Q1 = {q},...q; } be the
. i
set of extreme points of C!. Since € and the entries in the matrices A and B

are rational, it follows that the coordinates of the extreme points
i, . . . .
qj, i=l...k, J=l...li are rational as well. Thus, there exist positive

. c,.
integers L5 3 such that qg e GRID “J(K).
r

Let ro = {[ r,. let x ¢ C °

We have to show that x € DS. By
i=l... k3

J=l...2i



lemma 3.1 it suffices to show that xt > F(t) for every t € K. We show first
that this relation holds for K(e).

Let toe K(e). Then toe Ci for some i £ {l...k}. For each extreme
point q§ € Qi, we know that xq? > F(q?), since q? € GRIDrO(K). Since xt and
F(t) are two affine functions on C; and xt>F(t) for the extreme points of Cis
it follows that this inequality holds for each teC;.

To conclude the proof, let tos K. Consider the line interval [e,to]-
There exists an initial segment [e,tl] of this interval which is within K(e).
Consider the restriction of the functions F(t) and xt to [e,to]. We note

that the two functions assume the same value at e and that xt > F(t) for t

in the interval [e,tl]. Since F is concave, it follows that xto > F(to).
Q.E.D.

Remark. The condition of Theorem 3.2 is not necessary. One can show that a
necessary and sufficient conditon for the existance of r, such that
DS = ¢To is that there exists € which satisfies (1) = (3) and for which all
the extreme points qg are rational. One direction of this claim follows
immediately from the proof of Theorem 3.2. We omit the proof of the reverse
direction.

Owen's sufficient condition, (Theorem 2.4) can be derived along the lines
of the proof of Theorem 2.3. WMoreover, we can replace the requirement that

there exists a unique dual optimal solution for P(N) by the (weaker)

requirement that DS is a singleton:

Corollary 3.3

If there is a unique dual allocation, then for sufficiently large r



Proof: If DS is a singleton then there exists €, such that ¥ is linear in

K(e )+ Thus for g < €, the qg are the vertices of the cube K(g). For
sufficiently large r, we can choose a rational g < €, such that the vertices
of K(e) are in GRID'(K).

Q.E.D.

IV. Coincidence of the core and the set of dual allocations.

There are several known classes of LP-Games for which DS = C, even
without refinement. These include the Optimal Assignment Games of Shapley and
Shubik, [9], Simple Network Games, Kalai and Zemel, [5], and Location Games on
Tree Networks, Tamir, [10]. We describe the essential features of these
classes in the Appendix. Below we study in more detail the conditions under
which DS = C. We first describe twoc classes of games with this property.
These classes properly subsume the three classes of games mentioned earlier.

For the first class of games, let the rows of A and B be partitioned into

three sets (some of which may be empty) such that the linear system P has the

representation
P(S) maximize cy
subject to Aly < BltS
Azy > ths
A3y - B3ts



(note that the inequalities convention is slightly different from the one

introduced in section II). Let

ful Bl
A =A% , B = B .
3 52

'

The system P is called simple zero—one if the matrix A is composed of

zeros and ones and if B is the identity matrix. Under these conditions we can
identify the rows of A (or B) with the players of the game V. Thus, each
player completely "controls™ one of the constraints of the system. Note that

in this case DS is simply the set of optimal dual solutions for p(N).

Theorem 4.1
Let P be a simple zero—one system. Then

DSP = CPG
Proof: First, note that every core allocation X ¢ R" must satisfy

X, > 0 if the i'th constraint is "<".

X < 0 if the i'th constraint is "“2>".

Consider the k'™ column of A, and let

kK _ . -
s° = {ila;, = 1}

* *
Then, the (primal) solution y; = 0, i#k, Yy = 1 is feasible for P(Sk). Thus,

x must satisfy



. x, 2 V(Sk) > c,
ieSk t <
But these conditions, together with the sign coanvention on the xi's
established previously, are precisely the constraints defining the dual set of
P(N). Since I X, = V(N) which is the value of P(N), it follows that x is an
ieN
optimal dual solution.
Q.E.D.

The assigmment games, [10}, the simple network games [6], (in the path
flow formulation) and the location games {[l10] are all examples of games
generated by simple zero—one LP systems. In all three cases, the matrix A
possesses some special additional structure. However, as is clear from the
proof of Theorem 4.1 the only requirement is that the matrix be zero-one.

It was shown in [6] that DS = C for simple network games also when the
arc flow formulation of these games is taken (In the path flow formulation
mentioned earlier, there is a variable associated with each path of the
network while in the arc flow formulation there is a variable associated with
each arc of the network. The arc flow formulation typically involves much
fewer variables and is more tractable computationally. For the equivalence

between these two formulation see [6]. For details see the appendix). The

following class is a generalization of such systems. Consider a system of the

form
P(S) maximize cy
subject to Aly < Blts
Azy <0

where the matrix Bl is the identity matrix. Under these conditions we can

identify the rows of Al with the players of V. Note that in this case



DS = {x € Rnl for some w, (x,w) is an optimal dual solution for P(N)}.

. . . - . n
An interesting necessary and sufficient condition for a given x € R to be

contained in DS is given by:

Lemnma 4.2

Let x € R®. Then x € DS iff.

(1) x, >0 i=1,...,n

: n
(ii) yox, = V()
. i
i=1
(iii) For every primal solution y feasible to P(N) we have

(c - x Al)y < 0.
Proof: The necessity of conditions (i) - (iii) is obvious. For the
sufficiency note that the third condition is equivalent to the implication

A2y <0 => (c - xAl) y <0

Thus, by Farkas Lemma, there exists w > 0 such that w A2 =c - xAl. But this
condition, together with (i) and (ii) imply that (x,w) is a dual optimal
solution for P(N).

Q.E.D.

Note that for x ¢ C and for y a primal optimal solution for P(N)
1 1 o 1
(c-AXy=cy~-xAy=VN) -] x, (Ay), >
i=1

n
>V(N) =) x, =0
i=1 *



Using lemma 4.2 we conclude:

Lemma 4.3
Let x € C. Then x € DS iff the optimal value of the following program is

equal to zero:

~

Px maximize (c - Alx) y

sub ject to Al y € e
2

ATy <O
It follows that a necessary and sufficient condition for DS = C is that
for every x € C the condition of lemma 4.3 holds. A class of LP systems where

this indeed is the case is the following:

Theoren 4.4
Let the matrices Al, A2 be such that for every objective vector c there

exists an optimal solution for the program

maximize cy
subject to Al y € e
A2 y €0

with Aly a 0-1 vector. Then DS = C.

Proof: Let x € C, and consider the problem ﬁx' By lemma 4.3 it is sufficient
to show that the optimal value of this program is not positive. Let y* be an
optimal solution for this program with the integrality proeprty (i.e. Aly* is
a zero one vector). Let § = {iI(Aly*)i = 1}. Assume, on the contrary, that

(¢ - x Al) y* > 0. Note, that y* is feasible to P(S) and thus V(S)_Z_cy*.



Hence,

*
L  <vs) - box,
. 1
ieS

1. % %
0 < (e=-xA")y =cy - xA

which contradicts our assumption that x e C.

Q.E.D.
The stipulations of Theorem 4.4 hold, for instance if AZ is a totally
unimolular matrix which contains (implicilty or explicitly) the non negativity
constraints on the variables and where the matrix A1 is the identity matrix.

The path flow formulation of simple network games fall into this category.

VI. Balanced Extentions of Games

The LP systems covered by theorems 5 and 6 do not exhaust the cases for
which DS = C. We now turn our attention to complete characterization of the
conditions under which this equality holds.

Let P be a given LP with associated game V. Let us consider the

following LP system:

§(S) Maximize z yTV(T)
T . N
Subject to z yit = ts
T <N

By letting the right hand side of the constraints to be any t we get the
extention of the system P. Let us denote by H(t) the function F _(t) which
P

associates with each t the value of ?t. We shall call H the balanced

extenstion of V. Since V is balanced it follows that



H(tS) = v(s)

for each S: N, or in other words V_ = Vp. Moreover, H is the minimal
P

concave, homogeneous function which coincide with V on the vertices of K.

Indeed let F be any concave homogeneous function such that F(ts) = V(S) for

each S .- N, then

He) = ] 3y (D = § yn BT < B oy = F(o)
TSN T N TN

% ~
where y in the optimal solution for Pt.

Lemma 5.1

Cp = {x e R%|xe = H(e), xt > H(t) for every t ¢ K}.

Proof: Observe that the set on the right hand side is DS_ by lemma 3.1.
P
Since Vp = V_, it suffices to show that C_ = DS_. By Theorem 2.2 C_23 DS_.

P P P P P
For the converse inclusion let x € C, t £ K, and let y* be an optimal solution

. to Et' Then

S

H(t) = ) y:v(s)s ) ysxts=x t=xt

%

AL
S N S °N S - N
and H(e) = V(N) = x e.

Q.E.D.

Theorem 5.2 Cp = DSp if and only if F coincides with the balanced extension

of Vp in a neighborhood of e.



Proof: By lemma 5.1 Cp = DSp if and only if DSp = DS;. The sets Ds

B
and DS; are the supperdifferentials at e of ?P and F§(= H) respectively.
Since both Fp and F; are piecewise linear it follows that DSP = DS; if and

only if Fp and Fg coincide in a neighborhood of e.

Q.E.D.

It is obvious from the above discussion that DS is related to the linear
system P rather then to the associated game V. In general, the game V may
arise from several LP-systems each possibly yielding a different DS. It
follows immediatély from Lemma 5.1, that for every totally balanced game V
there exist an LP system (namely ﬁ) such that V = V~ and for which the dual

P

set equals the core.
Remarks
1) We restrict our attention in this paper to games for which V(S) is
finite for every S N since this is the usual convention. All the
results remain virtually unchanged if we allow some coalitions (but
not N) to have V(S8) = — ». In this case all we have to assume is
that P(N) is feasible (rather than that all programs

P(S), SC€ N are).

2) We formulate the game in term of maximization of a certain objective
function, (profit). Of course, there is a parallel formulation in

terms of minimizing cost.



Appendix

Description of Assignment, Simple Network and Location Gaumes.

In the Assignment games, described by Shapley and Shubik, [9 ], the set
of players is partitioned into two subsets, Q and R. There is a benefit,

i3 which is accrued if player ieQ is assigned to player jeR. A player can

be assigned to at most one other player which must belong to the opposite
subset. The value of a coaltion is the maximal sum of benefits that can be
generated by its members. In the form stated, the problem is of a discrete
nature. Nevertheless, it can be described by a linear programming system

since the underlying mattvix A is known to be totally unimodular. Formally,

Let R(S) = R; 1S, Q(S) = Q! S, and consider the problem:

Maximize ) ) C,. V..
jeR(s) ieQ(s)y 471

P(S) Subject to )
y.. €)1, 1eQ(S)
jer(s) Y {0 [ ieQ(s)

y..< f1 j & R(S)

teq(s)y 7 L0 je R(S)
y.. 20 i € R(S)

+ j e Q(S).

Simple network games, introduced in [5 ], are defined with respect to a
given network G, with a specified source, s, and sink t. There are n arcs in

the network, each belonging to a different player and each having a capacity



of one unit. There is a profit, cy4 (of arbitrary sign) associated with a unit
of flow on arc i. For every coalition S (a subset of arcs), V(S) is the
maximal value of flow from s to t which can be acheived using to arcs of §
only. It is well known, [6], that this problem can be formulated in two
equivalent ways: the path flow formulation and the arc flow formulation. For
the first, let Q = {ql,...qr} be a listing of all the distinct simple s-t
pathes in the network, each regarded as a subset of edges. Let A be the
incidence matrix of Q (with rows corresponding to edges, columns to paths).
For each path q; let di be the value of a unit of flow through q;

i.e. di= z c.» Then, the linear programming system associated with game V

jeqg
is given by

r
P(S) Maximize E c. VY.

Subject to § A, .y < {,l ies
21 ij 7] \0 igs

yj 20, j=l,sa.,r

Alternatively, let A be the directed edge—node incidence matrix of the
network with arcs as columns, nodes as rows {accept for s and t which are
omitted), i.e.,

i+l if edge j is iucident out of node i

Ai' = <-1 if edge j is incident into node i
J - 0 otherwise



Then, gawe v is described by LP-System:

n
P(S) Maximum E c, yJ
=1
n
Subject to 2 Ai. y. = 0 All nodes accept
j=1 J for s and t.
1 if je 8§

Finally, wé consider the location games of Tamir, [10}. Let T = (V,E) a
tree network with two specified sets of nodes Q = {ql...qn}, and R = {rl...rm}.
The players of the game are the members of @ which we regard as customers. the
members of R are available sites at which a certain facilities can be
constructed. FEach customer q; requires that a facility be located at a distance
of no more than di units away. The cost of constructing a facility at site ry is
cje The game V associates with each coalition S the minimal cost at which this

coalition can satisfy the demand of its own members. Let A be defined by

1 if rj is at a distance of no more than

A.. = _ d., units away from 93

ij i
\LP otherwise

and consider the LP system
m
P(S) Minimize E c. V.

m ‘; 1 if i e S
i 3
Subject to E A, .y, 7o if i £ S

N > 0
Y3



In general, the system P describes the game V only when we restrict Yj to
be a zero-one variable (yj = 1 means a facility will be constructed at rj).
However, theorem 5 is invalid for optimization systems which involve zero—-one
variables (and in fact the core of such Integer Programming Games may be
empty). The point of Tamir result is that for tree network the matrix A is
balanced and thus the discrete optimizaiton problem can be replaced by its LP

equivalent.
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