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covering of lines by points are proved to be strongly NP-hard.

* Kellogg Graduate School of Management, Northwestern
University, Evanston, ILL. 50201 (Visiting from Tel Aviv
University).

* % Statistics Depart., Tel Aviv University, Tel Aviv 69978,
ISRAEL.



The following two problems arise in the context of designing control
systems which involve the utilization of photoelectric cells, laser beams,

etce.

1. POINT COVERING (PC): A set of points (xl,yl),...,(xp,yp) (xy,y; rationals
i=1,...,p) 1s given. Find a collection of straight lines {zl,...,zr} of
minimum cardinality, such that (Xi’yi) lies on at least one lj.

2. LINE COVERING (LC): A set of straight lines Liye--,L. 1s given. Find &
set of points {(xl,yl),...,(xp,yp)} of minimum cardinality such that each
Lj contains at least one (x;, yi)-

In view of the renowned duality between lines and points (see [3], for
example) which is discussed later, the two problems are obviously very close
in nature.

We first mention briefly the trivial cases. First, PC is trivial when no
three points are colinear, in which case rp/21 lines are necessary to cover
all points. Analogously, LC is trivial when every subset of three lines has
an empty intersection and there are no parallel lines.

If there may be parallel lines, but still no intersection points of three
lines or more, then an optimal solution for LC can be easily computed as
follows. Partition the set of lines into classes Rpyeee,Ry such that two
lines are parallel if and only if they belong to the same class Rie Let r; =
IRiI, i=1,...,s, and assume r; 2 T, 2 yees Ty 2 L. Now, select an arbitrary
line from Ry and an arbitrary line from R,. The point of intersection of two

selected lines will belong to the final solution. Next, drop the two selected

lines from R, and R,, rename the classes so as to conform with the requirement



ri 2 rj for i < j and continue in the same manner. We observe that this is
in fact a partlicular case of a well-known scheduling problem, namely minimal-
length scheduling of unit—executién—time tasks with tree-structured precedence
constraints (see [1, p.54], which is solvable by the "level strategy”. The
embedding of our problem in the scheduling problem is by viewing each line as
a task where members of the same R; form a chain and the different chains are
disjoint. The rumber of machines is two and the interpretation is that at
each time unit at most two lines can be processed and this is feasible if they
are not parallel. Furtheremore, the value of the optimal solution is simply
max(ry, (r/2]). This is easily proved by induction, distinguishing between
the case r; > ry (where both r, and [r/2] decrease by one after the first time

unit) and the case T} ® T3 (where only [r/2] decreases but [r/2] > r;, so that

max(ry, [t/21) decreases in any case).
We now turn to the NP-hardness of the problems in the general case.
First it is easily verified that both problems are in NP.

We now reduce 3-satisfiability to PC. Lat E1A .../\Em be an instance of

3-satisfiability, where Ej = xjv yj v zj, {xj,yj,zj} C {vl,vl,...,vn,vn},
j=l,...,m. Assume I{vi,;i}lﬁ {xj,yj,zj}l £ 1. The general idea of the
reduction is as follows. We shall construct a set of m + nm2 points, m

2

corresponding to the clauses Ej,...,E and m

o ones corresponding to each pair

of variables (vi,Gi). Also, a set of 2nm lines will be constructed with the

following properties.

1. Each clause Ej is represented by a point Pj.

2

2. Each pair of variables (vi,;i) is represented by a grid of m“ points
PL(1 S k2 < m).

3. For each 1(i=1,...,n) and j(j=l,...,m), the points Pij,...,P;j lie



on a straight line denoted by Lij and the points P?l,...,Pﬁm be on a-

straight line denoted by iij'

s iij (i=1,...,n; j=1,...,m), no other

4. Except for the lines LiJ

straight }ine of the plane contains more than two points of the set

{Pfd: =1, 0e0,n; kel,een,m; =1, 0e0,m) U{P 000 P )

5. For every j(j=l,...,m) the point Pj lies on the line Ly, if and only

if j=k and Vi€ {xj, yj, zj} and Pj lies on ii

and vie{xj,yj,zj}.

K if and only if j=k



Example: Ep =vyv vyv vy
E2 v1 \Y v2 v v4
E3 = vz\/ v3\/ v4



The above five prcperties establish the reduction by the following

arguement. The points of the form Pil cannot be covered by less than nm

lines, since no straight line contains more than m of them and altogether they
number nmz. Morecver, to achieve that number, for every i (i=l,...,n), the
points Pig(l Sk < m) must be covered either by the lines

. Lij(j=1""’m) or by the lines iij(j=1,...,m). No other collection of m
2 points Pi (1 < k,2 < m)(assuming

lines can cover the collection of m K

m > 2), We claim that E{A ce o NE is satisfiable if and only if the entire

i

collection of points {Pl,...,Pm}LJ {Pkg:

i=l,...,0; k=1,...,m;£=l,...,m} can

be covered by nm lines. For, the choice between {L..}.T and {i..}.? for a
ij’l j=1 ijlj=1
given i simply corresonds to the assignment of a truth-value to (vi’;i)°

Specifically, for =ach i, v

i is true if and only if {Lij} is chosen to cover
2

points Pi

the m ke

Finally, we have to discuss the actual construction of the points Pj and
i - . . . - . L.
Pkﬁ' We will coastruct points with rational coordinates, maintaining the

enumerators and the denominators separately. The numerical values of all the
enumerators and denominators will be bounded by a polynomial in m and n.

First, let Pj = (j, jz), j=l,eee,m. Thus, no three of the points P,...,P_

. X : i . . .
are colinear. The construction of the points Pkﬂ will be carried out with

the aid of the lines L,.., L., as follows. For each i(i=l,...,n), Pi is the
ij ij ke

point of intersection of L, with L., . The lines L.., L., are successively
ik iL 1j ij

constructed in the order Lll""’le’Lll""’le’ L21,...,L2m, L p»°°- SO as

2

to satisfy properties 3,4,5. When a specfic line Lij has to be constructed

the following conditions should be satisfied: (i) L; ; should contain P; 1if and

]
only if vis{xj,yj,zj}. (ii) Lij should not contain any previously

constructed point of the form P, (except possibly for Pj as explained before)
or Pil' (1i1) Lij should not coincide with any previously constructed line.



When a specific line iij has to be constructed the following conditions

should be satisfied: (i) iij should contain Pj if and only if

vis{xj,yj,zj}. (i1) L should not contain any previously constructed point

1]
(except possibly for Pj) (i11i) iij should not contain a point of intersection
4 B i i
of two lines of the form L;,, Liz (in order for the two points ij, Plj to

be distinct). (iv) iij should not contaiq a pq}nt of intersection between
some L;, and another line which contains at least two previously constructed
points (in order to satisfy condition 4; the intersection iij with Ly
becomes the point Pij. (v) iij should not be parallel to any Ly, in order

to ensure the existence of the point Pij'

Thus, a typical step is that a line has to be constructed so as to
(possibly) contain one specified point of the Pj‘s 4nd not any other point
from a finite collection of "forbidden" points, and also so as not to parallel
any one of a finitely numbered lines. Suppose that we always construct the
line whose slope is the integer closest to zero among the feasible slopes. ..
The number of "forbidden" slopes is obviously boinded by some polynomial in m
and n and hence the slope of every constructed line is an integer whose
absolute value is bounded by that polynomial. If the construc’d line also
crosses through one of the Pj‘s (whose coordinates are Qf the fo.. (j,jz))
then the coefficients of its equation will be polynomially bounded integers.
Similarly, if the line should not cross through any Pj’ then we may construct
it so as to cross tarough an integer point, which is not forbidden, whose

distance from the origin 1s minimal. It follows that the coordinates of such

a point are polynounially bounded and hence all our constructed lines will have
polynomially bounded integers as their coefficients. This implies that all
the points Pi will have coordinates which are rationals with polyvnomially

kL

bounded enumerators and denominators. This establishes that PC is strongly



NP ~hard.

To establish that LC is strongly NP-hard we reduce PC to LC by using the
point-line duality argument. Specifically, given the points (aj,bj),...,(a,,
bn), we first find a tramslation (ai’bi) = (ai +a, by + b) that will assure
that no two points are colinear with the origin. Next, we represent the point
(ai’bi) by a line a;x + b;y + 1 = 0. Thus, two lines corresponding to two
distinct points are not parallel and the main property is that points are

colinear if and only if their corresponding lines all interesect at a single

point.
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