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Abstract

We consider the problem of calculating the best possible bounds on the
reliability of a system given limited information about the joint density
function of its components. We show that a polynominal algorithm for this
problem exists iff such an algorithm exists for a certain related problem of
minimizing a linear objective function over a clutter. We give numerous
examples of network as well as other problems for which the algorithm runs in
polynominal time. We also use our construction ro prove NP hardness for

others.



Consider a system G which contains a set of n components, €1ees,e e Let

n

xl.;.,xn be 0-1 random variables which represent the on-off status of these
components, and let X = (Xi)’ i=le..,n. We refer to X as the state of the
system G. Denote by F(X) the joint probability distribution over the possible
states of the system.

For each particular state vector X, the system as a whole may be either
on or off. Let &(+) be a function whose domain is the set of possible state
vectors and whose range is the set {0,1}. We say that the system G is "on"

under state X iff ¢(X) = l. The function ¢ is often referred to as the

structure function of G. 1In most practical application ¢ satisfies the

following properties:

(D) 9(0,.0.,0) =0
(2) 3(l,ee.1) =1
(3) Y 2 X => 0(Y) > &(X)

we restrict our attention in this paper to structure functions ¢ satisfying
(1) - (3).

Given a structure function ¢ and a probability density function F, we can
define the reliability of the system

r = Prob [¢(X) = 1]

For most practical structure functions the calculation of r is extremely
tedious even if F itself is simple (e.g. under the assumption that the random
variables x; are mutually independent). For example, let G correspond to an
undirected network and let the components be the edges. Let s and t be two

distinct nodes of G and consider the structure function

$(X) = 1 iff X contains a path between s and t



It is known that the problem of calculating r is NP-hard , [14].
In this paper we analyze the problem of computing r when the function F
is not completely specified. In particular, we assuwe that the only

information available on this function is in the form of the individual

bounds:
< = = < 1 = s e
(4) a; Py Prob [xi 1] bi i 1 ,n
for a given set of constants, 0 < a; < bi €1, i=l.s.,n. It is apparent that

the relations (4) do not, in general, completely specify the function F.

(Note that we are not assuming independance of the x's). Consequently, the
reliability r is not well defined. What we seek, then, is the best that can
be hoped for under the circumstances namely to calculate the best possible
upper and lower bounds on r which are consistant with the relations (4). We
denote these pounds by B and a respectively. As will be shortly revealed, the
calculation of these bounds may in some cases be relatively easy and could be
accomplished in polynominal time. 1In other cases, however, the task of

caluculating a or f may turn out to be NP hard.

II. The Algorithm

It will be convenient to describe state vectors as subsets of

N = {l...,n}. For a state vector X let

and conversely, for a set SC N let



XS = (xi) ieN, with xi =1 iff ieS

Let

F={S cN: 8(x>) = 1}
then r can be alternatively expressed
(5) r = prob ( &JIx = x°])

We note that properties (1)-(3) of the structure function & translate into the

following properties of the family F:

(1) P ¢F
(2") NeF
(3" S € F ==> 8'eF for every S§' 2 S.

The problem of estimating expression of the type (5) given conditions of
the type (4) is old, and was first discussed by Boole [1]. Hailperin, [8],
has shown that the best upper bound for such an expresson can be obtained by

solving the linear program

8 = max 2 yS
SeF
subject to



) yg < b ieN

S:ies 1
y. 2 a, ieN
(6) S:ies O t
z y. €1
SeN S

%
[92]
\4
=
w
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=

Similarly, the best lower bound on r, a, can be found by solving the
minimization problem over the same set of constraints and using the same
objective function. We note that the linear program in question involves an
exponential number of variables. Thus, any method which relies on explicitly
wfitinggdown this set of constraints cannot yield a polynominal algorithm for
this problem. Nevertheless, the problem contains enough structure to allow
implicit handeling of the set of variables. Such an approach gives rise to a
polynominal algorithm for a and 8 for various interesting functions ¢. In
other cases, the technique yields an easy proof for the NP hardness of the
problem.

The algorithm relies heavily on the recent work of Grgetschel, Lov;sz and
Schrijver [7] (see also Padberg and Rao, [1l1],) which in turn is a
generalization of the polynominal algorithm for linear programming put forward
by Katchian, {9].

We recall the essentials of Katchian's method. At the kth itteration we
have an elipsoid, Ep, which is known to contain an optimal solution to our
problem. Denote the center of this elipsoid by X+ Assume that x), is not
feasible to our problem. Then any constraint which is violated by x, can be
used to split E, into two halves such that the optimal solution (which is

known to be within Ek) lies, in fact, in one of these halves. Alternatively,



if x, is feasible to our problem, we can achieve a similar halving of E, using
the objective row. The itteration is concluded by enclosing the half elipsoid
we wish to keep by another elipsoid, Byt whose volume is smaller than that
of E . One can show that in a plynominal number of steps we obtain an
elipsoid whose center is “"close” enough to the optimal solution. The
procedure is terminated by a process of “rounding"” the entries of this center,
using, say, continued fractions.

Katchian's algorithm, in the form stated, relies on the possibility to
check, in polynominal time, whether or not x, is feasible. In the negative
case we also must be able to specify a violated constraint, i.e. to separate
%, from the feasible set. This relation, between the optimization problem and-
the "separation problem"”, is the central theme in Grgetschel, Lova;z and

Schrijver's paper. The following theorem, which suffices for the purposes of

our discussion here, is a consequence of the more general Theorems of [7].

Theorem 1: {[7]

Consider the two problems

(Pl1) max cx
subject to
Ax < b

Given yeRn
either show Ay € b

(P2) or find a violated constraint aiy > b.

Assume that the entries in c,A and b are integers whose magnitude is



bounded by T. Assume further that the feasible set of (Pl) is full
dimensional and that a point ag exists in the interior of this set such that
each entry of ag can be expressed as the ratio of two integers whose magnitude
is bounded by T. Finally, let us restrict our attention to vectors y
satisfying the same property as ag. Then there exists an algorithm for (P1)
which is pélynomial in n and log T iff such algorithm exists for (P2).

In order to apply Theorem 1 to the linear programming program (6) we need
to slightly modify this problem by taking its dual and eliminating reduntant

constraints.

Let

H= {S: S ¢ F}

- . * *
where S represents the complement of S in N. Let ¥ and H be the set of
- . . * *
minimal elements in F and H respectively. Then both G° and F  are clutters,
i.e. each is a collection of subsets none of which contains the other.
o * w® . - . 1 .. *
Furthermore ¥ and H constitute a blocking pair, [ 5 ], i.e. H can be

defined via the relation

* S T *
H = {S: X X* > 1 for every TeF

and S is minimal with respect to this property}

* *
Coversely, F can be defined from H using the same relation. Finally,

letzi denote the complementary probability l-ai.

Theorem 2 Let & satisfy the  properties (1) - (3). Then,



n
B= min igluibi+ w

: *
(a) subject t?E u, + w > 1 for every SeF
ieS i
u,w > 0
n -
= —-mi +
b a l-min (iél uy 3 w)
subject t<o *
.L Ju, + w 2> for every Sel
ie S°1
u,w 2 0
Proof

(a) Take the linear programming dual of (6)

subject to

7 Zu, -, L v, +w2> 0: SeF
ieS i ieS i

u,v,w > 0

We first note that there exists an optimal solution to (7) where for each pair

u;, Vv at most one member is positive. For otherwise we can decrease both uy

i i

and v; by min (ui,vi). This will leave the solution feasible without

increasing the objective value (since bi > ai). Next we prove that there
exists an optimal solution with v; = 0, i=l...n. Let (u,v,w) be an optimal
solution which does not satisfy this property but for which

V., ¢ u, =0, i = l.se,n. . Let Ny _ N be the set of indices for which

v > 0. Let v =ig vy Consider the inequality which correspond to Ny.



Irrespective of whether H e€F or not, we can conclude

1
igN -v, +w >0
1
i.e. v < w. Consider the point (u,0,w-v). Since a; € bi’ i=l...n, the

objective function of this point is not worse than that of (u,v,w). Next, we
demonstrate that this point is feasible for (7).

Assume, in the negative, that the constraint associated with some set S
is violated. Without loss of generality we can assume that S _ Nl since
otherwise we can add to S the missing elements of Ny without changing the left
hand side of the constraints but with possible increase in the right hand
side. But then, for S which contains N;, the left hand side calculated with
respect to (u,v,w) is the same as the left hand side calculated with respect
to our new point (u,O,wJV). Thus, we have contradicted the assumption that
the constraint associated with S is violated. The proof is completed by
noting that the constraints which correspond to sets S ¢ F, and to sets S in F

which are not minimal there, are redundant.

(b) The expression for o follows from that of B by considering the

complementary events ¢(X) = 0 and X; = 0, i = l...n.

For a vector xeR" of rational numbers, let T(x) be the smallest integer
such that each entry of x can be expressed as the ratio of two integers
bounded in magnitude by T(x). Let Q(x) be the smallest integer such that

Q(x) x has all components integral. Obviously,

T(x) < Q(x) < T(x)"



Theorem 3. Let ¢ satisfy properties (1) - (3).

(a) There exists a algorithm for calculating B which is polynomial in (n,log
T(b)) iff there exists an algorithm for the problem

min c XS

ScF*

which is polynomial in (n,log (T(c)) for every non negative vector c.

(b) Same as (a) with a replacing B, H* replacing F*, and log T(a) replacing

log T(b).

Proof.

(a) We first consider the polyhedron of Theorem 2. Obviously this polyhedron
is full dimensional and contains an intericr pcint as requested (e.g. ui=2
i=l...n, w=2). Furthermore, its constraints matrix is made out of zeros and
ones only. Thus, it satisfies the stipulations of Theorem 1 for
any T » T(b), It follows that there exists an algorithm for 8 which is
polynomial in (n, log T) iff for every vector u with T(u) { T and for any
rational w which can be expressed as the ratio of two integers bounded by T,
we can decide in polynomial time whether or not (u,w) satisfies all the
constraints of this polyhedron.

Assume that a polynomial algorithm for min CXS:SEF* does exist. Then

running this algorithm with u replacing c we can obviously decide whether

(u,w) satisfies all the constraints and in the negative case find a violated



constraint (namely the one which yields the minimum in the minimization
problem). Thus, we have demonstrated the existance of an algorithm for B
which is polynomial in (n,log T(b)). Conversely, suppose that such an
algorithm for B exists. Then we know by theorem 1 that a polynomial algorithm
exists for deciding, for each w and cost vector ¢, whether or not

min cX®: S € F* is greater than a equal to w. From the stipulations on the
vector c¢ it follows that the optimal value of this problem, w*, is a rational

satisfying

and furthermore, w* = p/q, with, p>0, q>0, max {p,q} < Q(c) < T(c)n.
Thus, W ;an be found in 0(log(T(c)™®) = 0(n log(T(c)) applications of this
algorithm, [12], [13], i.e. in polynomial time as asserted.

Before examining specific applications of Theorem 3, we consider a

corollary of this Theorem. Let @1....¢k be a given set of structure functions

defined on the same system G. For i = l...k. Let a; be the lower bound on r

defined with respect to @i. Similarly define Bi, Fsi» Fi*’ and Hi*, i =

lcnckc

Correlary 3.1. (a) Assume there exist polynomial (in n, log T(b)) algorithms

for calculating B;, i = l...k. Then, there exist a polynomial (in (n,k, log
T(b)) algorithm for calculating B for the structure function

¢ satisfying

®(X) = max @i(X)
i=l..k
(b) Assume there exist polynomial algorithms for calculating



a, i = l...k. Then there exists a polynomial algorithm for calculating a for

the function

#(X) = min ¢i(X).

i=l...k
Proof.
We note that &(X) = max @i(X)
i=l..Ik
implies F = (.) Fi and F* E_(/T Fi* . Thus, we can minimize cx
i=l...k i=leeok

over F* by minimizing over each of the F*;'s and then taking the grand
winimum. Similarly, ¢(x) = min ¢i(x) implies that H* ¢ E«f H; .
i=l...k i=l..ek
We now consider some specific structure functions ¢ and examine them vis-
a-vis the stipulations of Theorem 3. 1In cases (a) - (h) below, the random
variables xi,i=1...n correspond to the on-off status of the edges of the graph

in question.
(a) Let G be a directed graph, s and t two specific nodes. Assume that G is
considered "on" iff the graph induced by state vector X is such that there

exists at least one directed path from s to t. We note that

F*

{ set of all s~t pathes in G}

H* { set of all s-t cuts in G}

since a polynomial algorithm exists for minimizing a non-negative linear



function both on F*, and on H*, we can conclude that there exists a polynomial
algorithm for o and for B for this case.

(b) Consider a graph as in (a) but with undirected edges. Again we

let 9(X) = 1 iff the graph induced by X contains an (undirected) path between
two specific nodes, s and t. Note that P and H® in this case are the
undirected versions of the sets F* and H* discussed in (a). It is well known
that the optimization problems over both H and F* can be solved in polynomial

time. Thus, we have a polynomial algorithm for a and 8 in this case too.

(c) Let G be a directed network, s a specific node. Let ®(X) = 1 iff the
graph induced by X contains a directed path from s to every other node of G.
We note that F* is the set of arborescences of G, rooted at s. Thus, there
exists a»polynomial algorithm for calculating B, [4]. Also, by applying

corollary 3.1 to case (a) considered earlier, we know that there exists a

polynomial algorithm for calculating a for this case

(d) Let G be an undirected network, and assume that G is “on" iff in the
graph induced by X there exists a path connecting every pair of nodes of G.
There exists a polynomial algorithm for calculating B since F* in this case 1is
the set of spanning trees of G. A polynomial algorithm for a can be obtained

by applying corollary 3.1 to the problem discussed in part (b).

(e) To contrast the four cases considered earlier, consider again an
undirected network G and assume that G is "on" iff the graph induced by X
contains an Hamiltonian tour of G. It follows that F* is the set of
Hamiltonian tours in G and H* is the blocker clutter of this set. Note that

the problem of deciding whether F* is empty for a given graph is NP



complete. Thus, the optimization problem over either F*¥ or H* is NP hard and
so are, then, the problems of calculating a and b.

(f) (Network Reliability, [6]): To note the distinction between

calculating a and b we consider an undirected Network G. Let VisesVy be a

specific subset of the nodes of G. Consider the structure function

D(X) = 1 iff the graph induced by X contains a path
between every pair of nodes vi,vj 1 i< jFk.

Then F* is the set of Steiner trees defined on G with respect to node set
ViseooVie It is well known, [l4], that minimization of a linear function over
this clutter in NP complete. On the other hand, the problem of calculating a
can be accomplished in polynomial time by applying corollary 3.1 to the

problem discussed in part (b).

(g) We note a certain converse to the problem discussed in (f). Consider
again an undirected graph G with a specified set of nodes ViseesVpe

Let D(X) = 1 iff the graph induced by X contains a path between at least one
pair of nodes Vi’vj’ 1 Fi< jF ke Then F* can be described as a union of
set of paths in G (between every pair of nodes Vi’vj’ 1 Fi< jF k) and thus
one can calculate b in polynomial time. On the other hand H* can be described
as the intersection of sets of cuts on G. The status of the optimization

* .
problem over H 1is unknown.

(h) Let G be an undirected graph. We say that G is on iff the graph induced

by X contains a perfect matching i.e. we can use the "on" edges of G to pair

the nodes of G in such a way that each node is paired to exactly one other



node. Obviously, the set F* correspond to the set of perfect matching of G
and minimization over this set can be achieved in polynomial time [2]. The
status of the minimization problem over the blocker set of F* is unknown.
However if G is bipertite, H* is known, [5], and a polynominal algorithm
exists for mininizing over this set. Thus, for such graphs, we can
calculate o« in polynominal time. The assertions of this part are valid for
graphs G which do not contain a perfect matching if we replace "perfect” by

“"Maxinum cordinality” wmatching in the definition of ¢ .

(i) (Network Survivability, [6]): Let G = (V,E) be an undirected graph such
that both its edges and its nodes are subject to failure. Let

VKJIE =K = {kl..;kn}. Then the components of the state vector X correspond
to the elements of K. We say that the network survives

(i.e. ®(X) = 1) iff for every edge i € E, e = (u, v), at least one of the
triple e, u, v is "on".

For each edge e = (v,u) € E, 1let i(e), j(e), k(e) be indices such that

ki(e) = u, kj(e) = v, kh(e) = e and let X% be the vector: xi =1 iff i =

i(e), j(e) or h(e).

It is easy to verify that

H; B {xe}e e E

minimizing over H* is trivial, and so a can be calculated polynomially. On
the other hand the set FI correspond to the set of minimal covers (of edges)
by edges and nodes. Minimizing a linear function over F: is NP complete

since it is a more general problem than the node covering (of edges) problem

[10]. Thus, calculating B here is NP hard.



The last two examples considered refered to a general system, not

necessarily associated with a network.

(j) Consider a system with components ejesee  and let K be a matroid over

N={di..on} . Assume that ®(x) = 1 iff the vector X contains a basis of K.

Then

]
*
it

{set of bases of k}

et
5
]

{set of co-circuits of k}

Minimization over F* can be accomplished in polynomial time using the greedy
algorithm [3]. Thus, B can be calculated in polynomial time for this

problem. The status of the minimization problem over H* is unknown.

(k) Let ejeseep be a set of elements each associated with a value

cj,j=l...n. Consider a system which is "on" iff the value of the elements

which are "on" is at least b. Then

1 = s i b3
F {s jESCJ b}
= : > _ -
H {s jéSCJ jchJ b}

with F*, H* being the minimal elements in F and H respectively. Both
minimization problems in this case are NP-complete. However, if ¢y = 1,

j=1leen, and 1 < b < n we get a system which is on iff at least b components

out of n are on. Thus



F

{s: |Isj
{s: |sj

b}
n - b}

s
f

Both F* and H* are known to correspond to the set of bases of especially
simple matroids. Thus, by the reasoning of the previous case, a and B can be
solved in polynomial time. An obvious application of this case is the one of
estimating the probability of a favorable outcome in a voting system with two
possible outcomes where all voters counts equally, and with a given treshhold
of acceptance, given that we only know bounds on the individual probability of

voting for and against this outcome.

(1) Consider a graph with a node set V. Consider two sets of subsets of V, I
and A. I can be thought of as a set of ceanters located in G. A,on the other
hand, corresponds to a set of points where demand exists for the services

offered by these service centers. Let I = {V,(}

i e A = {Vj}jEK for N and K

two index sets, not necessarily distinct. Assume that the supply points in I
are not reliable and let X = (xi)ieN be the state vector of their on—off
status. Assume that the system is "on" 1iff every demand point in yj e A is
at a distance of no more than L units from a service center v; € Z which is
operating i.e such that xi=1. Let F be the set of subsets of N which satisfy
the required property. Minimizing a linear objective over this set is solved
in polynomial time in [15]. Thus 8 can be found in polynomial time. To show

that o can be found in polynomial time as well we note that H can be written

as

n =U r ()

jek



i SU we (.

jexk

where H(j) is the set of subsets of N such that N/H(j) contains only elements
of N which are at distance of more than r units away from Vj‘ Thus, H*(j)
contains a unique subset, namely the one which contains all the elements of N
which are at distance of r. or less from v.. Thus, miminization over H* is

J J

trivial.
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