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Steven i. Matthews

A leeal game 13 an instantanecus game i which an outcome is a direction
in which the social state c¢an feasibly be coved., The equilibrium function
which assigas to each pogsible social state a directignal cutcome will resul:r
in 2 dynanic process goveralng the path of cthe social state. The best kaown
dynamic process generated from local games is the MDP zllocation procedurs,

In this paper I exsmine processes that result freom local games that are
simple games. Thus directional prefersnces are {(myopically; induced, a
deminance relztion on directicns of motion is constructed, rhe directional core
iz characterized, conditions for its existence are established, and the conver-
vence properties of the resulting dvnesmic processes are investigated. The focus
i3 om the two wost important simple games, the Pareto (unmaninity) game and the
oajority rule game.

Some of the more interesting results are as follows: {1) the cone of Pareto-
undominated directions intersects the céné of Parete-improviag directions, but
neither gone necessarilv contaias tha other; {2} the directional core iz empry
exactiy when Schofield's Mull Dual condition holds, so that "loeal eycliag" can
be gaid to occur whenever "local socizl indecision” eccurs; (3} the nonemptiness
of the wajority rule directienal core zeguires the same pairwise symetrcy of
utility gradients that che constrained voring equilibrium studied by Plott requires,
indigating that majority rule direstional cores are generically empty; (4) a social
plannar can always specify a Paretp-undeminared dirsetion at each time chat causes
the seecizl state to converge to the Pareto set; fipallv, (3] when preferences are
euclidean, a social state that moves ia any undominated directioa will converse
to the point 2ove 2if the polnt core 2xits, and it will converge to the local
eveling set LI che soiat core does nob exist.



1. Introducticn

This paper ifnitiates an {iavestization of processes ip whieh
copperative games determine at each merent the direection of zotion of
the secial state. Attention is fecused upon sicple games, i.e., upon
games im which a ccalition c2n prevent either avery direction or no
direction from being chosen.

As motivation, comsider the problem of constructing a planning
procedure to allecate goods. Existing procedures, as surveyed in
Tulkens [ 27 1, specify a local (instantaneous) game that determines
the direction of change of the allecation vector. For example, the MDP
procedure of Maliavaud [ 13 ] and Dreze and de la Valee Poussin [ & ]
specifies the direction of change at each roment as 2 function of reported
marginal vates of substicution., Assuming that Individuals are concerned
only with maximizing their rates of utility increase, local pames can be
constructed so that theiv directiomal eguilibria will lead the allocation
vector to the Parete ser, Various eguilibrius concepts have been used.
In MDP local gages, for example, maxmin equilibria [ & ], Hash
Equilibria ([ 21 1.[ 26 1), and certain cooperative equilibria [ 28 ]
nave been shown o cause couvergsnce Lo the Jareto sat,

Whenpever a procedure is actually fo be implemented. accouat should be

taken of the fact that it will be constrained by tules that ape effective
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in the society. TFor example, in a dictatorship the social state must
move in a direction that is most preferred by the dictator: the dicrator
will zimply not abide by the eguilibrium dirgetion of a leecal zame unless
it is ome of his most preferred directions. Less trivially, whenever
unanimous disapproval of a cotion can srevent its occurence, the society
will only agree to a procedure whose equilibrium direction of motion camot
be feazibly changed to & dirsction that increases evervbody's utilicy at
4 greater raie.

These two examples of constraints on motion are not of the type that
is usually imposed in the literature on allecation preecedures and,
furthermore, in areas like tax reform {(e.g., Guesnsrie | 10]) and majority
rula dynamics (e.g., McKelvey [ 19 1, Schofield [2% ). The coustraints oo
motion in these studies can be viewed as resulting from a reguirepent that any
motion sust inerease the vtility of every member of some coazlition in a
sﬁecified set of wioning coalitiens. The resulting ootion muzt therefore
be Fareto-improving if the only winning cealitien is the coalition of
the whole; this is the comstraint imposed in much of the allocation pro-
cedure and tax reform literature. If majority coalitions are winning,
then motion i3 copstrzined to be improving for all members of scme majority
ceoalition; this majority-improving oroperty is required of the paths
studied in the literature om majority rule dynamies.

In this paper 2 differeat type of comstraint is studied. We shall
say that one direction domipates ancther &t 3 peint if every member of
seme winning coalition experiences a greater rate of urility increase,. or

a slower rate of utility loss, if the peint moves according to the first
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direction rather than aceording to the second direction. With this
termiaclegy, the Pareto-improving ceviterion for motion can be viewed
as requiring that any chosen direction of motion dominate the null
direction in the Pareto (unanimity) game, 3Similarly, the majority-
improving criterion resules from requiring the direction of wmotjion to
deminate the mull direction in & =majerity rule game. But now & patural
question arises: wiy are nomnull directiens not compared to each other,
or tather, why should a Pareto-improving {or 2 maelovity-improving)
direction be chosen {f arvotier direction dominates fir?

In this paper it is not required that a dirsction of meotion dominate
the mull direction. Rather, it ig requived that a4 direction of motion
not ba domin2ted by any alrernative feasible direction, i.e., that the
direction of motion be in the core of the lcecal simple gzame., This counstraint
is the wore natural one to impose in situdtions where comparisons bDetweaen
aonnull directions can be made. A

Considering again the Pareto game, ths difference betwaan the
Pareto-improving and the Pareto-undominated criterion is strikimg: it
will be shown rhat neither property implies the other. Consequently it
may be {mportant in many situations to study Pareto-undeminated curves
instead of Pareto-icproving eurves., Howewer, the two properties are not
cempletely inconsistent: it will be shown that Pareto-undominated
directions always exist that are alsze Parsto-improving. Attention should
ba focused upon tfhese directions WiEnever {1y cocmparisons
betwezn nounull direesions are alleowed, and (2) a2 bizs towards stationarity

gxists i the gsense that no mortion will coccur unless the direction of
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motion dominates the mul]l direction.

The agenda for the paper is as follows, Directions of motion
are dafined and two myopic ways of inducing direecticnal preferences fronm
utility funetions are discussed in Section 2, In Section 3 the local
game and its directional core are defined. Pareto games are studied in
Section %4: their cores are characterized, the two ways of inducing
directional preferences are shown to usually result ia the same core,
and the existence of Pareto-improving core directions is demonstrated,

In Section 5 these results are extended to arbitrary simple games,
In this section it is also shown, via some results of Schofield [24],
vhat an agenda czan be eonstructed to vield any point near the secial
state exactly when the directional core at the state iz empry. In
Seetion & it is shown that direetional cores can be expecied to be
expty ip games like majority rule, since severe symmetty conditiong are
reguirad for the core to be nonempty in these games, TFinally, in Seetion 7
varicug dynamical results, sueh 23 convergence to the Pareto set of Pareto-
undominated curves, are presented. Concluding remavks are in Sectiom 8.

Some zmaterial on cones and all proofs are contained in an appendix.



2. Directious
. m .
The feasible set of scecial states is X - R . X iz assumed to

be claged, convex, and (sometimes) to satisfy

(A) there exists @ = {ql,..-,qJT = R and rbla---be1'§ R
such that X = fx g R ox -qj > bj for all i = 1,...,J% .

Assumpiion {A) 1s gemeral enough for emany eeonomic applications. For
gxamole, the feasible ser of an exchange economy 13 given by 3 set of

linear gcvality and inequality constraints ind hence can be expressed

in the form of (i),

For any x ¢z X, the set of feasible directions in which = c¢an be

{infinitesimally) shifted is the cone

T{x)} = closure {v g ™. %+ ¢ X for scme N> 0V,

t will be useful teo list here geveral fearurez of T(x). TFirst, because
X 1is convex, T(x) is 2 closed convex cone that is always contained in
the smaliest subspace that containz X. Dencting this subspace by T,

it i3z also true that T(x) = T for all x in the relative interior of
¥, riX, Seceomndly, if c¢;[0.,#) 4+ X is a differeantiable curve, them the

tangent vector eft) is ceatained in T{c{t)). Fimally, if (4) holds,

then
TG = S,

«
where gq(x) = {qj g U: x» qj = bjﬁ and €{g(x)) is the nonnegative dual

of the cone C{c{x)) generated by q(x). 2/



Preferences over the directions in T{x)} can be iaduced fr-om a
differentiable utility function U: R + R 4ia the followiag way.
Represent the derivative of U at = by the gradieat ulx} RF, 50
thar the direetional derivative in direetion v ¢ T(x) can be denoted

v * u{x). Thea.a preference ordering P{x) on T{x} 15 given by

*..'113‘1(1':}*12 iff vyr ulx) > v, +ufx).

This cordering of directions corresponds to an ordering of the differentiable
curves through =x  accsrding to the instantaneous rate ar which they incrsasze
utility,

42 altemative ordering of T{x) c¢an be obtained in a2 limiting fashion.
Suppose that che status quo = can be shifted a distance no greater than
d =0 in a single pericd of a dizereta-time process., Then direction vy is

certainly preferred to directiom v, if U[:=:+kv1} > G{a+ v, ) for all

> 0 sacisiying | -‘a.vlfr <d.and | .\.vz < d. Iz the limit as 4+ 0, the

tollowing preference relation on T(x} 1is obtained:

le{x}vz iff there exists =» > 0 for which

Ulx + _‘-u.rl}}i.f(x + .1.1.!'2} for all 0 < & < L.

Generaily P{x} apd P{x} order T(x) differeatiy, unless ¢ 1 affiae.
Viewed as subsets of T(x) ®T(x), the following lemma shows that P{x) is

e
a subsat of P(x).

3/

Lazga 1 (k) S Plxy., &
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3. Cooperative Loc2l Games

A gooperative local game ig defined by a correspondenca

xgr@ 3T,

where N = {l,?,...,ni denotes the set of individuals., The ser Fix,v,H)

is required to be coatained in T(x). If v o F{x,v,d), ther M iz {said

to be) able to bloek v wia ; ik x. Thus F specifies for each

coalition ¥ and for each directiom v the set of directions that M can
4
use to guaranktee that v  {s got chosen. =

—

The intermretaticon of T iz clearer when it is seen how preferences

compine with T fo form a deminance relarion. Given thet edaech 4 z ¥ has

a continuously differentiable utility functiom Ui: G R, define Pi{x}

as in seetion 2. For any Mo N, let leH(x}vz mean khat vl?iﬁx}vg

for sach 1 gz M. Then for any directions v and v, v dowminates v wia M

oroavided
v ¢ Fiz,v,M) and v Rﬁ{x)v.

The M-core is the set of feasible M-undeminated directions,

Kﬁij = f7 g TI®): VPH(H}V for o ¥ ¢ Fix,v, M)},
and the core is the set of uadominated directions,

Kixy =

bl

Ry

n

LA

~ iy
In exaetly the same fashion, the cores Kﬁ{x} and X(x) are defined via

the raelatisns Pi{x).
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& lccal simple game T  is characterized by a collection of winning

coalitions o, which is assumed to be nonempty and conotone in the sense

that supersets of winuning coalitiovs are alse winaing, and by the

following three properties:

(S1) F(x,v,M) = 8 for all x o X, Vg T, Mg 20\
{32} for all M %, v ¢ T(x), ~vez Fi{x,0,M) for some M > 0
(53) Flx,e,M) = [v g T():Hvnguvil for all x ¢ X, v ¢ TV {03,Me%.

Property (51} specifies that coalitions that are not wimming can never
block. Property {82} specifiss that a winning cealition, when confronted
with the peossible choice of the pull direction, believes that it can
guarantee instead some shift in any direction that keeps the social
statze in X. These two assumptions seesm lasocucus.

Assumption {53}, which concerns the set F(x,v,M) for 2 onon~nwuil
dirgction v and 2 winning cecaliticn M, is more reéestrictive, Since
a winoning coalition is traditionally supposed to be able to guarantee
the adoption of any feasible direction, F(x,v,M) should ke
the set of feasible diyections at =x. However, setting Flx,v,¥) = T(x)
¢gauses interpretational and pathemacical problems. It is not reasonable
that directions of arbitrarily large magaitede, which correspond to
arbitrarily large rates of motion for the state, be perceived as feasible,
Conseguently, if F(x,v,M) 15 interpreted zs the set of directions which
M perceives that 4t can guaranktee rather than have v adopted, F(x,v,M)
should be beunded., A4 fairly natural boumd results from assuming that

M, when faced with the pessible choice of v, perceives itself as able
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to guarancee dirvecticns in T(zl that have magnitudes no greater than
the magnitude of w. For example, in 2 discrere world, if a socisl
planner announces that he will move the state a certain amount in 2
particular direction, then any winning coalition should perceive it as
feazible to force the planner to instead shift the state the same or
smaller amount in another direction. This iz the raticnale behind (33).
The result of assumption (83} is that 2 curve will have an M-undominaced
tangent at x  1if and only if another curve cam, 2t x, increase the ut{lity
of every member of WM at a greater rate only by actually zoving the state
at a greater rate through x. (Alternatives to (53) are disevssed in
saction 8.}

Henceforth, except in lemma 2 in the following sectiosn, F will be

assumed to be 4 local simple game satisfying (51) - (83),

4, M-Cores

The directional M-coTes KH{x} and %H{x} are characterized apnd
compared in this section. Besides being of use im studying the core, M-cores
are of direct interast because they are the actual cores of M-games , i.a,, of

games Adefined by a specified coalition ¥ and a4 set of wianning cozalitions

Iwo ixportant exampies of M-games dare the Tarete (unanioity) game (M=N)

and the dictatorship zame (M= {1 3).

Tor any Mg N, leb w, (x) = fu, (2): 1 ¢ MY . Two cones depending

orr the set uq(x} will be important:
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Clu, ) = [ Z A {xd:r I 2 >0, N200
- igM ieM

ol

ﬂ(uH(x}JT =fyv ¢ R": v ui{x} >0 for all 1 & M7

These cones are, resvectively, the finite cone gensrated by the set

u (%} and its positive dual. The dirsctions in ﬂ{u“(x}j+ are called

Moimproving or, if M = ¥, Pareto-improving. The following lemma shows

the relationship between M-improviog and M-undeminated directions,

Lemza 2: KH(S} = {; g T(x): £ ¢ ﬂ{uﬂ{x))+ vt £ F{x,;,H)1

for any ccoperative lecal game T,

This lemma implies the iaruirive proposition that an Meundominated
direction is any feasible direction v that cannot be incremented by an
M-improving direction to obtain a direction that ¥ caan use to block v,

-

¥ore leasely put, ¥ is M-undominated {f and only if M regards as
infeasible any improveﬁent of ;, where an improvement of ; iz

pracisely the sum of : and an M-improving direckion. I1f F is a
simple game, then lemma 2 together with (83) dimply thet KH(xJ is 2 cone,

The exact nature of Kﬂ{x} will depend upon whether = is M-optimal,
3

The set of (infinitesix3l) M-optima is the subset of points at which no

M-improving directiom is feasiblae:

00 = x5 X: Clu )~ T(x) = B,

s is well xmown that =(M) is the ser of Paretd optimal {(for ¥y points

i

*J

if sach U, 1s pseudoconcave, Lezma 2 apnd (382) immediately imply that

the null direction, which corresponds to no movement from ¥, is

Y-undeominated exactly when x is MM-optimal,
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Froposition 1: For 2il x = X, O e X (=) iff x <& ().

any M-optimal x  can be characterized in terss of the projectiem

of the come C(u“{x}} onto the tangent come T(x). For any u =z R »

the prolection of u onto T{x} ig the w o T{x}) that is closest to u:

bao-yuts min "t u - vl
eI (x}

ke

Hence uw = u 1if and only if uw ¢ T(x)., Let C{uq{x)} denote the projectiom
of Cfe,(x%)} oute T(x). The follewing lemma charactecizes points
vl

® ¢ o) in terms of the projected cone C{uH(x}).

5]

Lemma 3 X ¢ o0y {£f O C{uq{x)}.

The Zollowing propesition chardcterizes %) for most  x.
A b

Proposition 2: For all = = X,

(1) Gl () £ ¥ylx)s

{ii} KM(K} = C{uﬂ{x}) 12 x f 2% and if (A) tholds;

T(x) 1€ Cluy{x))" 0 T = 9; and

< e (iX} ~ 2CD,

(1ii) X (=)

[l

M

{iv) KH[x) T1

Part (i) of propesition 2 states that the projection onte T{x)} of
any semipositive lipear combination of the utility gradients in u}L{x] is
M-undeominaced., Part (ii) states further thet if (A) holds and = i3
not M-optimal, ther only these projections are M-undominated. Part (iii)
says that every feasible dirvection is UW-undominated if = is M-ootizal
and would remain M-optimal aven if every directiom in T was made feasible,

Part {iv) says that avery feasible dirzetien is M-undominzced if = is
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Meoptimal and in the reiative interior of X, In other words, the
coglirion M is indiiferent amomg 211 directions (in the sense of
PH{x} = @) whean % 15 a2n interior M-optimuam, just as an individual
with differentiable utility is indifferent 2mong 211 small movements away from
an interier utllity cotimum. YWhern (A} holds, the only points at which
KM(x} is not characterized by proposition 2 are M-optimal points that
are contained ic rhe relative boundary of X ané do not satisfy the
condition of part {iii}.

The most useful part of propesition 2 is (ii). 1It. however, can

be simplified for relatively interior =, Let
Ty = {0 0: & ey
denote the set of projections of the gradiects in u (x) onto T(x).

Proposition 3: If x & (riX) & (f), and if (A} holds, then

Ry(®) = G (O}

froposition 3 reveals the relationship becween M-undominared and
Meimproving directions. Suppose Ior simplicity that = is contained in
the interior of X, that = is not M-optimal, and that (i) holds.
Then KH{K} iz the cone C(uH(x}} that iz generated by the gradients in
uH(K}- Hence the cone of M-fmproving directfions is5 the positive dual of
the cone of M-undominmatad directioas. Only if C{uﬂ{x)) is very "oarrow"
will every M-undominated direction ke IM-improving, and omly if ﬂ{uH(x}}
ig very "wide" will every 3M-improving direction be M-undominated.

Bowever, M-improving direcrioms ia Kﬂ{x) do exist, as the following

lemma demonstrates,
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lemna &: Let x oz ri¥, and les H’E‘{x}) be the convex hull of uﬂ[x).

hal
Dafinse g funcoiosn 5q: X o RV by e“{x} = Argmin g 0.
) - 2 ¢ H{u(x})
. + .
Then £ {x) & % (x} = C(u“{x]} if = ¢ £00), and eq{x) = 0 if x z I{M).

Yow the M-cors %H(x} can be compared to its "linear approximation'
Kﬂij, The next propesition indicetes that Kﬂ{x} containg %N{x}
and, given (4). that the two cores are equal If x iz aet W-optimal or
if x gatisfies a particular eondition. The condition reguires that for
every v ¢ T {not just every v g T(x)), some merber of X has vou (2) <0,
Thus the two cores can be different only at points that are ¥M-optimsl
bt that are zet eoptimal in this stronger sense, Overall, proposirion &
serves as a justification for dealing solely with Kﬂ(x} in subsequent

sections.

Frooogition &: Tor all = z X,

(1) Xy @ K
(1i) ':EHE:{} = Ky{x) if x £ 209 and if (a) holds; and

(15 KR = R = T iE Slu ) o T = 707 .

5., General Simwle Cacas

The results of the previous section can be easily extended to any

simple game, The first task Ls to characterize the dirgetional core

Rix) = 7 K (=),
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& neecessary definition is that of the set 2 of (Infinitesimasl)

“-ontica, which is the subset of X from which no feasible direction is

Meimproving for any winning coalition

2=~ 20D,

a2 (Mo x £5000 .

The next theorem is an irmediats consequence of propositicus 1 and 3

Theorem 1: For any x ¢ X,

(i) 0 ; Kix) iff x ¢ &;
{ii) ~Cluy () ¢ K
M '
(idil) {x) = r C[uq{x)} if x §# and (A) holds; and
}Eg‘:.-‘:'(}{} -
(iv) X() = T(x) Lf Clu () ~ T = @ for ali M e e

Jotice thar (iii) is aot an equaliry, 25 is its ¢ouncerpart in »ropo-
dtion 2 (i1). This is because (ii) and (iii) do not necessarily "sand-

wich'" K(x), i.e., the containment

Clugxl g~ Clu,lx))
g RELSTE ST

may be a proper comtainment. However, (iii) is an equality if
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+
C(Uq{x}} ~ T =8 for all Mz« /%(x) (see propesition 2 (1ii)).
Thus an equality in (iii) is obtained for a relatively interior =x,

az i3 jindicated in the following consequence of propesitions 2 and 3.

Theorem 2: For any = ¢ riX,

{i) XK(x) = n Clu, (=)} if x ¢ 2, and
Hen(x)
(i1} Wx) = T if x ¢ 2.

The characterizations of R{x) in theorems 1 and 2 provide a
hint of 2 severe problem f£or games with many winning coalitions, such
as majority rule, The problem is that there is no guarantee that the
intersections in thestem 1{{ii} and theorem 2 (i} will be nonempry.
Henee ®(x) = @ 4is a real possibility, in which case the theory has no
predictive or normative walue., This problem is treated in Tore detail
in the next section., For now we note simply that H{x) = KH(H} is

nonemwty in an  M-game, and that in fact XH{x) is aonempty whenever the

collegium,

.= =3
qon

b/

i nonempty. —
The comsegquences of ap empty corve are significaant. I8 Kix) is
eppty, then rhere is extrese latitude for agenda mepipulation at  x,

which will now be discussed,

call a curve ¢: [O,+] » X fmproviog from = to v if

x = af0), vy = e¢(=), c(t) exists on all but a finite subser of [0,7], and

e(t) ¢ Clugle(e))”
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for some M ¢ whenaver ;{t] exists. Thus, at almast every point
on the ecurve, the utility of every membter of some wianing coalition is
strictly increasing,

If KE{x} # @, then an improviang curve through x should oot in
reneral be axpected to occur, since a2n undeminated direction need not be
improviag. 4n improving ¢urve would seeur, however, in two speeial
¢ireumstances., First, if at 2ach point im time there is an election
betwsen an incumbent amd a challenger, and the incumbent zan only adopt
the status queo {aull direction) as his campaign promisze, then the challenger
will win 2y adopting 2 direction that increases the utility of every =meaber
of scme wimning coalition. This process resulis in an improving curve.
Second, an improviag curve also results if the local game is restricted
by an agenda in which the null direction is pitted dgainst exactly one
other direction. If an improving curve from = o y exists, then an
agenda-naker can imsure that the stace will reach ¥ by always cheosing
the curve's tangent vector as the directicm %o put up against the null
direction.

Schofleld [ 24 ] provided a condition, the "Null Duzal" conditiom,
for there to erist an improving curve from ¥ te every nearby 7.
Consequently, LE the Null Dual condition helds then an agenda-maker can
manipulate the agenda to ach:ieve any nearby state that he wants. At
interior =, thecrem £ (i) implies that X{x} =9 1s edquivalent to

the ¥ull Dual conditienm holding at x. Hence the following :heorem.

'?1': [/

[

I

Theorem 3: Suppose T ¢ riX¥. () = P, then there exists 2

neighborhoed ¥V of x such that for every v e ¥~ X, there exists an
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impreving curve from = to ¥y that stays in V. Conversely, if such

a neighbroheed of x  exists, then x ¢ clly ¢ X: K(y) = € 3.

B, S-Majlority Games

A emajority game, where 3 is5 a2 positive fractiom, iz a simple

game in which the celliection of winning coalitions is gziven by
o= MW hpg THMYY

Such games ars anonymous, since 2 coslition's power depends omly upon

its size and vot upen the identities of its mexbers, Two common examples
are the Pareto game (~=1) and the {absolute) majority ruls (h==%}

game., In this section it is shown that when * 13 near ome-half, then the
atility gradients must satisfy 2 severe symnerry condition at a point x

£f any direction is undeminated at x., The severity of the condition

will imply thac the closure of
L= ixgX:R(x) =93

is generically egual to ¥, Hence aa agenda-maker im such games can
generally achieve, by theorem 3, practically any state he desires.
The symmetry condition will follew from a lemma that {s proven via

the following remarks, For any = 2 X anmd v ¢ T{x), define a cone

L

TOz,w) = fv e T{E): wew < 07,
Juppose t  is contained in T(x,v)., Then Lt follwws easily that

- —

R S - I L
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-r e
for scme 2mall W > 0, sgo thdr v + Wt iz econtained in Flx,v,x)

if M is 2 winning coalition. Coasequently, lemma 2 implies that

[T

t

v is undominated {f and only if At, and hemee t, 1s not M-improving.

Thus we can restate lemma 7 as

-~ e

lemma 3: v e XK{x) if and only if C{u“(x}}+ m T{x,v) = § for every

de .

@

In words, lesma 5 states that a direction ; is undominated at =
if apd oniy if = would be %HL-uptimal if the set of £easible shifrt
diractions wersa E(K:;) rather than T(x}. Therafore we can apply the
condivions obtained in [ 19 1 for  to be *yl-optimal whea =

can only shift in directions contained in T(x,v).

~

Definitions are required. For a nonzero v ¢ T, 2 palr of pradients

{Hi{xj,ﬁj{x}} 1s pairwise syrmetric about ¥ pravided that

{z3) neither Ei{x} nor Ej[x} iz a nonnegative multiple of v,
but there deoes exist o, > 0 and aj > 0 sush that
cou, {x} £a.u. (= 0,v1 .
THORELANONNIAY
In other words, Ei{x} ang Ej(x} are symmetric about v provided
that neither ome iz contained in the ray penerated By «, bui that
that ray is contaianed in the acute angle Zetween Ei{x} and Eﬁ{x}.
N¥otice rhat the noppegative linear dependency of the three gradients,
Ei(x}, Eﬁ(x)anﬁ v, is in some sense Tunlikely" if the dimension of
T 1is greater than rwo.

Te apely [ 17 ], we define the following coaliticms:

P

R (x,v) = {1z N: Ei(x} = oy for some o > O



R_(=,v) = {i ¢ H: Ei{x} =or for some o< 070,

Individuals in R (x,v} will not find zny direction im T(x,;) to be
improving, vhereas ludividuals im R_{x,v) will find every directiom in
T(z,v? te be improving. Lemma 5 and results ir [17] now

directiv imply

Theozem 5: Suppese = ¢ rviX., If v ¢ X{x) in a ‘-majority game,

then

(1 E R+(K;;)§ - R_{x,;}E > {1-23)a. z/
Furthermore, if

@) P RGMI - R GV S T4 (120,

—

then v z ¥X{(x) in a ‘~majority game if and only if both (1) holds

T

and the set r:i(x} © 14 BR.(x,%) U R_{x,v} ) can be partitioned into pairs

8/

that are pairwise syomerric abour v . =

T3 ¢larify the meaning of cheorem &, consider the case of majoriry
rule {(n = %} with n odd. Inequality (1} then says that 3+{x,;} must
contain at least ¢one member more than R_{x,;}. Sinee 0o is odd, it iz
always peossible to find some v for uhich (1) helds. However, unless
T 1is ooe-dimensionzl, inequality ({2) can be expected to held for
ail ; g T, sinece it is "unlixely" that R+{x,;} will contain atc least
two members wore than R‘{x,;} for any ; £ T. I {23y cZoass hold

~

and v is undominated, rhem theorem 5 implies that ap extremely stroag
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symmetzy condition must be satisfied by the gradients of all
individuals net in R+{K,;} or R_{x,;}.
The. conditions of theorem 4 have recently been ugad by
Schofield { 23 ] to shew that %{x) # 8 i3z "uncommon" in a formel
sense. Specifically, he investigates games with & = % and
¥ = gm, where m>2 1if n is odd and m> 3 4if = 4is even. In these

vases he shows that if the n-tuple of utility functiong is contained

. . . a2 .
in a particular dense subset of - ¢", then L dis dense in R".
i=1
Thus theorem 4 imwlies thas L i3 generically dense in 2 majority

game if the dimension of the space 13 greater than two {n odd) or three

{1 even),

7. Dvnamics

This section is concerped with the curyes that are generated when
the social state moves continuoualy in undominated dirvections. HMore
formally, define an absolutely continuocus funetion c:[0,») 4 X EO De

L J

undoninarad if rhe derivative ¢t} is contained in W)} almost
. . . PRI gf
everywhaere possible, i.e., at almost evary © £for which eo(t) 4 el L. =
Of course, such curves are of little interest in games like zajority
Tule. since then ell i3 generically equal to X. However, there

ig no problem in lecal games with nemespty collegiums, since then L

is empty. Call an undeminaved curve M-undomiasred (Parete uadominated)

if the lecal game i3 an M-game (Pareto geme).
Three guestions are of interest. Tirst, to guard against

vacuity, do undominated curves exist?! Second, does an undominated
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cuzve exist that converges to scme 'mice” set? This gquestion

is asked by a planner who desires to arrive at a sccial oprimmm, but
who koows that at each moment his actions will be constrained by
the political realities embodied in the funetion ©. If it is

known only that wotion of the state will, whenever possible, be zo
constrained, then predictions vegarding Ffuture states require a
positive answer to the third question: do all undominated curves

monverge to 2 well-defipned sat?

The existence question can be answered arfirmativelv. Assume for
simplicity that X is a subspace, {.e., that ¥ = T. For seme interval

§ = (51,52}, whare 0O < Sl < 8y, define

-
L

KE(K} =iV g ‘:%I{:-r.}: 5. % HIRT A 5,

Lat HKiEx} denote the conwex hull of Ki{rj, and define a correspondence

Gix) =

fv o2 T(x): ol < 521 if xwe ell,



.52,

where a solution is a function ¢:[(0,2) »+ X such that ¢(0} = X ;(t}
exists and satisties (P1) almost everywhere, and ¢ is absolutely
eontinuous on Linite intervals. tThe follewing argument shows that any
solution ¢ to ({P1Y) iz undominated. ILf co(t) ¢ & at tize t, then
é(t) iz undoainated because, by theorem I (ii}. X(eft)) =

IE et} £ &1t ell then é(t} is again undominated because

() ¢ Gleft)) = r Hxs'f’(c(t))
M (e(t))y

c (eft) ) = Kief{t}).
‘“Ieﬂrmc( J) E

Comsequently selutions of (Pl) are undominated curves.

Still assuming that X = T, & theorem of Castaing and Valadier [ 4 ]
{theorem &1 In [ 5 1) implies the existence of solutions toe (Pl) if G
iz bounded amd upper hemicontinucus, and If for each #, G{x) is couvex,
compact and nonempty. By the definition of ¢, every condition except
upper hemicontipuity is obviously satisfied. The upper hemicontiauity of &
at any x ge¢l L is obvious, since then G(x} contains G{y) for every
yeX. If x4 cli then the upper hemicontinuity of ¢ 2t x follows
from the following lemma.

. . .
Lemma 6: The correspondence X, iy 'upper hemicontinuous on  viX.

Lx s
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Consequently, undominated curves exist, at least if X =T.

The second guestion, which coucerns the ability of a planmer te
find an undominated curve that converszes toe a "nice" set, can also be
answered affirmatively if atrention is restricted to M-games. For
a given coalition M, conaider a2 welfare funetion W:X o R defined

o

) =g (U] (6D, Uy (8)sean L (D),

where 5 1is twice coatinucusly differentiable and has partial derivatives
satisfying 3, >0 if 1 ¢ M and 5, = B 4if i ¢ M. Each U; and nence
W is alse assumed to be twice continucusly differentiable., The gradient

wix) of W{x) 13 given by

wlxy = I o (wiu(x),

% Aoixy o= LM R . Wi 2 3

vhere xi{\} 51( lft}, ,Un{t}] Congedquantly #{x) = C{uﬂix}}, 5o that
aropesition 2{i) implies that the projection w(x) of w(x) onto TF(x)

iz M-undominated, Therefore a selution te the dvnamic process defined

o X by

-

f22 5 ® o= @y and x(9) = z,

will be an M-undeminated curve remaining in . The evistenca of a

solution to {P2) that has vight-hand derivarives everywhere is pudranteead
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by corallary 43 in [ 5 ], and its uniqueness is provided by a result
in [ 11 7.

The equilibrium set of process {(¥2), E = [x ¢ X: wix) = 01, is
contained in 2@} by lemma 3, ¥ow, if utility funetions aze
pseudoconcave then F{M) is the set of Parets ovtimal points
for . Consequent by, tha planner's problem is solwved if
solutions to this process are gquasistable,. 1.e., if the limit poiats of
solutions are contained in E.

e guasistability of solutionstto various gradient processes like
(P2} is exactly what is shown in d'Aspremont and Tulkens [ 7 ]. Three
techinical assumptions are all that are needed for their procfs to be
applicable to (P2}, One i3z that ¥ be boundad zbove on X, and a second
iz that X be compact. To insure the continuity of scolutions in R
which i required for Lyapunov convergence arguments, #n sssumption is made
that keeps solutions off the zelative boundary of X (% may be discontinuous
there). The third assumption is then semething of the sort that
1im‘W{xk) £+ » whenever {xk} < rif is & sequence converging to a peint
biven
in rbX., In 2 commcdity space, for example, this 2ssumpticn takes the form
of assigning infinitely low social wellfare to any allocation in which any
individual consumes & zero awount of any good, Given these assumptions,
arguments using W as aa inereasing Lyapunovy function can be constructed
along the Iimes of [ 7 ] teo show the quasistability of (P2) whenever
X, € TiX,

Solutions to (P2) may not be individually ratiomal, that is, they
may result in decreasing utility for some individuwals, This cannot havpen if the

cutve is Meipproving, i,e., 1f % is almest always an M-improving direction.
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Solutions ko an alternative process,

(3} x =

A=) oand  x(0) = 2

w11l 2 both M-improving and M-undominated, by lemma 4, 1If 2y can

be shovn te be Lipschitzian, and If the compaciness, boundedness, and
boundary assumptions mentioned above are satisfied, then solutions to (P3)
will exist and their limit points will be in 2(M) and be unanimously

preferred to X,

The third question concerns the quasistability of all undominated
curves. Now, clearly, since undeminated directioms ean have arbitrarily
small megnitudes, undeminated curves may "move' too slowly to ever get
anywhere, To avoid this problem, the magnitude of 2n undeminated ; must
bz bounded away from zero whenever zare is not itself uvndominated. This
nas already been accomplished in the definition of G in the process (Pl):
G{x®)Y is & cospact set that contains zero i£ and only if efther %  1is
n-gptimal or x i3 contdained in tﬁe elosure of T. Also, by letting
$q e very spall and 5, very large, the c¢lass of undominated curves
satisfying (Pl) will be f2iciy bread. Consequently, the third guestion is
rovised to asking whether process (Pl) 1is quasiscable, i1.e., whether
the limit points of all solutions of (Pl} dve contained in the set
Farell =lxe X 0 G(R)Y .

An affirmative answar to this rewvised guestion can be given in a soecial
case. It shall be assuzed that all individoals have utility functions with

gircular indifference curves, i,%., that each individual 1 thas preferences

that are representdable Dy
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oy
trd
P

ui{:&) = (:{-pij - {pi-x} for seme Pi s 7.

Stzeh preferences have long served as prototypical in voting models (e.g.,
in ¥razer [ 12 1 and MeKelvey { 19 1). The strength of

assumption (I} s revealed in the following lemma,

Lemra 7: Suppose that X = T, that eazh L-‘i setisfies (E), and
that x ¢ X. Then v ¢ K {x) if and only if x + v ¢ 2(M) for
xk

some > 0, Furthermore, 2 ¢ & implies that =z - x ¢ K{z),.

One implication of lemma 7 is that L is empty If £ is nonempty
and (E) helds. Also, for every M ;< an undominated direction must
"poiot" frem x to @2(M). This fact can be ysed to show that the Euclidean
distance from x{r) toe £} 1is decreasing along an undeminated path,
Consequently, this distance cdn serve a$ a Lyapunov function in a long and
tedius convergence argument, based on the Lyapunov theorem of [ 5 ]

(theorem 6,1}, to establish

Theorem 4: If X =T and each Ui satisfies (E}, then the limit points
of any solution of (P1)} are contained in & 1f £ # @, or in ¢l %L if
10/
£ =2
Eence, for example. given the special class of utility functioms, all
Zareto-undominated curves converge to the Parato set, his i3 net an obvious

convergence, siace even with these special utility functions the ubility of some



irdividuals may decrease along portions of (Parets) undominated curves.
Because the Paraia+improving property is lacking, no immediate function
of utilities will serve as 2 Zyapunov function with which to prove

the oquasistability of (P1} in generazl. [ conjectures, however, that

{P1l} 1is evasistable for a fairly broad class of utiliey funetions,

8, Sumrary and Concluding Semarks

The hasic premise of the paper is that the motion of the soeial
statz is constrained by the blocking ability of coalitioms in the socciety.
This blocking power, 45 represented by the correspondence F{x,v,M), may
have either 2 normative or positive origin. Oune fundamental ceonseguence 1s
that predicted {or suggested) directions of motion npeed not be Eéreto-impraving,
This conelusion deos pot depend upon the simple sasme assumptions (S1Y - (83)
that are used throughout most of the paper. OCnly if each F{x,v,[il)
contains the origin will an undominated direction mecessarily be Pareto -
{improving., Similarly, in general simple games, undomindted direetions of
motion need ancot ipcrease the utility of all sezbers of any winming coalition.

The model raguires individuals to evaluate directions in terms of the
instantaneosus rate at whiech they increase utility, The objective funcitiouns of
more tational individuzls should tike the form

=]

UL (wlEY,s)ds or Y, {(lim z{t)),

ot bt
depending uaen whether the process occurs in "real time" to generate a utility
flow, or whethar it i1s only the finel state that is of concern. The =yopic

maximfzation of 'fifdt does not cortrespend to the complicated problems
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of maximizing these objective functions in 2 supergame setting, but it may
be regarded as a trazetable approximation, 2 result of "bounded rationmality, "
The bulk of the paper concerns simple local games, which are dafined
by assumptiens (S1) - (33). Assumption (83), which requires that a
proposad direcrion be dominared only by directions of smaller magnitude than
itself, is somewhat ad hoe. However, any better specification of F(x,v,M)
for winniag coalitions can only be made in the comtext of a particular
zare; no specificaticon can escape being arbitrary in 2 general setting.
The specification chosen in (53} has the advantage of treating 211 directions
symmetrically, which Is a patural assumption to make in 2 gemeral model,
%o results would be drastieally changed if {32) and (33) are replaced
by

(5' F(x,w, M) = fvog T(R) M ov v < s(x)1,
and oonly directions of —magnitude Iless than s(x) are considared feasibla.
(This is essentially the approach taken in [15].} The interpretation then
would he that s{x) is the upper bound oo the speed of the social state
at %, If (8') 1is assumed, then for relatively interior x the core
is the solid s{x)-ball {f x gz 2=, or, if = { », the portion of the
surface of the s{x)-ball rhat intersects with
S CHEINS

e (x) .
In other words, the directional core obtained wia (8') is either a
truncation or a thin cross-section of the cone that is the cors when

(32} and (&3) hold.
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Both the (8') and the (%2} and (33} formilations suffer
the disadvantage »f depending upon the Zeclidean no ~.llf Of course,
any aorm ¢ould have been used. T elimipate norm depeadence completely, (5')
and the set of feasible divections could he generalized tu include all
direccions + that have zagnitude o less than some function s{x.v/ " wh).
This would serve to make the maximum possible speed depend upon the
directisn of m:rion. With this specificacion, the perfectly general lemma 2
still holds, TFurtherrore, It can alse e shown that g(x) comsists only
of directions v that are of magnitude s{(x,v/ " v} when x 1is relatively
interior and not ~i-optimal. OQtherwise a chavacterization of Efx) is
not obtainable at this level of generality,

Given the assumptions (31 - (53}, some results should be emphasized.
First. ik was shown that 'projected gradient" preocesses result in Pareto-
undomipated curves. Consequently, procedurz2s can be found that resul: in
Pareto-updominated earves that converge to the Pareto optimal set. In fact,
sore of the plamning proceduves that have been proposed to allecate pubiie
and private goods, such as one proposed in footpeote 4 of [ 13], do so via
Pareto-undeminated curves. This follaws from the deconstration of
d'dspremont and Tulxens [ 7 ]| that some of these procedures are actually
projected gradient processes. There are twe important exceptions,. however.
The MDP procedurz is not a process defineble by the projection of 2 gradient
onte the feasible set W; consequently the PP procedure does not result
. 12/ . . . =
in uadomivnated curves, — This shortcoming is severe, however, only if (§3)
and the myopic inducement of directional preferences are teasonable in the
application of an M¥OP planning precedure. Secondly, the directrions of tax

reform in Guesnerie [ 10 ] and Fopelman, Guesnerie and Quinzii [ g ]
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are werely required to be Pareto-improving, which, as Waymark ([29]
demoastrakes, does not imply that they are Pareto-undcminated. Being
Pareto-dominated i1s probably a more important shortceoming for a rax
raform ditection than an MD? direction, since tax reform is probably
a teal-fime process in which mropic behavior can de sxpected,

Tt was alse shown rhab every member o0f 2 class of Pareto-undominated
curvas defined by (21} couverses to the Pareto set., Uanfortunately this
result was obtained under the assumption that utility functions are of
the Zuclidean ferm (Z). Further work needs to be dome to generalize this
theorem. A second caveat is that although & similar coavergence to & or
L f{depanding upon wihich set Is nonempty)} was shown to ocear in general
simple games when (E) 1is assumed, and can even perhaps be shown without (3),
such copverzence is not important 4ia games like majority rule. In these
games the conwvergence to L 15 =rivial, since the pairwise symmetcical
Location of gradients arcund an undesivated direetion imply that generically,
¥ 1is egual co the elogure of L.

The £final result to be stressed is the conaection made in section 3
Batween Schofield's | 24] ¥ull Dual condition and the existence of
directional eoreg: the Xull Dual cenditien helds at relatively interior =
if and only if an undooinated direction does not exist at x®., Since
Mull Dual is the comdirion sufficient for an agenda-maker to have the
ability to achieve any point near the current sccial state, the implication
iz that agendz manipulacion can oceur 1if the directionzl core is empty,
i.e., if society is "lecally undecided." Also by theorem %, if society is
"ocally decided” ar x  in the zeumse of undeminated directions existing at
all points in 2 neighbothood of x. then an agenda-saker is not free ro

¢btain aay point near the current state.
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This paper is au extensive revision and izprovement of {1aj,

which is 2 chapter in my dissertation [I5]. A similar idea was
explored in [18] in the context of a two candidate election., T
have received valuable comments on various versions of this paper
from Charles Plott, John Ferejohn and Randy Calvert, Especially
valuable have been the comments of John Weymark, 1 zlso zcknowledge
the syoport of John Ledvard and ¥37 Grant ¥o. SOC78-122884,

Tulkens and Zamir [ 28 ] also define a dominance relatien on
nonnuil directions. Essentialiv, a dirsction is deminated in thair
framewori if some cpalifion can achieve, by trading wichin {rself via
the rules of an MpP procedure, a direetion that it unanimously
prefers. Thus, in ceatrast re the local gawes here, their local games
are not simple and do not reflect social rules thar are iadependent

of the MOP rTales,

See the Appendix for definitiens and resul<s relating to cones.

~
although it will not be needed, it cam zlso be shown that PrxY s
contaised in the closure of P{x).

Wilson [30!, wiz the concept of an "effactiveness" relatiom, firss

3

expressed formally the idea that the set of alternatives that a
coalition ¢an use to bloeck the choice of 2 propesed alternative may depend
upon which alterunative is being sroposed.

m . . . . . .
For any A< R7, rid, rba, and eli will denote the relative iaterior
of 4. the relative boundary of A, 2anrd the closure of i, respectively.

grewn f 2 1, [ 3 ] investigatss the relationship between acyclic

Fa

dominance relations and colleetions of decisive sets that have nonempty
cellegiuns.

More complicated necessary condicions ara alse derived im [ 17 ] and
presented in [ & 1 and [ 16 ). These conditionz put lower bounds

L a
on the nucher of pairs of gradienss that are pairwize syrmetric about

w  when (23 dces not heoid.
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o= 1/% and n is wdd. then theorem & folliows from lemma 5 and

£ 2

Blote | 20 1: Plett [ 20 ] fivst derived the paivwiss svmmefry con-
ditions that are necessary and sufficient for a constrained aquilibriue
when (23 holds and .= L/Z and o iz odd.

The derivative e{t} is not required to be undominated when ef(t)

is in the relative boundary of L, even thoush undominated directions
exist thers. (L can be shown to be open in X.) This is done for
technical reasons, namely, to obtain the continuity conditions sufficient
for the existence of undominared curves,

The procf of theorem 4 is not included in the appendix because of its
tedious Iength 2nd "special case" nature. See . [ 16 ] for a
tudimentary sketch.

I am indebted to John Weymark for this observationm.

Consider the ¥DP process for a pure exchange economy, @s deseribed in
chapter § of Malinvaud [ 14 ]. Let there be two people and three
goods. Then the allocation space can be considered zs RY, where
cdd~pumbered coordinates represent person 17z consumption and aven-
numbered coordinates represent perscon 2's consumption., The feasible
set ¥ iz the compact subset of 28 that satisfies the nonnegativity
eongtraints and the budget balance equalities, Suppose that at some

x £ riX the two gradients are ul(x} = {1,0,6,0,2,0) and

uE(x} = (0,1,0,2,0,48), Then, if both people are weighted squally
at 8y % 8g = 1/2, rthe ¥DP procedure sets x = (-5,5,2,-2,-1,1) = =,

Hawever, it is straightforward to f£ind & directiom v 2 T(x) such
that vl < lla" and ui{x}r fv-2) >0 for i=1,2. In fact,

¥ = (-5,5,32, 32, -41,41)/21 satisfies ¥ e T(x), iTr 3.4 < 7.8z,

and ui(x)= v = ui(x}- z =353 for 1=1,2, Thus, by letting x =2,37,

the rate of utility Iacrease for both individuals czn be made more than
twice that which they achieve in the MDP procedure, and this is achieved
ty moving the allocation in a different direction 4t a2 no greater rate.
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Apnendix

Al, Marhematical Rasults

Mathematical teras that are not standardized are defined here, acd
some useful reswlts are listed,

A come is 2 set X g R for which % £ X implies >k X for all
s, » 0. This definition allews a2 cone to either contain or net centain
the origin., A coovex cone is 2 cone X for which kl’k? £ X imply
[T

kl*'kg # K. The cone C{4) generated by a set 4 = Fal,...,anl =R is

defined 25 the sat of samipositive linear combinations of the elements of

o
CAY =! Zna,:v >0, N > 01

|| = |

i=1l
Notice that C{A) way or m3ay oot contain the origin, and thag

the closure of C{4) is C(a) > 70V, 2 closed comvex cone contaiaing A

s - . . . p,

If &= 27 is agy set, then the convex hull of a4 is
il El

HA = E @ x = T f'_ia,i, .:"'.; E G: - 1.1 =1 . ai - P :_>_ 1 ‘" -
i=1 - i=1

Hi iz the smallest convex sebl containing A

“he positive dual of any set 4 = R7 is defined as

+ . m
& ={X&R :a-k>0 forall acal,

[
=
]
w
]
i)
3
-
T
o
i
3
v}
1]

and maw be smpty. Thae roneezative dual of

He
i
—
-
h
au ]

M

a - k> 2 forell af i

A  is a closed convex cone that contains the orizia. 1t is easy to show
e * *=

o ) +
that A= 4 aad, if 4 # P, thar cla = A%,

The following five lesmas will 52 useful: proofs of the lemmas are

standard and can be found in Basarra ancd Shertvy [ 1] 28 (ALY lemma 3.1.3 (ii},

(A2) Zlemma 3.0.8 (iiid. {A3Y thecram 3.1.31. (A3) rhegres 7 5.4 | and



{43} theorem 2.53.l%. respectively.

= W
Lemma Al: A = {ela) .
o - ) ] _t'.' — oa
Lemna A2 Ar_ Ay implies Az = Al

E
KE 2® is a nonempty convex come, then X = ¢l(X) .

Fla

Lemma a43: T

. R« e
Lemma AL (Praizciion Theerem): Let T i R re a closed convex se:t. and

i - . —

let w = R . Then there is a unique u £ T, called the projecticn of u
onte T, rthat satisfies

Nu=-u! =azin fu-vl .

weT

Furtherzore, o ¢ T is such 2 minimizing point iff

(u-i) - f{v-.) 2 O for all v < T,
Lemma_ 45 (Separation Theorem) : Lez S < R and s, < ™ e nonempty and
conver sets such that riSI A riS2 =g Then thers axists a nonzero
vz (-31} + 8,

A2, Proofs of Zesulis

ProoE of lezma 1: Suppose {vl:vzj £ Bix) . Than (vl-vzj cufx) = 0.
Let £{x) = U{x+hv1} - U(x+l¥2} s and observe thar E£'(0) = {v1-v2} s ufx) >0
Since S0 =0 this indicates that £{\) > 0 for small =0,

3 ;{x} . Heoce P(x) = F(x)

i

i.e.. Ehat {vl.vz

Froof of lemma 2: v & X (x)
g s

Lff VP (x)¥ for mo v € Fx, .0

iff o v £ F{x,;,bﬁ sagtsfies {v-;j . ui{x} =0 for allie ¥
JFE b= (ve7) @ Clu () for any v € F(x, ¥,

$f2 v = 4t £ Flx.7.M)  for any € C{u}:(x‘b‘:{_
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Preof of lawma 3: If C(u“{x]}+ = @, then obvicusly x & #({) and,

furthermore, it fs well-kmown that O« C(uﬂ(x}} {e.g., lemma .3 in
Schofield [24]). Since U ¢ T{(x), cthis shows that 0 £ C(u, Gx)). Hence
we must only comsider the case C{uﬂﬂx}]+ # ¢, Suppose x £ 2(¥). Then
I{xy C{uﬂ(x}}+ = $#. Both T{x) and C(uH{K}}+ are nonempty and convex.
Bence, by a separation theorem (lemna 45}, thers exists z noncearo

u £ (-T(x}}ﬁ A CEUH(K}}#:. Sy lewmma a4, u £ {~T'E:-=?JJ';t implies o = 0.
Also, since the closure of C{uH{x}}+ is G{uﬂix}}* and the closure of

CEU}I{:{}} 5 C{UH{:{}} 1) {0}, lecmas al and 43 imply

Glay (Y= (atetu, ™

Clay ()™

cl(C(u}I{x)}} C{“H(x” o {0}

-‘1:- -
Henee u 7 {(~T{x)) C[u“(x]}, 50 that 0 = u g Cfu“ixji. Conversely,
suppose that O £ C{u\I(x}}. Then there exists, by lemma &4, u g ﬂ{uq{x}}
such that u*v < 0 Zfor all v ¢ T(x). This implies, since u is a semiposi-

tive combinatfon of the gradients in w,(x), that T(x) ~ C{u‘{[:{j}f = 9,

dence x £2 {1).

Proof of proposiriem 2: (i} Let u € Cfu {x)}. 3y proposition 1 and

lerma 3, 0 2 K, {x) 1f 4 = 0. So assume w# 0. Suppose v =4 + £z Fix,

iy

a4,}) for scme t # 0. Then i!v[[ f_!|E|i, which impliss that f+u < O.

By le-ma 44, there exists u & C{u,fI{x}] such that (o - u)*{v - u)
= (u - u¥'t < 0, Therefore t u j_t'ﬁ < 0, so that t £ G(uq(x}}+. Thus,

by lemma 2, u £ KH{K}'

(i1} Let v € T()\ Clu, (x)). We must skow that v £ K, (x). Since
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w S, v Eﬁ{x} if v = 0. dHenca we ¢an 2ssuze v £ 0. Lat
-

q'(x) = fq, ¢ q(x) L. % = 91 aad € = Clu, (%) 17 ¢'(x)). Suppose

-~ e

ve €., Then v=ut+gq, where u=0 or ug C(uﬁfx}}, and g =

g
2

™

< ! M

assumption {4}, T{K}’=CKQ(K}}H- Hence g +v > 0 for any v £ T(x),

(a-v) ' (v-v) = g* (v-v) = = q*v <O

~

that

0 or

C(a'(x)). Because q =0 or a g C{qg'(x)), v-q =0. Hence 0 #

w* = v.e(utq) = v.u implies u # 0. Hemce u ¢ C(y,(x)). Now, by

$0 that

for any v £ T{x). This proves that + is the projection of u omte T(x).

Hence W E C[uﬂﬁx}), 4 contradiction. Therefore v ¢ C. If C ~ {-v1 =8,
= -~ bl e by
then ¢ c {vﬂd, which {zplies the comtradiction v e fv1 < C =clC=CcflN
{see lemm=as Al -A3). ience there exisis
2 ~ 4
t-l ,_5 'C |“ (-V) ]
gbgserve that ty -ui(x) » 0 for all i < M. ¥ow, since the cone
. + -
e, (x))7 ~ T(x) = Cla, (x))" A C(a(x)) is nomeapty, there exists
L £
t, £ O, () N Cla(x))
amall gnoush geo that {tl + tz}' v i3 still negative, Let b, =&, + t;-
¥ow let t = uts; where . > 0 iz chesen s5mall enough that
" 2 [ 2 e
v R ET - VT S uty e g t2v) £ 0,
which can be done Hecause By ¥ < 0. Alzo, u can be chesan so Chat

(v E)egy = (v buty) g 20

For every 4. £ q(x), since the following implications hold:

J
1, 28N = v > 00 ard
o
- L :-.. = - [ ] o tA- - .
G‘_'[ - 4 '[-'{} = ¥ q] DJ ‘-1 -j = I:I-' and z qj —- ¢
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Taerafore v o+t £ U{e(x)) = I(x). Rence, since v+ v < v, (83)

- - % # +
implies v + ¢ € Fx,v,M). Also, as tl.; c ;_C{uqix}} and €, & E(u“(x}} '

) £ C{uu{x)}+. Therefore, by lemma 2, v # KH(H}-

L= ;{:1+:2
{1ii) Assuming C{u“[xjj' ~ T = @, we must show that any v £ T(=)
is contained in X, {x}. If v £ ¥ (=), then lemma 2 implies the existence

- - i - —_ = o=
Lz C{uw(x}}' such that v = v + ¢ & Fle,v,M) = T{x) ¢ T. Thereiors,

[
1y

7. since poth v and v are centained in T, This contradiction

R

rr

3
shaws that v £ KJ(K).
{iv} Part {iv) follows from (1ii), since x ¢ (4} implies chat

c(ux(x))+ AT{x) =% and % e xif implies thar Ti(x) = T.

2rcof of Proposition 3: Because T(x) = T is a subspace, cach ui{x} can

- s +
be uniquelv expressed as a sum a (%) = ui(x} + ui{z], where ui(x}-v = 0
e
- +
for any v £ T. Hence T c(u‘_I{x}}’L =1n c(u}fix}) . Thug lemnma 2 inplies
that each ui{x} can be replaced by Ei{x} without altering waxj. Conse~

queatly, by propesition 2 (ii), X (x) = c(u,(x)) = JEIDE

greof of lemma 4:  Simce x £riX, nothing is changed if we agsume thatr

gach ui{x} = Ei{x) {s2e the proof of proposition 3}. Hence by lemma 3,

x==2{1) iff D £ c(ﬁq(x}) = Cfu,(x)). But 0 ¢ C(EH{x}} iff 3,(x) = 0.
Hence ¥ £ £ 1ff 5 (k) = O. IHow assume that x ¢ (). Because 3 _{x)

iz the vettor with mininum norm in the convex hull of uﬁ{x}, iy Follows
L

(lemma 44) that 3\,{:':}'{51_{:4} - §,(x)) » C for all i €. Peace
ak 4

i

Lk

- +
Gl Gy > 2,008, (x) > 0 for all 1 €3, Therefore & (x) £ Cly (x)) .
i - o by W

ba

™

This complates the proef, since 8, (x) € C{y {x)) = X {x) by propesition 2(i}.

Fooof of Proposition 4: Lempa I direetly dimplies {{}. To show (ii},

suppose x ¢ X% 2(I) and u o Kﬁ(x}. Bince (A) holds, proposition 2 {ii}

inplies that u is the projectien onto T{x) of scoe u g C{UH{K]}. Agsums
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that v ¢ T{x) satisfies v%H(x}E 2nd v € F(x,5,%). Lemma 1 {mplies then
rthar EPi{x}v for ne i £ M. Yence {wv-13)- ui(xﬁ = 0 for all 1 ¢ M.
Thusz, since u € C{uM{x}}, (v-uy- ux 0. Therefore. by lemma AZ,

o (v 2 (v-E) w20, But since v £ F(x,u,¥} implies !'wli < nul,
the Cauchy-Schwarz inequality implies that o -« (v-u) < 0.

Hence © - v =u * u, which implies that v = @ because "al > I'vil. .
This contradiction implies KH{X}-; %H(x}- {iiy now follows froa (i) -

To show {1iid, ler ; £ T{x) and suppose C{uH(x})* nT = {0}. Then,
since C{uﬂ{x}}+=; C[uH{x}}*, proposition 2(iii) implies ; E Kﬂ(x)_

%3 v%H{x);, then, by an argument based on lermz 1, t = v - :ﬁc{uﬂ{x}J* .

Henee t € T , which implies v = v + t & T(x) . Therafore v £ KH{x)o

Consequently T(x} = & (x} = K“{x}.

£

v

Proof of theorem 3: Schofield [ 24 ] proves the existence of W

Xx £ & and his "Hull Dual" condition helds, i.e., if

a

C(EH(K}} =43,
)

.'(:{ =

Me

%

o

Thusz theerem 2 implies the existence of V if H{x) = 4§, Schofield
[ 23 1 shows that if ¥ exists, then =x i3 2 limit point of the set of
points satisfying the Null Dual conditisn ; which means by Theorem 2 that

x iz a limit peint of vy&€ K : K(y) =91,

E i |

A

Progi of lemma 6: Tet =® £ riX and suppose 1x ; = riX is a sequence
4=

-l
converging te x . Suppese too that {vk1 is a sequence converging to
~ L3 . S .
v  such that each iy [ iq(xk}. Because the rangz of ﬁq iz contained

fr

. - B . 3 =
in 2 compact sef; ¥, is uhe if we can show v £ Xy {x). Assume that

v g Ki (%) . Then, since 51 < VL s, 7 KM(;)' Consequently, lemma 2

: =\ F : ~ .o
iemlies *he existence of ¢t C{uqfx}} such that v+ £ & Flx,v.X) .

1y

Therefore v T ¢ T(xY=T, which implies that £ £ T. ilso,

i
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"+ sl € iyt and t * 0 implies that v, t < O for large k. But

t£ T and Vk~ t <0 imply thac v, + .'-‘-,.{t € T and '='vk - '-\,kt" = ity

k
for some }"k =0, Thiz izplies, oy lemma 2 and (53}, thac £ ¢ C(u_:{[:ck}}"-
for all large k . Rowever. because the utility gradients are

~ o+ 4
assymed to be continuous and because + £ C(%I{x]} , =t £ C{uﬁ{:&})

for large enough %k, This rcontradiccion proves the lem:za,

Progf of lemra 7: Because X =T, Ky (=) = C{E\i(x}]. By (E),

Ei{x} ts just a positive multiple of T, - x , vhere Ei is the

projection of p; onto T. Consequently,

h
L
=
s
L}
[¢]
~—
5
P
oo |
v
Ty
=
1
~u
-
[al
e

K.‘-I{X) = C{ﬁi - x i

But it is easy te show that {0 =H {_Ei : i

M
o4
LRty
5
i}
la)
1]
L3
2]
L)
1]
v
=4
~—
b
St
I

CE(OM) - fx} ) -  which proves that v € EQ.II[:«(] iff =+ we s for

M
4
;]
e
=
[r]
=

some . » 0, It follows that z -~ x € K{x) if =
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