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Introduction

This paper explores several implications of what I term the permanent
income hypothesis. By the permanent income hypothesis, I mean the
assumption that the marginal utility of money of each consumer is constant.
This assumption is an exaggeration of Milton Friedman's hypothesis [22].

I visualize the consumer as having a nearly fixed idea of the value

of money to him. When he buys a good, he spends money on it up to the
point at which the utility gained from the quantity bought with an
additional dollar equals the fixed utility of a dollar. He fixes his
utility of money so that his long-run average expenditure per period
equals his long-run average income. He uses money to iron out short-run
fluctuations in his net expenditures.

It may be seen that the permanent income hypothesis is appropriate
only in short-run contexts and when the consumer's expectations about the
future are fairly stable. Also, he must have had time to accumulate
adequate money balances. The hypothesis has been justified rigorously
in a previous paper [10].

The permanent income hypothesis leads naturally to a version of general
equilibrium theory which can serve as an alternative to the Arrow-Debreu
model. This version is, of course, applicable only in the limited setting
in which the permanent income hypothesis is appropriate. In this theory,
equilibrium is a stationary stochastic process of temporary equilibria
and is also Pareto optimal. It is Pareto optimal even though there

are no forward markets for contingent claims.



In part I, I formulate this theory. Consumers' utility functions
and endowments and firms' technologies all fluctuate according to a
stationary probability law. Prices also form a stationary stochastic
process. All trading is for current delivery. Firms maximize long-
run average profit per period. Consumers maximize their long-run average
flow of utility, subject to the constraint that long-run average expenditure
per period not exceed long-run average income. All firms and consumers
have rational expectations. They also observe the underlying stochastic
process which governs all exogenous fluctuations in the economy. The
equilibrium defined is termed stationary equilibrium. In equilibrium,
each consumer's marginal utility of money is constant.

The assumption that each agent observes the exogenous stochastic
process is quite strong. 1In fact, agents do not necessarily need so much
information. This issue is discussed in section I.4.

Stationary equilibrium turns out to be equivalent to general equil-
ibrium in a two period economy in which goods in the second period are
artificially transferred back to the first period. (This fact is proved
in section I.6.) I prove that stationary equilibria exist by proving that
the two period economy has an equilibrium. The two period economy
necessarily has infinitely many commodities (unless there is no randomness
at all). I prove that the two period economy has an equilibrium by applying
results of a previous paper [9] on economies with infinitely many commodities.

A routine argument proves that stationary equilibrium is Pareto optimal.

It is intuitively fairly clear why markets for contingent claims are



not needed for Pareto optimality. In the first place, since the marginal
utility of money is constant, a consumer has no need for insurance. In
effect, he uses money in order to insure himself. In the second place,
forward markets are not needed to coordinate intertemporal supply and
demand, for agents have rational expectations and full information.

Stationary equilibrium may be interpreted as providing a theory of
socially optimal inventory policy. In the stationary equilibrium model,
a distinction is made between producible and primary goods. Since all
fluctuations are thought of as short-lived, one must think of capital goods
as primary goods in fixed supply. The producible goods are consumables
and intermediate goods. (One can introduce an exogenous demand for
capital goods, as I explain in section I.4.) Stocks of producible goods
may fluctuate. The quantities held are Pareto optimal since the stationary
equilibrium itself is Pareto optimal.

Some caution must be used in interpreting this theory of inventery
holdings. Since markets are perfect, many of the usual motives for
holding inventories are absent. Agents believe they can always buy
whatever they need when they need it.

It is remarkable that Pareto optimal inventory and production
decisions are made in stationary equilibrium, even though no individual
knows the aggregate quantities held of the various goods. This fact
shows how strong are the assumptions of rational expectations and full
information.

Stationary equilibrium offers a limited answer to the question of

why we do not in reality observe complete markets for contingent claims.



Arrow posed this question in [5]. The answer is that self-insurance and
rational expectations can take care of every day fluctuations.

If there is one consumer and one firm, then a stationary equilibrium
is a stationary optimal consumption and production plan, or a stochastic
golden rule. Thus, I give a proof using equilibrium theory of the existence
of such a golden rule and associated competitive prices. This problem
has been studied by Radner [38], Evystigneev [21], and others. Their work
is discussed in section I.5. Of course, the interpretation of stationary
equilibrium is very different from that of the golden rule. The
golden rule has to do with the theory of optimal capital investment. In
stationary equilibrium, capital goods are in fixed supply.

In summary, stationary equilibrium provides a synthesis of general
equilibrium theory, the permanent income hypothesis, rational expectations,
temporary equilibrium theory and the theory of the golden rule.

In part II of this paper, I show that the permanent income hypothesis
provides a solution to the stability problem of general equilibrium theory.
By the stability problem, I mean the fact that the differential equation
system

) < 5 (p(r))

dt (L

may be unstable. In this equation, p(t) 1is the price vector at time
t and Z(:) is the market excess demand function. This equation system
may be thought of as representing the motion generated by a tatonnement

price adjustment process. In fact, this equation cannot really be justified



rigorously. It simply expresses the idea that prices rise or fall as
demand exceeds or falls short of supply. The fact that solutions of
equation (1) may be unstable seems to have discouraged the development

of a rigorous theory of price adjustment and to have led to the conclusion
that there is no a priori reason that market prices should be stable.

Of course there are many obstacles to the development of a convincing
theory of price dynamics. For instance, it is hard to reconcile any
realistic price adjustment process with perfect competition, as Arrow
pointed out [3].

That the differential system(l)may be unstable was first demonstrated
by examples of Scarf [43] and Gale [24]. Results of Sonnenschein [46, 471,
Mantel [33, 34], and Debreu [18] lead to the conclusion that almost any
market excess demand function is possible, so that the motion determined
by equation (D) may be as unstable as one likes.

If demand functions are defined using the permanent income hypothesis, then
differential system(D) is globally stable and there is a unique equilibrium.
This price stability must be thought of only as short-run stability, for
it is appropriate to think of the marginal utility of money as fixed only
in the short-run.

One can imagine that each consumer adjusts his marginal utility of
money slowly in response to the difference between expenditure and income.
If one makes this assumption, one obtains a long-run adjustment process.
This process méy be unstable. In fact, an analogue of the Sonnenschein,

Mantel, Debreu theorem applies to it. I prove this fact in another paper [11].



In part IIT, T point out that the permanent income hypothesis justifies
the use of consumers' surplus. That is, if consumers' marginal utilities
of money are constant, then changes in the sum of expenditure and
consumers' surplus measure changes in a weighted sum of consumers’
utilities. This fact is, of course, nearly obvious. The point is that
one can defend vigorously the use of consumers' surplus provided the
permanent income hypothesis is appropriate. It is appropriate only when
the price changes involved are viewed by consumers as temporary. Also,

the changes must not sharply reduce consumers' holdings of liquid assets.

Part I: Stationary Equilibrium

Stationary equilibrium inevitably involves the use of an infinite
dimensional commodity space. In stationary equilibrium, prices and
allocations depend on the infinite history of past values of an exogenous
stationary random process. If this process is not periodic, it has a

continuum of possible histories.

The use of an infinite dimensional commodity space makes stationary
equilibrium a somewhat technical subject. Notation and definitions are
introduced in the next section. Assumptions are listed in section 2, and
the theorems are listed in section 3. In section 4, I discuss certain
assumptions. Related work is discussed in section 5. The proofs follow.
These are in large part routine, given knowledge of Debreu [17] and

my own paper [9].



I.1 Definiticns, Notation and the Model

The Underlying Stochastic Process

The exogenous stochastic process is denoted by {sn}: _ .
- =

It influences utility functions, endowments, and production functions.

(Doob [19] is the reference used for stochastic processes.) The random
variables, I take values in some measurable space (M,”) , where M is

a set and m 1is a g-field of subsets of M . The sample space of the
process is S = {(...,s_l,so,sl,...) | sne M , for all n} . s denotes

an element of S and s denotes the nth component of s . The set of all
measureable subsets of S 1is denoted by ./, and P denotes the probability
on o . o 1is the smallest -complete o-field such that all the random
variables s are measureable with respect to o/ . Sets A ¢ ./ such

that P(A) =0 are called sets of probability zero. An event occurs almost

surely or for almost every s 1if it occurs for every s except for points

s belonging to a set of probability zero.
E denotes the expectation operator corresponding to P . That is,

if X : 5 4 (-»,0) is integrable with respect to P , then E X =‘FX(s) P(ds) .
Jh denotes the smallest complete g-field with respect to which the

random variables Sy 9 k = n , are measurable. C(Clearly, g% C .

Jh represents the information available in period n to an observer of

the process.

Let ¢g:S+4S be the shift operator, defined by the formula

os)_ = s . s_} is stationary if and only if ¢ is probability
)n 0l n i i if and only if i babili



preserving. That is, ¢ must satisfy P(c B) = P(B) , for every
B¢ A measurable set B 1is said to be invariant if P(B)

=P(BNoB) . A stationary process is said to be metrically transitive

if every invariant set is of probability 0 or 1. Metric transitivity is
often referred to in probability theory as ergodicity.
I will assume that the process {sn} is stationary and metrically

transitive.
Commodities

There are L types of commodities. Lc C:{l,....,L} denotes the set of
consumption goods. Ib c{1,....,L} denotes the set of primary commodities,
such as labor and raw materials. Capital equipment should also be

thought of as a primary good. Lp ={k =1,...,L | k¢ L } denotes the

set of producible goods. Goods not in either Lc or Lo should be

thought of as intermediate goods or goods in .process.

Vector Space Notation .

Le
RL denotes L-dimensional Euclidean space. R denotes the
L LC L
subspace of R~ corresponding to Lc . That is, R ={x €R l % =0
Lo L
P
if 1(% L.} . R and R are defined similarly.

L L(S’Jh’P) denotes the space of equivalence classes of functions
)
from S to RL which are measurable with respect to gh and are essentially
bounded. £ :S-bRL is said to be essentially bounded if for some

r>0, P {s ‘ | £(s)li >r} =0 . The equivalence relation is that of



almost sure equality. That is, if £ =S RL and g: S - RL are
Jn-measurable and essentially bounded, then f and g represent the

same element of ;ﬁ@ L(S,J_I,P) if f(s) = g(s) for almost every s
3 L

:&1 L(S,,;./H,P) denotes the space of equivalence classes of functions
2
from S to RL which are Jn-measurable and integrable with respect

to P .

ico,Lc(S’Jn’P)’ {m)Lp(S,Jn,P) and :gw,Lo(S’Jn’P) are the subspaces

of im,L(S”}n’P) corresponding to Lc’Lp and L0 ; respectively,

If x ¢ RE , then "x =0" means "xk =0, for all %k ."

"x>0" means "x=2z0 and x #0." "x>0" means "Xk>0’ for all

k." R_I*"_ denotes- {ngL['xgc_)} , and RE’ denotes - R_I;_ . If X€RL s

then x+e R_I;_ is defined by x: = max (O,Xk), for all %k .

If xeiq L(Smln,l’) , where q =1 or », I write "x=0" if
>
x(s) = 0, for almost every s . I write "x>0" if x=0 and x # 0.

I write '"x>>0" if =x(s)>>0, for almost every s . Finally,

"x(8) >> 0" means '"there exists a positive real number r such that

xk(s)zr almost surely, for all k .

+ ) +
Ze,1, (S5 sP) denotes {xé;ﬁ@ L(S,,ﬁn,]?) | x=0} . L LC(S;Jn;P) s

J 2

, + + . -
ieé,Lo(S"’on’P) and il,L(S,Zrn,P) are defined similarly.
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1f x€s (S, ,P) and p€z, (S, ,P) , then p-x denotes
o, L n ) n

L

2 fpk(S)xk(s)P(dS)

If xéiq L(S,,,Pn,l’) , where q =1 or e , then o'mx is defined
s .

by cmx = X(o‘ms) , where g 1is the shift operator on S . C(Clearly,

Consumers

There are 1 consumers, where I 1is a positive integer.
. . . +
The endowment of consumer i 1is determined by wiE£ Lo(S,,,PO,P)
@,

L,
n o | \ .
(Ui(c s) € R+ is his endowment vector at time n . Note that consumers

are endowed only with primary goods.

The utility function of consumer i for consumption in period zero ig

L. .
ui“: R+ ¥ S+ (~@,o) . I assume that u, is measurable with respect

Lc

to B@-JO , waere B is the Borel g-field of R+ and B@JO is the
product g-field generated by 5 and JO . The utility function for
period n is ui(x,o-ns) .

Utility is additively separable with respect to time and satisfies

- + :
the expected utility hypothesis. That is, if x € £ ($,» ,P) , for
n o, Lea n

n =1,...,N, then the total utility to consumer i of the bundle

N
z Urui (x_(s) ,os) P(ds)

(xl,...xn) is o1
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There are J firms, where J 1is a positive integer. The production

function of firm j is gj: R% % S Rip. I assume that gj is

measurable with respect to Bcagﬁ_, where B 1is the Borel g-field on

R™ . gj defines the technology at time zero for transforming inputs

at time zero into outputs at time one. The technology at time n is

defined by gj(',cns) . Inputs Yo at time n may be transformed into

outputs y, at time n-+1 when the state of the world is s , if and
only if y1§ gj(yo,gns) . Inputs carry a negative sign and outputs a
positive sign.

Firms are owned by consumers. Consumer i owns a proportion eij

of firm j , for 1i=1,...,I and j=1,...,3 . 0= eij =1, for
I
all i and j, and iél eij =1, for all j .
The Economy _

The economy is denoted by & . It is described by the list

{ (ui,wi), gj 5 eij :i=1,...,1 and j =1,...,J 1.

Allocations

A consumption program for a particular consumer is of the form

1
(xo,x 5-++.), wWhere xnezgi L (S,gh,P) , for all n . The consumption
IHe ’

L
n c
vector at time n determined by this program is x (s)e;R+
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A stationary consumption program is a program such that

x* = ox , for all n , where ><€;£; L (S,JB,P) . Such a program is
2
c

denoted simply by x

A production program is of the form

-1 ,0 0 1 1 -1
(v 5 (g0 990 (s y9)5-02), where y =€ f@:Lp(S’ L
n n
and (YO) y].) es{'m,L(S,JD,P) X £CD,L (S}JH}P) 2 for néo .

The program is feasible fer firm j if yg = 0 and y;(s) = gj(yg(s),s)
almost surely, for all n = 0 . The input vector at time n 1is yg(s) s
and the output vector at time n+1 is y;(s) . Notice that this

definition of feasibility implies free disposibility.

A stationary production program is a program such that

-1 -1 n n n n
y;0 =0 ¥y and (yo,yl) = (o Y920 yl) , for n = 0, where

(yOI’yl) € iﬁgL(S’ab’P) Y:£a,Lp(S’Zﬁfp) . Such a program is denoted

simply by (yq,¥;)

An allocation for the economy & 1is of the form

I J _,.0 1 . .
( (xi)i=1’ (yj)j=1 ) , where each Xy (xi, xi,....) is a consumption
_ -1 0 0 1 1 .,
program and each yj (yjl’ (yjo, yjl)’ (yjo, yjl), ..... ) is a
production program feasible for firm j . ((xi),(yj)) is feasible if
L n I n J n n-1
= > + =
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I
A stationary allocation is denoted by ( (x.) ,{(y.,»¥..) ) >
1o jo i1

where each X, is a stationary consumption program and each

(yjO yjl) is a stationary production program. The allocation is
)
I I J

-1
feasible if Zx, =2 w, + 2 (y.n T o V.q4) -
j=1 & g=1 b gmp 3O it

The Assumption of Full Information

There is an assumption of full information implied by the definition

of allocation. Presumably, agents have enough information to choose the

bundles determined by an allocation ((xi); (yj)) . At time n ,

n- 0 1 . X
consumer i chooses X (s) , where X, = (xn > X seess) 5, and firm j

-1 0 0 n n n-1
= ). . 11
(le’ (ij’ le),-- ) Xi’ ij’ and le are a

chooses Y?O ; where yj,

measurable with respect to gh . That is, they depend on possibly all the values

of Sy for k=n . 1In order to make such choices, the agents should

know for k=n . That is, they should have full information.

Sy 7
In stationary equilibrium, the information requirements are less exaggerated

since prices reveal information. I discuss this matter in section I.4.

Pareto Optimality

A feasible allocation ((xi), (yj)) is said to be Pareto optimal

if there exists no feasible allocation ((Ei), (yj))such that

N
-1 n

lc . f N Z r\ - n .

Nif;ln nZo | [ui('ii (s),s) ui(xi(S),s)] P(ds) = 0 , for all i ,

with strict inequality for some i . Observe that Pareto optimality is
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defined in terms of long-run average flows of expected utility.

Prices

I define cnly stationary price systems. A price system is simply

a non-zero element, p , of L; L(S,;b,P) . The vector of prices at
J

time n defined by p is p(gn s) € Ri .

If x ¢ £§ L(S’JB’P)’ then pr'x 1is the long~term average financial
P4
flow determined by p and x . That is,

N
_lim -1 n n .
pP'x = No e N nél P (g s) x(c s) , almost surely. This fact follows

from the strong law of large numbers. The strong law of large numbers
spplies since {sn} is étafionary and metrically transitive. (See

Doob [19], p. 465.)

Profit Maximization

Given a stationary price system p , each firm chooses a stationary
program so as to maximize its long-run average flow of'profit. If
the price system is p , the average flow of profit from the stationary
program (yo,yl) is p-(yo + O~ly1)

The set of stationary programs feasible for firm j 1is
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Y= (G € B 1 (SsefsP) xrj,m,Lp(S;Jl;P) | 792 0 and y ()= g(y,(s),9)
almost surely}. Therefore, the problem of firm j is
max {p (v, + o 1y | (rgyp) €Y, -
o % 7i 0’71 j

ﬂj(p) denotes the set of solutions to this problem. nj(p) denotes the
. . . . -1
maximum profit flow. That is, nj(p) =p (yo + 5 yl) s

where (yo, yl) € ﬂj(P).

It is easy to see that if (yo,yl) € ﬂj(p), then the infinite

horizon program Qj-ly 5 (yo,yl), (gyo,gyl), ..... ) solves the problem

lim sup N

1N
z
N4 e n=

max { BECORE (yg(S) + y;-l(s)) P(ds) |

(yzl, (yg, y?),....) is a program feasible for firm j }

Thus, a program in ﬂj(p) maximizes firm j's long-run average flow

of expected profit.

Utility Maximization

Given the stationary price system p , consumer i's stationary
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J
éleiJﬁJ (P)} °

budget set is Bi(p) ={x € L, 1 (S,db:P) ] P'X = piwy +J
‘c

His maximization problem is

max {’Jqui(x(s),s) P(ds) ‘ X € Bl(P)} .

§i(p) denotes the set of solutions to this problem.
If x ¢ gi(p) (and u satisfies assumptions 1I1.2.5 and I.2.6

below), then the program (x, ox, gzx, ....) solves the infinite

horizon maximization problem.

N
-1 +
max {lim s N 2 [ u, s),s) P(d X
{ up Lz uln(xn( ),s) P(ds) | n €-£,,LC(S,;%1P),for all n,

. N
and lim sup N-l'Z P(On(s)-(xn(s) - wi(gns)) = 0, almost surely}
N e n=1

That is, every x € gi(p) maximizes the long-run average flow of utility,
subject to a long-run average budget constraint. This fact is easy to
prove. The proof uses Fatou's lemma (lialmos [27], p. 113) and the following

fact. If x ¢ gi(p) , then there exists a positive number Ki , such that for

almost every s , ui(z,s) = ui(x(s),s) + Ki p(s)*(z - x(s)) , for every

zeRié )

That is, consumer 1's behavior satisfies the permanent income

hypothesis.



I.1.1)

1.1.2)
1.1.3

1.1.4)

Stationary Equilibrium

A stationary equilibrium for 4 consists of ((xi), (yjo,yjl), p), where
((Xi)’ (yiO’yjl)) is a feasible stationary allocation,

p 1is a stationary price system,

(on’ le) G T‘j(P) 2 for all j ) and

X, € gj(p) , for all i .

A stationary equilibrium with transfer payments consists of

((Xi)’ (y.o, yjl)’ p), where these satisfy conditions TI.1.1 - I.1.3
j .

above and the following condition.

1.1.5)

For each 1, X solves the problem

max { I ui(x(s);s)- P(ds) l X € ;é:’LC(S,;h,P) and p'x = Px, }

The flow of transfer payments made by consumer i is

P,

+

™M G

eij ﬁj(p) - P.Xi

j=1

Associated with any stationary equilibrium with transfer payments

are marginal utilities of money, Kl,...,KI . xi , the marginal utility

of money of consumer i , is the multiplier associated with the budget

constraint in I.1.5.



1.2)

mentioned.

1.2.1)

1.2.2)

I.2.3)

1.2.4)

I.2.5)

I.2.6)

18

Assumptions

I list below all the assumptions I use. Some have already been

The Stochastic Process

-}
{sn} - is stationary and metrically transitive.

Non-Triviality

Lo # 0, Lp #0 and Lo F¢. I =1 and J=1.

Consumers

+ .
w3 € :{gt'L (S:J »P) ;, for all 1
-y ' ’

o}
. Le
For all 1 , u, t R xS (-»,w) 1is measurable with

L
respect to R R yb , where PR 1is the Borel g-field on R+F

For each 1 , ui(x,-) : S+ (~e, @) 1is integrable,for.
L
each x ¢ R,
~ + .
Lc
For each i and every s , ui(s,s) R4 (b=, )  is

continuous, concave and weakly monotone.

By weakly monotone, I mean that ui(x,s) >»ui(y,s) whenever

X>>y .
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Firms

L
1.2.7) (Measurability) For each j , gj = R? ¥ S 4_R+p is

measurable with respect to £ 9 g& , where #~B 1is the

Borel g-field on Rf

Assumptions I.2.8 - 1.2.11 below hold for all j and s

1.2.8) (Convexity) Each component of gj(yo,s) is a continuous

concave function of Yo -

1.2.9) (Free disposability) Each component of gj(yo,s) is

monotonely non-increasing with respect to Yo -
©1.2.10) (Constant Returns to Scale) gj(t5b,s) = tg(yo,s) , for all t =0 .

1.2.11) (Necessity of Primary Inputs) gj(yo;s) =0, if Yor = 0,

for all k ¢ Lo

Lipschitz Condition

1.2.12) There exists K > 0 such that for all s and j ,

g_(yo,s) is a Lipschitz function of Yo with constant K .
]

That is, || g;(y5.8) - gJ.(?O,s)H_ K| y,~-Yy) , forall j and s

This is a technical assumption which is used to prove that production
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sets are closed. (It is used in the proof of lemma I.7.2.) It is

intuitively reasonable, but excludes the convenient Cobb-Dcuglas production

function.

Boundedness

The next assumption guarantees that the set of feasible

stationary allocations for the economy is uniformly bounded.

1.2.13) There exists g: R% - Rip such that gj(yo,s) = g(yo) R

for all Yo and s , and g satisfies assumptions

1.2.8 - I.2.11

Adequacy

The last two assumptions guarantee that no consumer would have
a zero income in an equilibrium. I call these assumptions the adequacy
assumptions. The need for adequacy is a well-known problem in
equilibrium theory. The adequacy assumptions seem always to be the most
awkward part of any equilibrium existence theorem. The theorem of this
paper is no exception. Roughly speaking, my assumptions guarantee that
any consumer's endowment makes possible a stationary production program

for the whole economy which produces a positive amount of every good.



T1.2.14) w; P> 0, for all i

This means that each consumer is endowed with every primary good.

3 = £
Recall that Yj {(5g:5,) € QE,L(S,JO,P) X

Yo = 0 and yl(s) = gj(yo(s),s) almost surely 1

+
1.2.15) There exist € £ L (S,,_JO,P) and
Q, o
n n . - _ .
(yjo,’yjl) € Yj , for 3=1,...,3 and n =1,...,N
J n 1 n-1
. - -1 _
i) JZ_.I (Yj0+0' le)"‘u)éo: for n =1,...,N,
J
1 N
ii) there exists a positive number r Such that

J

Strong Monotonicity

ol ,LP(S:J].,P) l

e
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such that

1 -1 N
jél (ijk(s) + g yjlk(s)) = r almost surely, for all

kel

In one theorem, I make use of the following strengthening of the

monotonicity of utility assumed in 1.2.6.

1.2.16) For each i and every s , ui(',s)

strongly monotone.

: R

L

C
+

4 (~e,n)

is

By strongly monotone, I mean that ui(x,s) > ui(y,s) whenever x> vy .
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I.3) Theorems
I assume that assumptions I.2.1 - I.2.15 apply.

1.3.1) Theorem There exists a stationary equilibrium.

1.3.2) Theorem Let Kl,....,XI > 0 . There exists a stationary
equilibrium with transfer payments such that for each i
Ki is the marginal utility of consumer i 1in the equilibrium.

1.3.3) Theorem The allocation of any stationary equilibrium with
transfer payments is Pareto optimal.

1.3.4) Theorem Assume that the strong monotonicity assumption applies
(I.2.16) . Then, any Pareto optimal stationary allocation is
the allocation of a stationary equilibrium with transfer payments.

Theorem 1.3.2 expresses better the intuitive notion of stationary
equilibrium than does theorem I.3.1 . Stationary equilibrium is a way

of visualizing what happens in a reasonably stable economy over a period

of, say, one year. It is essential to this image that the marginal

utility of money of each consumer be constant. It does not really

matter whether consumers exactly balance their budgets.

an

The constancy of the marginal utility of money is, of course,

idealization. I think of each comsumer as continually, but slowly,

adjusting his marginal utility of money in his attempt to control his

finances. It is the slowness that is important. The effect of theorem

1.3.1 is simply to reassure us that indeed all consumers could simul-
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taneously have just the right marginal utility of money.

I.4) Discussion of Assumptions

Information

I have already pointed out in section I.1 that I implicitly assume
full information. However, a careful analysis of stationary equilibrium
shows that agents do not necessarily need an exorbitant amount of
information in stationary equilibrium.

Consider a consumer. If his utility function is strictly concave,
than one can think of him as needing to know only current prices and
the current state of his utility function. For let p be a stationary

equilibrium price system and let Ki be consumer 1i's marginal utility

of money. 1If ui(-,s) is a strictly concave function, then there

is only one point =x(s) € R ¢

+ satisfying ui(z,s) = ui(X(S);S)

L

+ kip(s)‘(z -~ x(8)) , for all =z ¢ R+é

x(s) 1is the demand of consumer i when state s occurs. Clearly,
x(s) 1is completely determined by ui(-,s), p(s) and Ki . Of course,

Xi must be such that the consumer satisfies his long-term average

budget constraint. If the consumer were to calculate this constraint,
he would have to know the entire joint distribution of u,(s,s) and

i
p(s). However, one can think of the consumer as having found the

appropriate level of Ki by trial and error.
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A firm's problem is more difficult, for it must predict the future
behavior of prices in making decisions. Let p be a stationary

equilibrium price system and iet (yo,yl) € ﬂj(p) . Then for almost every

s 5 ¥5(s) solves the problem.

max [p(s) "y + EGIp(-) g, (yps ) | £p) (9)]
Yo 1

In this expression, E (° [ ﬁh) denotes expectation conditioned on

Jy -

(This concept is defined in Doob [19], pp. 15-20.) Thus,

firm j needs to predict its own production function and the prices of
its outputs. Presumably, the firm knows the probability distribution

of its own precduction function. The problem is whether it would be

able to predict the prices of its outputs. (Its prediction must be

as good as that of anyone else in the economy.) This would be nearly the
case in the following situation. Imagine that random variation is

of two sorts, generalized (e.g., weather) and specific to‘individual
agents (e.g., machine breakdowns). Suppose that all agents have the same
information about generalized events and that the variation specific

to an individual is statistically independent of all other forms of
variation. Then, if there were a great many individual firms and
consumers, the variation specific to an individual would have a
negligible effect on prices. Only information about generalized events
would be relevant for price prediction, and this information weuld

be available to everybody.



Malinvaud [32] has made the distinction between variation specific
to individuals and generalized variation. He pointed out its relevance
to the theory of insurance and to the Pareto optimality of profit maxi-

mization.

Separability of Utility

A fundamental assumption is that utility is additively separable with
respect to time. This assumption perhaps makes sense in the context*”
of models of growth theory, where time periods are years or generations.
It is hard to defend in the context I have in mind. If time periods
are short, consumption in one period should affect appetites in immediately
following periodé. (This point was made to me forcefully by Christian
von Weizslcher.) It makes more sense to suppose that the current
flow of utility depends on current and past consumption. If this is so,
a consumer might prefer a non-stationary program to any stationary

one. I have not studied this problem in detail.

Ownership of Capital Equipment

It may seem strange that firms have no endowment, for I assume
that capital goods are not producible and so are part of the economy's
endowment. These goods are presumably owned by firms and cannot be
exchanged, at least not in the short-run. However, it is possible to

interpret my model in such a way that particular capital goods are



26

assigned to particular firms.

Suppose that we wish to assign the bundle wj of capital goods to
firm j , for each j . First of all, it is necessary to label these
goods not only by their physical type but by the label j of the firm
to which they are assigned. Thus, w; would belong to a subspace of
the commodity space which pertains only to firm j . The production
funcfion of each firm must be so defined that it can use only capital
goods with its own label. Finally, the bundle eijwj must be made
part of the endowment of consumer i , for each i . That is, the
endowment of each firm is assigned to the firm's owners. In stationary
equilibrium, each firm would rent its capital equipment from its own
stockholders. These rents may be thought of as the profits of the
firm in the ever§ day sense of the word. Since I assume constant returns
to scale, the stockholders would receive no income from firms other

than these rents.

Constant Returns to Scale

The assumption of constant returns to scale has the disturbing
consequence that the scale of output of a firm is not determined by
prices. However, if capital goods are fixed in“the way I just
described, then the output of each firm could indeed be completely

determined by prices.
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Intermediate Goods

Technologies have been defined as if all production processes
required only one period. However, it is possible to represent multi-
period production processes cimply by appropriate labeling of commodities.
For instance, if a wine must age, then a one period old wine would be
a different commodity than a two period old wine. One period old wine
would be transformed into two period old wine. This observation has
often been made in the literature on intertemporal models.

Intermediate goods may be just as specific to a certain firm as
are capital goods. Just as in the case of capital goods, this aspect
of reality may be modeled by appropriate labeling of commodities and

definition of production functions.

Production of Capital Goods

I assume that capital goods are an endowment, even thouéh in reality
they are continualiy being produced and replaced. It is perhaps
appropriate to assume that the total stock of capital goods is fixed over
a short period of time. It is not realistic to assume that none are
produced. One could introduce an exogenous demand for capital gocds.
These goods would simply disappear, once produced. Their production would
be financed by transfer payments from consumers., The stationary
equilibrium prices would elicit the precduction cf these goods. All this
is easy to do. The only subtlety is that the demand for capital

goods must be included in the adequacy assumption.
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Another awkward part of my model is the sharp distinction made
between capital goods, which are in fixed supply, and other goods used
in production. 1In reality, of course, goods used in production exist
in a spectrum of durability. There is no way of avoiding this difficulty,

if one is to retain the simplification offered by the permanent income

hypothesis.

Intertemporal Production

My representation of production is extremely simple in that output
is entirely determined by inputs and the state of the world. I give firms
no possibility of choosing among techniques. They cannot modify their
production methods so as to produce more or less of various types:of
goods, given a fixed inp;t. Moreover at time n , a firm is not able

to trade off more output in some states s against less in other

n+l
states, unless this trade off is affected by the choice of inputs.
(In [38], Radner gives firms both types of choice.)

My production functions in fact represent techniques. It is
possible to use my model in order to represent an economy in which firms
have many techniques, as long as they have only finitely many. It is

sufficient to label the techniques as distinct firms. These artificial

firms would share the same stockholders and capital equipment.

Free Disposability

I assume free disposability and make a good deal of use of it.
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(See, for instance, the proof of lemma 1I.7.15.}) The assumption is
contained in I1.2.9 and in the definition of a feasible production
program (section I.1). This assumption is particularly disturbing

in a model representing short-run activity. It says that unused goods
never get in the way. However, as always in equilibrium theory, free
disposability could be dropped if sufficient monotonicity were postulated.
Suppose that every gocd is always useful in consumption or can always be
used to produce some good useful in consumption. Then, every good

would have a positive price in stationary equilibrium and so would

never be disposed of. Thus, free dispcsability need be assumed only
hypothetically in the middle of proofs. For instance in proving existence
of stationary equilibrium, one could use free disposability in order

to obtain an equilibrium-and then at the end show that the assumption

was not necessary.
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I.5) Review of the Literature

From a technical point of view, a stationary equilibrium is simply a
general equilibrium in the usual sense, except that there are infinitely
many commodities. This fact is made clear in the next section. Thus,
stationary equilibrium is simply an interpretation of general equilibrium,
just as the Arrow-Debreu model of equilibrium with contingent claims is an
interpretation of general equilibrium. (The Arrow-Debreu model is describ-
ed in [4] and in [17], chapter 7.)
| General equilibrium with infinitely many commodities has been studied
by Debreu [16], myself [9] and Stigum [48,49]. Debreu proved that equili-
brium is Pareto optimal and that a Pareto ;ptimum is a quasi-equilibrium.
In [9], I proved that if the commodity space is £, then an equilibrium
exists with prices'inﬁﬁl. Stationary equilibrium may be viewed as a in-
terpretation of the equilibrium in [9]. Stigum proved that equilibria
exist and are Pareto optimal, and that a Pareto optimum is a quasi-equili-
brium. However, he assumed that there are countably many commodities. In
stationary equilibrium there are either finitely many or a continuum of
comnodities. Therefore, one cannot use Stigum's results to prove the existence of
stationary equilibrium.

My work is related to much work on the interpretation and extension
of equilibrium theory., 1In section I.4, I pointed out the relevance of
Malinvaud's work [32]. My work is related to work on rational expaectations
and temporary equilibrium. Statiomary equilibrium is, in fact, a form
of temporary equilibrium with rational expectations., The first work on

equilibrium with rational expectations is by Radner [37]. Grandmont [25]
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has surveyed the large literature on temporary equilibrium.

In temporary equilibrium theory, it is assumed that consumers

face a different budget constraint in every period. There is no
permanent income hypothesis, so that equilibria are not necessarily
Pareto optimal.

In Radner's rational expectations equilibrium in [37], different
agents could have different information. One can imagine that those
in ignorance could use prices to surmise the information learmed by
others. (In [37], Radner assumed that agents did not use prices in
this way.) 1If agents do use prices to obtain information, then ration-
al expectations equilibria may not exist, as examples by Green [26] and
Kreps [31] show. Radner [40] and Allen [2] prove that equilibria
exist generically, The literature on information revealing prices is
large. A very incomplete list of references includes Futia [23],
Jordan [30] and Radner [39].

The idea of rational expectations has appeared in many branches
of economics. Shiller [45] surveys applications in macroeconomics.
Muth [36] invented the concept of rational expectations.

There seems to be a prejudice within the economics profession
that rational expectations and symmetric information imply optimality.
This idea finds expression in growth theory, when optimal programs are
characterized by separating prices (as in Dana [15] and Evstigneev [21]).
The optimal programs can be interpreted as competitive equilibria for

an economy with many identical consumers, who have rational expectations. The
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present paper seems to be the first in which the connection between
Pareto optimality and rational expectations is made clear in a model
with diverse consumers.

Similarly, the idea that consumers are to some extent self-
insuring seems to be very old, though I have never seen it expressed
formally.

I have already pointed out that a stationary equilibrium becomes
a golden rule program if there are only one consumer and one firm. It ié,
of course, not at all appropriate to use equilibrium theory in order to study
study the golden rule, for equilibrium theory is inherently much more
difficult than the theory of the golden rule. However, the models
used in the theory of stochastic growth models ressemble my own.

The first work on multi-sector stochastic growth models seems to
be that of Radner [38]. Dana [15], Evstigneev [21] and Jeanjean [29]
have also made contributions. Dana, Evstigneev and Jeanjean all
addressed larger and more difficult issues that the existence of
golden rule programs and their characterization using prices. They
provedthat there exists an optimal infinite horizon program, starting
from given initial conditions, and that this program converges to an
optimal stationary program. Brock and Mirman [13] solved these same

problems for a one sector model.



1.6) The Two Period Economy

In this section, I show that a stationary equilibrium for the
economy £ 1is equivalent to a general equilibrium in a two-period
economy é‘.o .

50 is defined as follows. The commodity space is

v (S,2,:P) « £ (S,%,3P) . The consumption set of each consumer is
m;L O eg;L 1

+
) (S;0,5P) x {0} €2 _(S5,7,,P) X £ (S, #,P) . The utility
@ L, - ,L°7770 =L 1

0 +
function of consumer i , U, : # (8, ,P) x {0} + (-m,®) , is
i %L 0

c
defined by U(i)(x,O) = Jr’ ui(x(s),s) P(ds) . The endowment of consumer

i is (w.,,0) € # (S8,/.5P) ¥ 2 (8,.,P) . The production possibility
1 o ;L ',ﬁJL 1

set of firm j is Yj = {(}’0:}’1) E;’@’L(S;J »P) % :fm,Lp(S’Jl’P) \

yo £ 0 and yl(s) = gj(yo(s),s) almost surely } . An artifical

production set Y0 is introduced. Y0 = {_(yo,yl) € £@,L(S’JO’P) x.:vg,Lp(S,,jl,P)\

Yo = -c-lyl} . Y0 represents the imaginary process of tranferring

goods backwards or forwards through time to the same state of the world.

-1 17 =
I let eiO =1 , for ail i . In summary, &'0 =

0 . .
{Ui; (mi;o), Yj s eij :i=1,....T, j =0,1,....,7}

. . - I J
An allocation for 20 con51:sts of ( (xi,O)i=1 , (yjo’y'l)'=0) ,

+
where (xi,O) e;{’,m"Lc(S,J »P) x {0} and (ij’yjl) e Yj , for all
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I
i and j . This allocation is feasible if iél(xi,O)

I J
z )

' ) + +
A price system for 50 consists of (po,pl) € i& L(S,;b,P) X'£1 L (S, ,P),
J : )
P

such that (po,Pl) >0 .

1f (pO’Pl) is a price system for @0 , then the supply correspondence
of firm j is T0(pyp.) = {(y.5y) € ¥ | Py * PyVy B PaYy T PT
107 -270° 1 j 070 171 = %70 171°
for all (yo,yl) € Yj} . ng (po,pl) denotes the maximum profit of
. . . 0 - " . 0
firm j . That is, nj(p0>p1) Py¥g t Pyyy 5 for (yo,yl) € ﬂj(po,pl)

+
The budget set of consumer i is Bg(po,pl) = {(x,0) E;{a L (S,gb,P) ¥ {01]
- 2
) c

J
0 .
Py'¥ = po-wi + j;O eijnj (po,p1)1 . The demand correspondence of consumer i

. 0 _ 0 0 0,=
is £.(pyspy) = {(x,0) € B, (pyp)) | U (%,0) = U/(X,0), for all
-~ 0
(x,0) € B (pyp) 1
An equilibrium for £, <consists of ( (x O)I (y. 5y )J (p~sP,) ), where
q yo ~ i) i":l jOJ j].j=0 J O} 1 2

(1) ( (xi:o): (ij’yjl) ) 1is a feasible allocation for éo 5

(11) (po,pl) is a price system for ﬂo s

. . 0 .
(1ii) (ij’yjl) ¢ ﬂj (po,pl) , for j=0,...,J, and

0 .
(iv) (xi,O) € gi (po,pl) , for i=1,....,I
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I now show that to every equilibrium for 50 , there corresponds

a stationary equilibrium for & . It is easy to show that the reverse
relation applies.
Let ((x O)I (v..¥ )J (PhsP )) be an equilibrium for
i’77i=1’ jo’“3173=0" 0'°1
. S — J
éo . I show that there exists (ij’yjl)j=1 such that
( (x )I (Y.nsY )J P, ) 1is a stationary equilibrium for ¢
i’i=1 ’ jo’’3173=1 ’ o ¥

) ey

Since (yoo,y01 e Y,

, it follows that
-1 ,
Y Yol—z— yOO * (1.6.1)

. -1 < .
Since (-g yOl,y01) € YO and 0 = Py Y00 + pl'yOl

max {po Yg +p ¥y ] (yo;yl) € Yol s it follows from 1I.6.1 that
_ -1
0 =pyr (0 "y51 = Yoo - (1.6.2)

Let (37'00,?01) = ('0_15'01’5’01) - Clearly, (yy5:¥q)) € ﬂg (Py:Py)
Let (7107 = Gip + 0 Vo1 *+ Y000 I10)
I1.6.1 implies that (ylo,yll) € Yl’ since Y1 satisfigs
free disposability (assumption I1.2.9) . I.6.2 implies that
107,y €M (Bgspp)
If j>1, let (Sr'jo,?jl) = (yjo,yjl)

I J
- = . . censib 1 .
I now show that ( (Xi)i=1 ’ (ij’yjl)j=l') is a feasible allocation
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f ¥l Since ( ( )I ( )J ) 1is a feasible allocati f
or 8 %) =17 ij’yjl =0 easible ocation for
50 , it follows that

I I 3 3
127 T ad o F gLy vy and 0% LGBy vy

From the definition of (yjo §j1) , it follows immediately that
2

I I J J
= + v = v . .0.
121 %1 Tk o Lo Yy 24 07 BTy (1.6.3)
Also, by the definition of (§00’§01) s
o=ty (1.6.4)
Yoo = ° o1 ° o
, - J
1. - . -— —_ 7! —
The second equality of (I.6.3) implies that Y01 jélyjl .
T
. .- o s — .
Using (1.6.4), I obtain Y50 19 Vo Hence by the first
I I J L
ti = . v
equation of (I.6.3), 2% Tl ot jél(yjo +o le)
T - — J . . .
: is a feasible allocation for &.
I next show that Py = Py for all k ¢ Lp . Suppose that

for some k ¢ Lp ; P{ses \ p1k (s) < pOk(os) 1>0 . Let
A=1fses| P13 (8) < Ppy (08) 1 and let (§0,§1) € Y, be defined by

| -1 , if se¢A and m=k
ylm(s) -

0, if s ¢A or m#%k, and

~ _11\

YO el Yl
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Then, po"};o + pl.;’l = { (Pok(O‘S) - Plk(s) ) P(ds) >0 .

. . - = 0
Since Y0 is a cone with apex zero and ()O,yl) € no(po,pl),

= «— [ WO + e . . . :
0 Py Yo + PLY; =Py ¥y TRV, - This contradiction shows
> ] . . .
that plk Z 0Py 7 for k € Lp A similar argument shows that

for k € LP . This proves that for k ¢ Lp.

P1y = OPgy P1x = OPgk’

It now follows that (po,pl) > 0 1implies Py > 0 , so that Py

is a price system for § . Also, if (yo,yl) € Yj , then
Po'Yg T P'y¥; =Py (¥ +o_1y ) . Hence, (¥.,7 )eﬂo(p P,)
0 -0 1 71 0 -0 i ’ j0, 31 Y01
implies that (§j0’§j1) € nj(p0\ , for j =1,...,3 . Similarly,
0 -, . .
(xiﬂn egi(po,pl) impliés X, € gi(po) , for all i . I have shown

I J . . R
that ( (Xi)i=l s (yjo; yjl)j=l’ Py ) satisfies conditions (I.1.1) -

(I.1.4) and so is a stationary equilibrium for @

I.7) Lemmas

In this section, I prove several lemmas, which allow me

to apply the results of [9] to the economy 2y

Closedness of Production Sets

= n !
Recall that ¥, {(yg-9) € 2, 1855 xiQ’Lp(S,Jl,P) \

1A

o = 0 and yl(s) gj(yo(s),s) almost surely } , for j =1,.. ..,
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I1.7.1) Lemma For 3 =1,....,J, Yj is closed in the weak-star tepology.

The weak-star topology is defined as follows. Observe that any element

p of il,L(S’Jh’P) is a linear functional on za,L(S’Jh’P)
The linear functional is defined by x p— p-x , for
X E:ib,L(S,Jh,P) . The weak-star topology on zgw’L(S,gh,P) is the

weakest topology such that each functional p € 2, L(S,gh,P) is
2

continuous. The weak-star topology on (8,.0,:P) » £ (S,,,P)
,L 0 w,L 1

e

is the product of the weak-star topologies on each of the component
spaces.

The proof of lemma I.7.1 depends on the following lemma.
L
1.7.2) Lemma Let Yo = S + R_ be measurable with respect to JO .
For each k =1,...,L , there exists an  integrable function
L ]
hk: § =+ R, which is measurable with respect to o/ and such that for
= + “(z -
almost every s €8S , gjk(z,s) = gjk(yo(s),s) hk(s) (z yo(s) ),

for all z ¢ R .

Proof. I apply the following measurable choice theorem of Aumann [7].
Let (T,yu) be a g-finite measure space, let X be a standard measure

space and let H be 2 measurable subset of T yw X whose projection on

T is all of T . Then, there is a measurable function h: T » X such
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that (t,h(t)) € H , for almost all t ¢ T .

I apply this theorem with T =§, X = R% and py =P .
The g-field on S is ;& . Any Euclidean space is a standard measure
space, as ic required by the theorem (see Aumann [7]). I let

B={ (50 €5 xR | £, (5,9) = g, (5)(),9) +x:(z - yp(s),

for all =z ¢ R% 1 . The projection of H onto S is all of S,

for by assumption I1.2.8 , gjk(z,s) is a concave function of =z ,

for all =z . 1In order to apply Aumann's theorem, I must show that H is
measurable with respect to uﬁ ® & , where R 1is the Borel g-field of
RL.

For each =z ¢ R% , let H(z) = { (s,x) € S ¥ R?>l
gjk(z’s) - gjk(yo(S),S) - x.(z - yo(s) ) =01 . H(z) is clearly
measurable with respect to ,ﬁ-g'ﬁ’, being the inverse image of the
interval (-e,0] with respect to an °ﬁ ® ~-measurable function. Also,

H =N{ H(z) l z € R? has rational coordinates } . Therefore, H is

measurable.

Thus, I may apply Aumann's selection theorem to obtain h : S ~ RL s

which is measurable with respect to ”ﬁ. and such that (s,h(s)) ¢ H

almost surely. By the assumption of free disposability (I.2.9) ,

h(s) = 0 almost surely. Let hk be defined by hkn(s) = min(hn(s),K),

for n =1,...,L, where K 1is the Lipschitz constant of assumption 1.2.12.
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It follows from this assumption that (s,hk(s)) € H alwmost surely,

Clearly, hk is Jl-measurable. Since it is essentially bounded,
it is integrable.

Q.E.D.

Proof of Lemma I.7.1 Let (yg, y:), a € A, be anet in
Yj or a generalized sequence, where A 1is a directed set. (See Dunford

and Schwartz [20], p.26, for a definition of generalized sequence.) Suppose

o
that (yo,y:) converges to (yg,¥,) €L, 1(SdgP) %2 1 (5:04,P) in
= ,
P

the weak-star topology. I must show that for each k =1,...,L, yik(s)

= gjk(yo(s),s) almost surely. It is sufficient to show that

< o B . I.7.3
£ ylk(s> P(ds) = £ ojk(yo(s),s) P(ds) , for every € Ji ( )

By the previous lemma, there exists hk : S 4 R% ;s which is integrable

and Jl-measurable and such that for almost every s , gjk(z,s)
) R . a
= gjk(yo(s),s) + hk(s) (z - yo(s)).. Substituting yo(s) for
z I obtain y (s) = g., (y2(s),s) 5 g. (y.(s),s) +h (s) " (yr(s) - y.(s))
? 1 = °3k707’T T 2ikY0 ? k 0 0 :

Integrating this inequality over B , I have I yla(s) P(ds)
B

= £ gjk(yo(S),s) P(ds) + £ hk(S) . (ygL(S) - yO(S)) P(ds)
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Since 1lim £ y?(s) P(ds) = £ yl(s) P(ds) , it is sufficient to prove that
@ .

im J;hk<s)-<y§<s> - y4(s)) P(ds) =0 (1.7.4)

Since yg converges to Yo in the weak-star topology of f{é L(S,J sP)
3

(1.7.4) would be obvious if B belonged to ./

o and hk were

Jb-measurable. But B ¢ #&, and hk is Jl-measurable. Therefore,

I must use conditional expectations.

L

Let f: S+ R be defined by £(s) = Ex,()h (-) | J) () ,

where XB is the indicator function of B defined by

1 ,if s e B
X =
B(S) 0, otherwise .

By the definition of weak-star convergence,

lim f f(s)'(yg(s) - yo(s) } P(ds) =0 . But,

I f(s)i'(yg'(s) - yo(s) P(ds) =E [ E( ,;B h, ] JOI)_ . (yg’ ] yo)]
TELE(xghy g m v [ 49 1 = (55 ) -y () @,

by the elementary' properties of conditional expectations (see

Doob {19], pp. 22 and 35) . This proves (I.7.4)

Q.E.D.
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Recall that Y, = {(yp:¥) €2, ; (S, F) xi?o,Lp(S,Jl,P) |
-1
= -
yo—- c yl}

1.7.5) Lemma Y, is closed in the weak-star topology.

0
Proof Let (yg,yi) , & € A, be a convergent et in YO with
1 ) (I,-A‘(L\ _ . . . .
im (yo,yl, = (yo,yl) . Because ¢ is measure preserving, it follows
o
~1 -1 -
that ¢ y? converges to ¢ yi - Hence, lim (-yg -0 ly?)
a
_ -1 R a -1 a .
= -YO - g yl . Since -yO - o yo = 0, for all o , it follows that
-1 .
-YO el Yl = 0 . That 1s, (YO}yl) € YO
Q.E.D.
Boundedness

The next lemma asserts that the feasible allocations of @O

are uniformly bounded. The proof of this lemmz depends on assumption

I1.2.13. Before stating the lemma, Y must define the appropriate norm.

L
If yeR", let \Y\ = max ]yk] . If y E;ﬁb’L(S,;h,P) , let
k

|y] = ess sup ly(s)[ = inf { r>0 : ly(s)\lé r almost surely } .
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Let Yj s, for j =0,1,....,J be as in the definition of 60 .

; = J
I1.7.6) Lemma Let @ ¢ £9,L(S’db’P) and let B { (ij’yjl)j=0 \
J ,
. ( .
(ch,:yjl) € Yj , for all j and j§0‘yj0,yj1) + (0,0) = 0}

Then, B 1is bounded with respect to the norm l'l .

I prove lemma I.7.6 by means of a sequence of lemmas which follow.
L

L
Let Y = { (y5y) €R xRP |y, =0 and y =38y },

where g 1is as in assumption I1.2.13.

1.7.7) Lemma Let t0 > 0 and t1 > 0 . Then, A = {(yo,yl) €Y ]

-t Sy , for all k , and

0 . for all kel , -ty=y

0 1k

‘Yol = \yll +tt 1 is bounded.

Proof 1If the lemma were false, there would exist a sequence

n n

n n s oy = T i n-1l_n n
(YO:YI) 6 A such that 11[11 ‘yl 1 T e . Let (Yo;yl) - lylﬁ (yo}yl)
jo s -]
_n.n n, -1 n n
Then, 1(y0,y1)1 s 1+ | yll t; - Hence, (yo 'Yy ) has a convergent

subsequence, which I index by n again. Let (?O,Vl)' be the limit.
Since Y, is a closed cone with apex zero, (§O,§1) € A . Also,

Y1

=0, for k ¢ L0 , and ?1 =0 and =1 . Hence, §1t>0

Yok =
even though there are no primary inputs. This contradicts assumption

1.2.11, as applied to g .
Q.E.D.
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Let Y = { (y,¥)) €2, 1 (5,4, xim)Lp(S;Jl,P) l

Yo = 0 and yl(s) = g(yo(s)) almost surely} . By assumption I1.2.13,

Y, cY, for j=1,....,J .

1.7.8) Lemma Given w € £@ L(S,B,PO,P) , the set A = {(yo,v ) € Y ‘
)

Yo + c—lyl + 9= 0131 1is bounded with respect to the norm l" .

Proof By lemma I.7.7, there exists T > 0 such that

\y1| sT if (yo,yl) € Y satisfies the following conditions:

for all k , and

A

-lw] = Yo? For 311 kel -l w] Yk

lyll + oo +1

<
_
!

Let (y0>y1) €A . Then, if k€L ,

[ wf

A

- -1 '
-wik(s) wik(s) c ylk(s) = yOk(S) almost surely (1.7.9)

If k € Lp , then

Y1:(8) 2 -y (09 - w, (08) = -u (o9) z ~|w| almost surely. (1.7.10)

Let S ¢ S be such that ly1(§)l = [yll - 1 and the following are true.

0= yO(E) + yl(g—]§) + @w(s) ; (1.7.9) and (I.7.10) apply to



(v5: 3,5, 5 9,

inequalities simply
(7555 vq

Also, 0 s -yl(E) =

INCIE

= |y (®)]

It follows from (I.

(3) = 0 ; and yl(E) = g(yO(E)) . The last two

assert that
(s)ie ¥
-1 _
Yl(c 5) + (%), so that

"1._ ! —_ ! 1 i 3
yil0 "D+ je®| syl Lo

+"wl+1

7.9) - (1.7.12) that iy1(§)i§ T , so.that

iyll = T+1 . Hence, {yoi = iyli +jw ST+ juf +1

]

Let

J
7 tr 0y -
(yjo,yj1j=0 € B . It follows easily that j;

Proof of lemma T1.7.6
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(1.7.11)

(1.7.12)

= 0 (The argument used here is similar to that just following equatien

Since Y is a cone,

Since ij =0, for

Y , for j=1,...,3, since Y, 6 C Y , for such

J

J ~
j;I(YjO’yjl) €Y . Hence by lemma I1.7.8,

B ., for some

Yl e (
:le j=o - yOO:yOl

. , - ¢ J
j l,...,J, it follows that C = t(ij)j=1 ‘

Y 1 is bounded.

j

J J . .
€ , r ! bounded.
(ij’yjl)j=0 £€ B, for some (yOO’yOI) and some (yjl)j=1 is bounde

Let T. = max { max
0 L
J—]-:

J
= 3 [
lyjol (ij'j=1 ¢ C)

N
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+
Observe that (yo,yl) €Y implies that (yo,y1 Y €Y .

f )J 1

Hence by lemma I.7.7 with t, = t., = To ; I obtain that D {(le j=li

0 1

J

=1 } is bounded.

J
(ij,yjl)j=()€ B , for some (YOO’YOI) and some (yjo)
4+
Let T, = max { max ly,‘ : (yf )?_ €D }. Since
1 -, j j17 5=1
: j=1,...,J

J -1 . .
jgl(yjo + yjl) + @ =0 and yjo =0, for j=1,...,J , it follows

that yjlk(s) = -(J-1) T1 , for all k . This proves that

J J .
{(ij’yjl)j=1 ] (yjo,yjl)j=0 € B, for some (yoo)y01) }  is bounded.
J
J -1
3 - = . = = -
J
= jéld-lyjl . It follows at once that B is bounded.
Q.E.D.

Adequacy

The next lemma states that £0 satisfies what in [9] I called the
"adequacy assumption."
I.7.13) Lemma For each i , there exist (ij’yjl) € Yj , for j =0,L,...,3,

J
such that jgo(yjo’yjl) + (wi,O) s> 0.

The proof of this lemma makes use of the next lemma.
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. +
1.7.14) Lemma There exist g€ ﬁm’Lo(S,Jb,P) and (ij’yjl) € Yj s

for j=1,...,3 , such that
i) g (y.. + o-ly Y +w=0 and
#1%50 0 T
J -1
ii) for some r > 0, jél(ijk(s) + 5 lek(sx)é T al?OSt surely, for

e k L -
all € P

Proof Let r , y and (y?o,y?l), for j =1,...,3 and

n=1,...,N, be as in assumption I1.2.15, . Let (yjo,yjl)

N J
-1 n n
= M)
N nél(yjo,yjl) . Then, .El(yjo +0 yjl) +w

J

N J -
-1 n , =-1n-1 1 -1 N
N n§2(jél(yj0 Fo ¥y ) ‘f'o;) + ()jo +5 yjl) +w =0,

ty assumption I.2.15 . Thus, (i) of the lemma is valid. For

J J

-1 -1 1 -1 N .
k ¢ Lp s J.él(ijk(s) +g yjlk(S)_)z N jél(ijk(S) + 0 yjlk(S))

= N-lr , which is condition (ii) of the lemma.

Q.E.D.

Proof of lemma I.7.13 Let ¥, u and (v, .,v..) € Y. ,
jo’ 3t 3
for j =1,...,J, satisfy the conditions of lemma I.7.14 . By assumption

I1.2.14 , there exists t « 0 such that tEk(S) + t = Gik(s) almost

1

surety, for all k ¢ Lo . Let (yjo,yjl) = t(yjo,yj ) , for j=1,...,J .

=53
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By assumption I.2.10, (yjo,yjl) € Yj , for all j . Let

(YOO’yOI) be defined by

J
o ()5 ¥ () = ( Ly oty () - 27w, - by (o) +27e T
00k %7 Y01k i% jlk 0 7 5=V g1k

for a1l s and for k € Lp . Clearly, (yoo,yOI) €Y,y -

I now show that jgl(yjo’yjl) + (wi,O) > 0 . Let k ¢ LP
J 1 3 J
Then, jéﬂ yjlk(s) =2 "t ¥>0 and jéoyjok(s) = jél(ijk(s)
+ g—lyjlk(s))- 2-1t T = 2-1t T >0, almost surely. If k ¢ L0 s
J J J
then jZ_-O ijk(s) + o, (s) = J.§1>7J.0k(s) + g (8) = t( jélijk(S)

+ mk(s)) +t=t>0, almost surely. This proves that
3 + (@, 50 0

Q.E.D.

The Exclusion Assumption

I now show that what I called the "exclusion assumption" in [9]
applies to &, . In order to describe this assumption, I must

introduce some new termirology.

.
4

{a(S,JE,P) denotes {ﬁ,l(s,gh,P) . ba(S,gh,?) denotes . the
set of bounded additive set functions defined on g% which are
absolutely continuous with respect to P . ba(S,;h,P) is the
set of linear functionals on i@(S’Jh’P) continuous with respect to

the supremum norm |-| .
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If v € ba(S,Jn,P) is non-negative, then  1is said to be purely

finitely additive if 9 = 0 whenever ¢ is a countably additive set
function definzd on Jh such that 0 = P = ¢y . A theorem of

Yosida and Hewitt asserts that if & ba(S,Jn,P) and =20,

then there exist Ve = 0 and Vp = 0 such that Qc is countably

additive, Vo is purely finitely additive and = Ve + Vp ([51],

pP. 52, theorem 1.23). Ve is termed the countably additive part

of v and Vp is termed the purely finitely additive part of
Another theorem of Yosida and Hewitt asserts that if

vp € ba(S,Jn,P) is purely finitely additive and v, € ba (S,JE,P)

is countably additive; then there exists a sequence of sets

Sn € <5 such that Vp(s\‘sn) =0, for all n , and

1im y (8 ) =0 . ([511, p. 50, theorem 1.19)
VR .

+
baL(S,Jn,P) denotes { (v ba(S,gh,P) and Vi =0,

m

L
K k=1 | Yk

for all k} . If € baZ(S,Jn,P\ s v = Ve + vp is the Yosida-Hewitt

decomposition of . If (vo,vl) € baI(S,J yP) v baz (S”Jl,P) , then
P
e = Y + ) is defined similarly.
the decomposition (vo,vl) (vOC’vlq (vOp’V{p) is defined similarly
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L
If ¢ baL(S,_Jn,P) and A ¢ o then ((4) = (Vk(A) )kzl )

Exclusion Assumption Y — . (5,/:P) w2 (5..,,,P) satisfies
LTI LTS ———l s —— @,L 0 ==} L

J
. . . + +
the exclusion assumption if for every (Vo,vl) € baL(S,,JO,P) % baL (S,Jl,P) s
: P

there exist sequences SOn € ;/0 and Sln € "ﬂl’ n=1,2,..., such that

1) 1im VOC(SOH) = 1im vlc(sln) =0 ]
L-be n=

2) VOP(S\ SOn) = le(S\Sln) =0, for all n and

; % , X .
3) if (yo,yl) €Y , then (yo S\Son, ¥y S\Sln) Y, for all n

In (3) above, XS\S- is the indicator function of the set
in

1

. X . .
S\Sin , for 1 =0,1. Also, vy S\ S is defined by

in

(yi XS\Sin)(S) = XS\S_n(S) yi(s), for i =0,1

i
I.7.15) Lemma The production sets Yj’ j =0,1,...,3, of the economy
60 satisfy the exclusion assumption.
Proof Let (y.,vi) € ba(S,4;P) x bar (S,.4.,P) and
0°"1 L 0 LP 1

—3 -}. i - L) . .
let (VO’Vl) (\’Oc’\’lc) (\,Op,vlp) be the Yosida-Hewitt decomposition

of (\)0)\)1)
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For each k =1,...,L , there exists a sequence

AOkn € Jpon = 1,2,..., such that \’Opk(S\AOkn) =0 and

L
l = = 7 =
1im P(AOkn) 0 . Let SOn k‘=‘1 AOkn . Then, lim P(AOkn) 0
N30 n-yo
and so lim voc(son) =0 . Clearly, \)Op(s\ S\On)> =0 .

e

For each k € Lp , there exists a sequence Alkn € Jl;n =1,2,...,

such that vlpk(S\Alkn) =0 and i_l’m P(Alkn) =0 .
0

In L

Now consider Yj’ for j=1 . Let S, = SOn U (kué Alkn> .
P

Then, 1lim vlc(sln) =0 and vy (S\Sln) =0
e P

3

I must show that if (yo,yl\, e.Yj , then

X X : '
o S\Son’ 71 S\Sln) € Yj , for all n . That is, I must show

that XS\Sln<S) yl(s) < gj(XS\Son(s) yo(s),s) , almost surely.

X - .
If s€sS ., s\'s, (s) y (s) =0= gJ.(XS\S (s) yo(s),s) , since
n On
LP
i . . X =
gj maps into R If s ¢ S1r1 , then s\ s (s) yl(s) yl(s)

In

= gj (YO(S),S) = gj(XS\Son(s) yo(s),s) . This completes the proof

that Yj satisfies the exclusion assumption if j =1

I now show that YO satisfies the exclusion assumption.

L

-1

= 1 aQ = 1

Let SOH (kL_llAOkn) U(ku (s} Alkn> and let L)ln o’SOn . Since
€ Lp
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P is invariant with respect to g , it follows that

lim P(Son) = lim P(Sln) =0 . Hence, lim VOc(SOn) = lim Vlc(sln) =0 .
e n-ko e e
Also, \,OP(S\ SOn) = vlp(s\ Sln) =0, for all n . It should be

s s X X
clear from the definition of YO that (y0 S\Son») Y1 S\Sln) € YO R

if (yo,yl) € YO . Hence, YO satisfies the exclusion assumption.

. Q.E.D.

I1.8) Proof of Theorem I1.3.1

By what has been shown in section I.6., it is enough to prove
that 50 has an equilibrium, In order to prove that this is so, I
apply results from [9]. .

In [9], the commodity space is £®(M;‘m:u) , where
(M,m5u) 1is a g-finite measure space. (;{m(M,’m,p,) is £m1 M,7,0),
J

in the notation of this paper.) The first task is to interpret
the commodity space of 2y as such a space. Recall that the commodity

space of gy 1s im,L(S,JO,P) Xig;,Lp(S”’pl’P) . Let

M =8 x ({al,...,aL} U LP) , where ays---,8; are L . distinct

symbols, none of them included in Lp . The measurable subsets

of S ¥ {ak} , for k =1,...,L, are of the form A X {k} ,

where A EJO . Similarly, the measurable subsets of S {k} B
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for k & Lp ; are of the form A y {k} , where A ¢ ,ﬁ
u is defined by p(A x {ak}) =P(A) and p(A x {x} =P
It should be obvious how to identify {E(PLWUH) with

£Q,L(S’JO’P) X %’LP(S:JI}P)

A key assumption of [9] is that preference orderings are continuous
with respect to the Mackey topology. I do not define this topology
here. (It is defined in {9].) It is sufficient to point out that by
appendix II of [9], the utility functions U?(X,O) = jui(x(s),s) P(ds)
are Mackey continuous.

Another key assumption of [9] is that production possibility sets
are Mackey closed. The weak-star topology is weaker than the Mackey topology.
Hence, lemmas I.7.1 and I.7.5 imply that the production possibility
sets of 50 are Mackey closed.

In [9], I also assumed that production possibility sets are convex
cones with epex zero. This is obviously true of YO . That it is
true of Yj , for j= 1, follows from assumptions I.2.8 and I.2.10.

Another assumption of [9] is the "monotonicity assumption." 1In

order that this assumption be satisfied, it is enough that

=+ - . - .
1) Yj - Q@,L(S,JO,P) %io;,L (S,,ﬁl,P))C_Yj , for some j , and

2) Lc # @, and Ui(x,O) >-Ui(z,0) , if 2 >>> z and x and 2z both

+
belong to #_ . (S,Jb;P)
b
c

(1) is true for all j , since I assume free disposability. That (2) is
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true follows from assumptions I1.2.2 and I.2.6

Lemma I.7.6 says that & satisfies the boundedness assumption

0
of [9] . Lemmas I.7.13 and I.7.15 imply that the "adequacy" and
"exclusion" assumptions of [9] are satiefied.

The assumptions I have mentioned include all the major assumptions
of theorems 1 and 3 of [9]. It is easy to check that all the minor
assumptions are satisfied. These theorems imply that £0 has an

equilibrium,

Q.E.D.

I.9) Proof of Theorem 1.3.2

I modify the economy 4 by replacing the 1 consumers by a single

L
consumer with utility function u : R+c ¥ S -+ (~o,») , defined by

I L
u(x,s) = max {iél Xil ui(xi,s) ‘ % € R_,_c , for all i , and
I

>
is1 Wy

it

Firms

i~

X

1% b'q } . The endowment of the consumer is

i
remain the same as in 4 . Call the new economy g . It is easy to
verify that @ satisfies all of assumptions 1.2.1 - 1.2.15

G

Therefore by theorem I.3.1, @ has a stationary equilibrium ,
(x,( )J ) I assume that is s lized that th
s yjo,yj1 j=l’p . sume P 1s so normalize a e

marginal utility of money of the single consumer is one. By applying

Aumann's measurable choice theorem [7] to H = {(S’Xl""’xl) €S

L L I -1

c c
oro = 2. A i
x R™x x R," ) | u(x(s),8) = I, » u,(x,,9)}, one obtains
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+
x., €2 (S,+.,2) , for i =1,...,I, such that
i @,Lc 0

u(x(s),s) = iil k;l di(xi(s),s) almost surely. It follows easily

I J - . s e g ey
that ( (Xi)i=1 s (ij’yjl)j=1’ P ) is a stationary equilibrium for

# with transfer payments;which satisfies the conditions of the
theorem.

Q.E.D.

1.10) Proof of Theorem 1.3.3

The proof is nearly standard, except that I use the permanent income
hypothesis.

Let ( (xi); (yjo’yjl)’ p ) be a stationary equilibrium with
transfer payments and let Ki be the marginal utility of money of

consumer i in this equilibrium, for i =1,...,I . Let

( (§i), (?j» be a feasible allocation which is not necessarily
0o _1

stationary. (Recall that Ei = (%; %/ ,...) and
- _ -l .0 0 -0 1 1
Y5 (le: (yjl’ Gjo,yjl)’ (yjo, leu---.)-) Suppose that
-1 N _n n )

lim inf N ~ 2 [ u.(X.(8),s) - u_(x,(g s)s) } P(ds) =0 , for all i ,

n=0 i1 i
Noee
with strict inequality for some 1 , say for i =1 . 1 derive a contradiction.

N
.. -1 _n
Let ¢ > 0 be such that lim inf N ngﬂ I [ ul(x1 (s),s)

- UT(Xl(cnS);S)] P(ds) = 3 ¢r . Choose N so large that
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if N=N, then

N
N‘i;of [u; &7 (8),8) - uy(x;(678),8) ] P(@s) = 2er

and

N
-1 =10 n -1 .
N 200 [u (%, (s),8) - u,(x,(c 8),8) ] P@s) = -1 "er, , for i>1

_n n n _n
Next observe that ui(xi (s),s) = ui(xi(g (s),s) + kip(g s)'(xi (s)

- Xi(ons)), for all i . By combining these inequalities with the

previous ones and adding the resulting inequalities, I obtain

N I - o
o [ PG [ & () - %, (0" Bds) 2 e N, if NZN . (1.10.1)

Since ((ii), (y.)) and ((xi), (ij,yjl)) are feasible allocations,

J
I J
) n < —n - n-1

I
I obtain 2 %0 =
n= jo

1 71 i
I I

-1 . . .
LZaX, = iél w; + 55 (yj0,+ o yjl)' By substituting these expressions

) , for all n , and

N Gy

i=1"1 =
into (1.10.1) and rearranging, I obtain

J N-1
) Z

-1 -1 -N_ -n_n
: - , . + (DT
2P Gy -0 ) Fp (o 750 00 * nE [P7G@ Ty (1.10.2)

o =(n*tl)_n . -1, ) —
to »Yﬂ)'P(%0+c %ﬁ]}éeﬁ{ﬁ'NEN-

n-n

Y30 +

Since (ij’yjl) € ﬂj(p) , it follows that p°{(o

-(n+l)_n+l . -1 .
G yjl Y=vp (yjO + g yjl) , for all j and n . Therefore,
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(1.10.2) implies that

J ! 1 NN
. -~ + p° v, - = eN
jEL[P (yj1 o yj13 p (o Y0 yjo)] = eN, (1.10.3)

for all N’g ﬁ .

-N N -N N

Since (o ij s O yjl) € Yj , it follows that 0 , for all

N =<
. . . -NN
j . Since p>0, po ij = 0 . Hence, I.9.4 becomes

J
-1 -1 = .
jgl P (yj1 - g yj1 yjo) Z ¢N , for 2all N=N . That is,

J
o=l -1 - s s s . . . s
jél P (yjl o} yj1 yjo) ® , which is impossible. This contradiction

proves the theorem.

Q.E.D.

I.11) Proof of Theorem I.3.4

I call an equilibrium for 50 a modified equilibrium if the prices

A4
belong to bai(S,yb,P) ¥ baz (S,;b,P) rather than to
s, x £t . (S,0,P) . (ba.(S,s.,P) x ba. (S,s.,P) is the set
=£1,L ,'{JO’ X §£1,Lp )Jo’ . aL )JO) X aL )o’o) 1s e se
of linear functionals on {m,L(S,;b,P) Xj{w,L (S”JI,P) which are

continuous with respect to the supremum norm. See Dunford and
Schwartz [20], p. 296, theorem 16.)
I first apply a standard separation argument to obtain prices for the

economy 60 . Strong monotonicity implies that I obtain a modified



equilibrium for 8 with transfer payments. By a theorem in [9],

I may assume that the prices belong to ;{1 > so that T can drop the
qualifier "modified." The argument of section I.6 then implies that I
have a stationary equilibrium for &

Let ((?i), (§jo, §j1)) be a Pareto optimal stationary
J
2 and let

allocation for 4 - Let yOl = o 3

1951 Y00 T O Yo1

J
. - - . c o
It is easy to see that ((xi,O), (yjo’yjl)j=1) is a Pareto optimal
allocation for 50 .
A= z 0( 0 Pz £ i
- Let 2 {iél(xi,O) ‘ U (xy ) >>Li(zi,0) , for all i } , where

0. c1s . .
Ui is the utility function of consumer i in the economy &g -

1 J
Let B = .Z.(w:;,0) + .2, Y, - The usual argument says that A and B
i=1\e 3173
‘ . : I +
are convex and do not intersect. B contains iéfuﬁ?o)- QQ@,L (SLUO,P)

1

+
X £ g (S,Jl,P) Y, and so has non-empty interior with respect to
J

the supremum norm, !'l . By the separation theorem (Dunford and Schwarz
[20], p. 417, theorem 8) there exists a non-zero (po,pl) € baI(S,gb,P)

+ .
X baLp(SJJlJP) such that (pO’pl) '(aoyal) = (Po:Pl) (bo:bl) , for

all (ao,al) € A and (bO’bl) € B . Clearly, (po,pl) =~ 0.

Since I have assumed that utility functions are monotone, standard

arguments prove (I.11.1) and (I.11.2) below. (See Debreu {16] or [17].)
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(ij’yjl) £ nJ (Po)Pl) , for j =0,1...,J,

o
where nj is the supply correspondence for firm j in the

economy &O .

For all i , Py X =Py §i , whenever Ug(xi,O)

> UG, ,0)
I now prove that
for all i , P " %X > Py C X, , whenever U?(x.,O)
. i ( i it7i
> ) (%, ,0)

A standard argument proves the following.

For all {1, if Py X, > 0 , then

0 0,—
. .« ¥ 0 U 0
Py " % >-p0 X whenever Ui(xi’ ) > i(xi’ )
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(See Debreu {17], "Remark" on p. 591.) I apply 1.11.4 to prove I.II.3.

By lemma I.7.13, there exist (yjo,yj1)§=o such that
J

1
(yjo,yjl) € Yj , for all j , and iél(wi’o) + j;O(ij’yjl) >0 .

Since (po,pl) >0 , it follows that

I J

(pO’pl) . (iél(wi’o) + jéo(ij’yjl))_> 0. Since the allocation

— — — \J . . - 0
((Xi’o)’ (yjo,yjl)j=o ) 1is feasible and (yjo,yjl) € nj(po,pl) , for

(1.11.1)

(I.11.2)

(I.11.3)

(I.11.4)
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all j , I obtain (py,py) - (il(ii,o)) = (Po’Pl) . (i(mi;o)
J J
+ J.;o(yjo;yjln = (po,pl) . (;(wi,o) + ji=0(yj05yj1>> > 0 . Hence for

i

x, >0, say for i =1 . By (I.11.4), (I.11.3)

some i , Py * *;

is true for i =1

Let (po,pl) = (poc,plc) + (p0p’P1p> be the Yosida-Hewitt
decomposition of (po,pl) . (This is defined in the subsection of section

1.7 dealing with the exclusion assumption.) By the Radon-Nikodyn theorem

(Halmos [27], p. 128) , (POc’Plc) may be thought of as belonging to
£1’L(S)J09P) x:f’l,L (S}JIJP>

Because (I.11.3) is true for i =1, it follows easily from

the strong monotonicity assumption (I.2.16) that Poe > 0 . This

in turn implies that if Ei > 0 , then Py : ii > 0 . Hence by I.I1I.4 ,

I.11.3 4is true for all i such that §i >0 . If x, = 0 , then

. + —
Py ¥ > 0 for any X; € zb,Lc(S’J ;P) not equal to X

Hence, (I.11.3) is trivially true in this case. This proves (I.11.3)

. - N |
1.11.1 and I.11.3 together imply that ((xi,q>, Gjo’ yj1>j=0: (pyop())

is a modified equilibrium for £, with transfer payments. Theorem 3 of

0
. . — - J . e gt Tons
[9] implies that ((xi,O), (yjo, yj1>j=0’ (poc,plc)) is an equilibrium



for 50 with transfer payments.

J

By the argument of section 1.6,

((ii), (ij’ yjl)j=1 s pOc) is a stationary equilibrium for

8 will transfer payments.

Q.E.D.
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Part IT: Price Stability

The proof that the permanent income hypothesis implies price stability
is surprisingly simple. It turns out that market excess supply is the gradient
of aggregate consumers' surplus. Therefore, the motion defined by the
differential equation, QEEEL = excess demand, is a gradient process, which
tends to minimize consumers' surplus. Consumers' surplus is a convex
function of price, so that the gradient process converges.

In the next section, I describe the model. I list the assumptions and
state the stability theorem in section II.2., 1In section II.3, I briefly
discuss related literature. 1In section II.4, T sketch the idea of the proof,

Sections II.5 and II.6 deal with technical facts needed in the formal proof,

which is given in section II.7. The final section mentions a possible

extension.

I1.1 Definitions. Notation and the Model

The Economy

I deal with a pure trade economy with I consumers and I commodities.
. _ oL . h fa o . .
For i = 1,...,I, u; = R_ = (-w,0) 1is the utility function of consumer i,

and w; € Ri is his endowment.

An allocation is a vector (Xi)F such that x, ¢ RL, for all i.
Sospmtied i=1 i &%

The allocation is feasible if 2 (%, = w.,) =0
—— i=1 i i

" L ' . ,
Prices vary over int R/ = {pe Ri_!p >> 01 . Notice that prices are
not normalized. The normalization is contained in the marginal utilities of

money.

The marginal utility of money of each consumer is fixed, Ki >0

denotes that of consumer i, for each 1.
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The short-run demand of consumer i, given p, is gi(p), the

set of solutions to the problem

Ly

max fui(x) - kip- x| x€ R I1.1.1)

gi(p) may be empty. I call the demand '"short-run' because the marginal
utility of money is fixed. Consumers do not necessarily satisfy their

budget constraints. The budget constraint is assumed to be binding only

in the long-run.

A short-run equilibrium is a vector (p,(xi)), where

. L
1) p € int R+,

2) (xi) is a feasible allocation and

3) X, € gi(p), for all 1i.

Price Dynamics

Prices are a function of time. Time is denoted by t, and t wvaries
over ( =~ o,0). p(t) 1is the price vector at time t,
The fundamental differential equation determining the evolution of

prices is the following.

™ H

d
i) ERHUIONEFRE 11.1.2)

Of course, in order that this equation makes sense, gi(p(t)) must

be well-defined, for all i. I will refer to the differential system

3

11.1.2 as the tatonnement adjustment system.

Stability

. e 3 . _ . L
The domain of definition of market demand is P = fp € int R, ! £, (p)

is well-defined, for all i?.



64

The dynamic system II1.1.2 is séid to be globally stable if the

following are true.

i) There exists a unique short-term equilibrum price vector, p.
jii) If p(0) =q € P, then p(t) 1is defined for all t > 0
and 1lim p(t) = P, where p(t) 1is the solution to (I.1.2)

teo
with initial conditions p(0) = q.

I1.2 The Stability Theorem

I make the following regularity assumptions,.

11.2.1) (Differentiability) For each i, u, = Ri 4 (- ooym)

is twice continuously differentiable on all of its domain.
11.2.2) (Monotonicity) For each i, Dui(x) >> 0, for all x,
where Dui(x) is the vector of first derivatives of u, at x.

11.2.3) (Concavity) For each i, Dzui(x) is negative definite, for all

X,
2 . . . .
where D ui(x) is the matrix of second derivatives of u, at x.

11.2.4) For all i,
i

wi>> 0.

o

1
I1.2.5) Theorem If assumptions II.2.1 - II1.2.4 apply, then the

tStonnement adjustment system (II.1.2) 1is globally stable.

Remark Christian von Weizsdcker has pointed out to me that this

(11.1.3)
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theorem depends on the implicit assumption that utility is additively
separable with respect to time. I have not investigated what happens

if the current flow of utility depends on current and past consumption.

Interpretation

It is hard to reconcile the model of the stability theorem with that
of stationary equilibrium. One possibility is to think of the price
ad justment process discussed here as converging to an equilibrium in a time )
period which is short relative to the time period used in the model of
stationary equilibrium. Thus, if the time periods of the stationary
equilibrium model are weeks ., then the price adjustment process discussed
here should come to equilibrium in half a day. Another approach is to give
up the assumption that prices in statiomary equilibrium clear markets. One
can imagine that prices adjust from period to period in reaction to the
excess demand of the previous period. The stability result proved here
leads one to suppose that such a lagged adjustment process would be stable
in the sense that it would be consistent with a stationary probability Jis-
tribution of prices. T have nct explored this point of view in detail. 1In

my opinion, it is not worthwhile to pursue this sort of thinking without first

specifying who sets prices and to what end.

IX1.3) Review of the Literature

From an intuitive point of view, T simply show that intertemporal
substitution leads to price stability. The idea that this should be so is

old. For instance, Hicks mentions in Value and Capital [28], p. 249, that

" substitution across time tends to stabilize prices, as long as the elasticity

of price expectations is less than one. (I owe this reference to Arrow.)
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As far as T know, Hicks' idea has never been expressed rigorously.

Most stability theory has been in terms of the usual excess demand
functions of general equilibrium theory. That is, demand is defined by
maximization of utility on a budget set. Several conditions have been
found on aggregate excess demand functions which guarantee stability. This
literature is explained in Arrow and Hahn [56], chapters 11 and 12.

Another branch of literature has shown that there are probably no
reasonable assumptions on individual utility functions or endowments which
guarantee stability, I have already mentioned this work in the introduction.
It includes the examples of Gale [24] and Scarf [43] and the results of
Sonnenschein [46, 47], Mantel [33, 34}, Debreu {[18] and McFadden, et al,
[35], which show that almost any excess demand function is possible.

It should be noticed that a short-run equilibrium is an equilibrium
with transferable utility. The effect of the permanent income hypothesis
is to make utility transferable. It ie well-known that equilibria with
transferable utility maximize a weighted sum of utilities over the set of
feasible allocations. (See Shapley and Shubik [44] and Aumann and Shapley
[8], pp. 184-6.) This idea is used in the proof of theorem II.2.1. Many
people seem to be aw;re of the fact that equilibrium is globally stable
when utility is transferable, though I have found no reference. The litera-
ture on economies with transferable utility deals with the relatiom

between game theory and general equilibrium theory.

I1.4 The Idea of the Proof

A
I have already mentioned that the tatonnement system tends to minimize

aggregate surplus. The surplus referred to is the sum of consumers' surplus,



ot

67

as it is usually defined, and the value of the initial endowment. It is easy
to visualize what is going on in terms of usual supply and demand scissors
diagram. Suppose that there is only one good. In the diagrams below,

DD is the demand curve and ¢ is the fixed market supply. P is the
equilibrium price vector. At the price p , the total surplus is the shaded
area. This surplus is reduced by moving p toward p and it is minimized
at p , provided the demand curve slopes downward. The permanent

income hypothesis implies that the shadéd areas in the diagrams do

represent the surpilus and that the demand curve does slope downward.

Mo

s price

.

. price

S

D quantity

MX

D quantity

I1.5) Properties of Short-Run Demand

In this section, I discuss some elementary properties of short-run

demand functions. Let wu: Ri'+ (~®,®) satisfy assumptions I1T7.2.1 - II1.2.3
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and let gA be the short-run demand function determined by u and

some marginal utility of money, X > 0. That is, for p € int R%, g(p)

is defined by 1II.1.1, with u and X substituted for us and ki,
respeétively. Since u 1is strictly concave, g is a continuous function
on its domain of definition. Because u 1is strictly monotone, £(p)

“is not defined if some component of p 1is zero. It is not hard to show

that -

g is defined on a non-empty, open and convex subset of int Ri. (I1.5.1)

Also,
if p belongs to the boundary of (p ]‘g(p) is defined }, (1I1.5.2)
then I%FL !fg (p){l = o, where the limit is through points p
PP

at which g(p) 1is defined.

The usual theorem on the uniqueness of solutions to differential equations
requires that the right hand side be Lipschitz. The only reason 1 assume
that utility functions are twice differentiable is to obtain this Lipschitz

property. So, I now prove that

g 1is Lipschitz. (11.5.3)

That is, for each compact set C in the domain of definition of Ag; there

exists a positive number K such tkat |] g () -g(q)!] = K|| p - q]|, for

all p and q in C.

(
Clearly, if g(p)} 1is defined, then @EéiﬁRll = A.pk ;, for k=1,...,L,
k .
with equality if gk(p) > 0. These inequalities define g(p). For each

L
subset A < {1,...,11 and each p € int R,, let fA(p) be the uniqge
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vector, y € Ri (if one exists) such that

duly)
oxy

=Ap, , for k{A (1I1.5.4)

Yy = 0, if k €A,

~

Since the matrix of second partial derivatives of u, Dzu, is negative definite,
it follows that the matrix of derivatives of the left-side of (II.5.%4)

is non-singular. Hence by the implicit function thecrem, fA is

;ontinuously differentiable on its domain of definition. Since fA is
continuously differentiable, it is Lipschitz. (In order to apply the

implicit function theorem, it is necessary to extend u to a twice
differentiable function defined on an open set containing Ri.)

Clearly, g' is equal, whenever it is defined, to one of the finitely
many finctions f£,. Also, the set on which g is equal to one of these
functions is closed in the domain of definition of E. It follows at once
that g 1is Lipschitz.

I now turn to a discussion of consumers' surplus. First of all, I
need a definition. If h 1is a real-valued function defined on a convex
subset of RL, then =z € RL is said to be a subgradient of h at
p € RL if zep -pn(P)=1z:q - h(q), for all ¢q 1in the domain of h.
That is, 2z is a subgradient of h at p, if the linear functional
(z, -1) reaches a maximum on the graph of h at the point (p,h(p)).
Clearly, if h has a subgradient at every point in its domain, then h 1is
a convex function. (Rockafellar discusses subgradients in {411 on
p. 214 and following.)

I define the surplus of a consumer with utility function u and marginal

utility of money A to be h(p) = K-lu(g(p))' p-E(p). The definition
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of £ (II.1.1) implies that

- E(p) is a subgradient of h at p. (1I1.5.5)
For by (I.1.1), u(E(p)) - Aq* E(P) = u(E(q)) - \ g - £(a).
- : -1 . : -1
‘Hence, . - g(p)* P - (M "u(g{p)) - p " E(P)) = - A ulg(p)) =
-1 .
-g(@) 9 - (X Tu(e(q)) - q * €(q)), for all g’ in the domain
definition of '#. Since h has a subgradient at every point,
h is a convex function. (I1.5.6)

I1.6) Properties of Ag-recate Consumers' Surplus

Let. ul,...,uI and xl,...,xl be as in section II.1 and suppose

that assumptions II.2.1 - IT.2.4 apply. The aggregate surplus is defined

I
-1
to be H(p) = 2z I[N,  u,(€(P)) - p-E(p) + p-w,]. Z(p) denotes the
j=1 + 71 i 1 i
market excess demand. That is, Z(p) = 2 [gi(p) - wi].

i=1
(I1.5.1), (1I1.5.5) and (I1I1.5.6) imply the following.

Z and H are defined on an open convex set P < int Rﬁ. (11.6.1)
H 1is a convex function and - Z (p) 1is a subgradient of H

at p, for every p€ P .

I now show that

there exists a unique P € P at vwhich Z(p) = O. (11.6.2)

H(p) achieves a minimum at ;.
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——

p is the unique short-term equilibrium vector.
I

ERRRE. = 7 xflu.(E,) is well-defined, since
i i
i=1

ki > 0, for all i. W may be thought of as a social welfare function

The function W(x X

I)
defined on the set of feasible allocations for the economy. Since the set
of feasible allocations is compact, W achieves a maximum, say at

(§i). Since W 1is strictly concave and the set of feasible allocations is

convex, this maximum is unique.

I
Since I w; >> 0, it follows that for each good k, there is a
i=1 du, %) -
consumer, say consumer Jj, for whom X, > 0. Let p,_ = L Tl S
> = ’ jk k j Y ’
Ou, th _
where 5;; is the k— partial derivative of ui. Clearly, gi(p) =%, for

all i, so that Z(;) = 0. Since - Z(E) is a subgradient of H at E, H
achieves a minimum at E.

I now show that ; . is the only zero of Z . Let p be

such that Z(p) = 0. Then, (gi(p))£=1 is a feasible allocation which
satisfies the first order conditions for a maximum of W. Since W 1is
strictly concave and twice continuously differentiable, (gi(p)) is a
constrained maximum of W. Hence, (gi(p)) = (§i). It follows at once that

p = p. This completes the proof of (II.6.2).

II1.7) Proof of Theorem II.2.5

I have already proved that there exists a unique short-run equilibrium

price vector, p. I must now prove that solutions of the differential
dp (t -
equation —§£~l = Z(p(t)) converge to 7.

It follows immediately from (II.5.3) that Z is a Lipschitz function.

Hence by the existence theorem for solutions to ordinary differential equations
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({143, pp. 6,10 and 15), if gq € P, then there exists ; € (0,0} and a

unique function p = [0,;) - Ri such that ngEl = Z(p(t)), for all ¢,

and

t = or {Z(p(t)) \ = t< Ei is unbounded or (11.7.1)

éi? Z(p(t)) exists and belongs to the boundary of P .

I now prove that t = ». First of all, 1I show that

NZ(p(t))ll 1s a non-increasing function of t. (11.7.2)
In order to prove II1.7.2, it is enough to show that

lim sup e-][Z(p(t4-e))- Z(p(t+¢)) (11.7.3)
g0 .

- Z(p()) c z(eEN] = 0.
First, observe that by the subgradient property of - Z,

- p(t) - Z(p(t)) - H(p(t)) é = p(t+e) - Z(p(t)) - H(p(t+e))  (I1.7.4)

and

- p(t+e)- Z(p(t+e)) - H(p(t+e)) ' (1I1.7.5)

= - p(t) - Z(p(t+e)) - H(p(E)).

Subtracting I1I.7.5 from II.7.4 and collecting terms, I obtain

e ple+e) - p(0)] - [2(p(t+e)) - Z(p(£))] = O. (11.7.6)
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This implies that

e HZ(p(t)) + 0(e)] - [Z(p(t+e)) - Z(p(t))] = O. (11.7.7)

where 1lim O(¢) = 0. Since Z 1is Lipschitz, the expression
0

e-l[Z(p(t4-e)) - Z(p(t))] 1is bounded, Hence, (II.7.7) implies that

lim sup ¢ Z(p(t))* [Z(p(t+e)) - Z(p(t))] =

= 0. (11.7.8)
€+0
Similarly since Z 1is Lipschitz, (II.7.6) implies that
. -1
lim sup ¢ Z(p(t+e)): [Z(p(t+e) - Z(p(t))] = O. (11.7.9)

e~+0

Adding (I1.7.8) and (I1.7.9), one obtains (II.7.3). This completes
the proof of (1117.2).
(11.7.2) implies that t = . For, (II.7.2) implies that

{z¢p(t)) | 0= t < t} is bounded. Also, if 1lim p(t) belongs to the boundary

tat
of P, then it follows from (II.5.2) that liqL”Z(p(t))H = «». Hence
t» t
by (II1.7.1), t = .
I next show that
, -1 . 2

lim sup ¢ "[H(p(t+e)) - H(p(t))] = = pZ()", for (11.7.10)

€40

all t < 0.

Observe that by 171,7.5,

e HHEG(E+e)) - Hp(t))] = - ¢ Z(p(t+e)) - [p(t+e) - p(e)].
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Since Z is a continuous function, (I1.7.10) follows.

(11.7.2), (11.7.10) and the fact that H has a finite minimum

imply that

Tim [|1Z(p(E))NN = O. (I1.7.11)
oo
Also, (II.7.10) implies that the point p at which Z(p) = 0 is the
unique point at which H achieves the mirmimum, For suppose that q # p and
H(q) = H(p). By II.6.2, Z(q) # 0. Hence, if p(0) = g, then by (II.7.10),
H(p(t)) < H(q), for t > 0, contrary to the hypothesis about gq.
Because H is convex and achieves its minimum at a unique point, it

follows that
for every real number r, {p\ H(p) = r1 1is bounded. (11.7.12)

Hence, in order to prove that 1im p(t) = p, it is enough to show that p
is the only cluster point of p?:? as t -+ o. Let gq be any such cluster
point. By 1II.7.11, Z(g) = 0, and so by 1II.6.2, q = p.

This completes the proof that éim p(t) = p and hence the proof of
I11.2.5.

Q.E.D.

II.8) A Possible Extension

It may be possible to extend the stability theorem to the case in
which the functions u, are simply concave. More precisely, it may be
possible to drop the assumptions that the u, are differentiable (II.2.1)

2 .
and that D ui(x) is always negative definite (II.2.3) and replace them
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by the assumptions that the u,  are continuous and concave. 1In this case,

the functions Z and H are still well-defined, H 1is convex and 2

is a subgradient of H. These facts give some hope that it may be

possible to generalize the procf given above. 1In fact, it may be sufficient
simply to employ the results and methods of Brézis [12]. He studies

differential systems in which the right-hand side is not a function, but

is a set of subgradients of a convex function. That is, the velocity vector

is required only to be some subgradient. Solutions exist ({12], p. 54,

theorem 3.1). They converge if a compactness condition is made, which is similar

to (II.7.12) ([12],p-90, theorem 3.11). T owe knowledge of Brézis to

Bernard Cornet.
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Part IIT: Consumers' Surplus

The result proved in this section is probably almost self-evident
to someone well-versed in the theory of consumers' surplus. There are,

however, some slight technical difficulties in the proof.

L
Let u; < R+ 4 (- o,0), Ki and gi, for i =1,...,I, be as in

the previous section. Let p(t), where 0 < t < 1, be a continuously
differentiable path of prices in int Ri, such that gi(t) is well-defined

for 2all t and i. The measured change in consumers' surplus along this
I

1
path is - r X Ei(p(t))' p' (t)dt, where p'(t) denotes the derivative
0 i=1

of the function p.

I11.1) Theorem Assume that each ug satisfies assumptions 1I.2.1 -
I I
1
I1.2.3. Then, -[ = 2E,(p(t))-p'(t)dt + 2 [p()- g, (p(1)
0 i=1 i=1
I

= PO« £, (O] = 7 ATTu @, () - u, (€, O]

i=1
Proof First of all, assume that gi(p(t)) is piecewise differentiable
as a function of t. Then for each 1 =1,...,I,
1

~"'r0€i(p(t)) «p' (B)dt + [p(1) - §.(p(1)) - p(0)- g, (p(0))]

1 d
ro p(t) * 5 &, (p(t))dt

1

' AT D, (p(E)) ¢ = £, (p(e))dt

1.1 g

NS
N FO e U G eAe = A Tlu (g, (p(D) - v (5, (R(O))].
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The first inequality above follows ffom integration by parts. The second
du, (g, (p(£))
equality follows from the fact that 5% = k{pk(t), for
K i

k=1,...,L, with equality if gik(p(t)) > 0. Hence,
Y
L du @ (p(6))
o

if each function gi(p(t)) is piecewise differentiable.

T%? gik(p(t)) =0 if Pk(t) > K; This proves the theorem
In order to complete the proof,.it is enough to show that the path
p(t) may be approximated arbitrarily closely by paths q(t) such that
gi(q(t)) is piecewise differentiable. g must be such that q(0) = p(0),
q(l) = p(l), and sup ”q'(t) - p'(t)[] is small. Since the theorem
=t=1

would be true for any such q, it would-be true for p.

For each subset A c {1,...,L}, let fiA(p) be defined by (II.5.4),
with u; substituted for wu. Recall that fiA is continuously differentiable,

so that fiA(p(t)) is cbntinuously differentiable as a function of t. Hence,
it is sufficient to perturb p so that the path p(t) leaves each region

of form {q € int R: \ gi(q) = fiA(q)1 only finiteiy often. The boundary
between two such regions is of the form C(i,A,B) = {q € int Ri \‘

€4 (@) =0, ifand only if kgA4, aui(gi(q) = MNP s if k€ 3B, and

Yk

Su, (€, ()
Byk

{1,...13, An3#@ and Ay B =1{1,...,L}.

>>\.ipk, if k#B 1, where A and B are subsets of

I will show that

C(i,A,B) 1is contained in a submanifold of RL of dimension (111.2)

‘less than L and is closed in the domain of definition g,, for

all i, A and B .
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It will then follow by a standard application of the transversality.theorem
that a perturbation of p exists which intersects each of the sets
C(i,A,B) only finitely often.
uy has a twice continuously differentiable extension, ugs to an

.. L . . . s e
open set containing R, - The existence of such an extension is, in fact,
the usual definition of differentiability for a function defined on a
closed set. Since assumption I1I.2.3 1is an open condition, I may assume

~

5 . . - 2~
that it applies to u, - That is, I assume that D 1Hﬁx) is everywhere

v
negative definite.

~

. . L -
Let fi,A\\B be defined as follows. For q € int R+, fi,A\\B(q) y

is the solution (if it exists) of the following equations:

\I\
3u, ()

S =2q, if k€ B and y =0, if k¢ B

Let ¢ (i,A,B) = {q € int R
C (i,A,B) c C(i,A,B).

I claim that

C(i,A,B) 1is a submanifold of RL of dimension L - \Ar]B \ I11.3)

and is closed in the domain of gi,

where ‘Ar\B | denotes the cardinality of A N B, Clearly, (III.3)
implies (III.Z2).

Observe that ;i,Aﬁ\B maps into the linear space V ={x¢€ RL\xk==0,
for k ¢ B 1 and that %(i,A,B) is the inverse image under %i,AN;B of
the linear subspace (xeV |Xk =0, if k € AnB}. Hence by the
jmplicit function theorem, E(i,A,B) is a submanifold if the derivative

A .

of fi,A\\B everywhere has full rank.

et
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In order to see that D 1 (d) has full rank, consider the

f:‘L,A\B
|B| % |B| matrix
\‘A
“F1a\B, g
“*x

It is easy to see that M = KiN—l, where

(a)

M

, where j and k wvary over B.

[T @)
|\ TS

%

where j and k wvary over B, Since

Dzui(y) is always negative definite, N_1 is negative definite and

hence invertible. This prov?s that D}i,Aﬁ\B (qj has full rank, and hence
proves (III.3) and so (III.2).

I do not spell out how one uses the transversality theorem, (Transversal-
ity theory is described in Abraham and Robbin [1], chapter 4.) The idea
is as follows. Since thé path p(t) is of dimemsion 1, it can be
perturbed so as to avoid all sets E(i,ArﬁB) of dimension less than L-1,
except at its endpoints. There are IL sets a(i,ArwB) of dimenéion L-1.
Order them and call them 6(1),...,6(IL). Perturb p(t) so that it.
intersects 8(1) transversally (that is, so that it is never tangent to
5(1)); I1f the perturbation is small enough, p(t) will still miss all
the sets E(i,A,B) of dimension less than L-1. Now perturb p(t) so
that it intersects 6(2) transversally. If the perturbation is small
enough, p(t) remains transverse to 6(1) and still intersects no set of
dimension less than L -1. Continuing inductively, one obtains a path
p(t) which intersects all the sets E(j) transversally and intersects no
set of dimension less than L - 1. Since it intersects each set a(j)
transversally, it does so finitely often.

Q.E.D.
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Consumers' surplus has been the subject of controversy for more than
a century. Most of the controversy has centered around the fact that con-
sumers ' surplus is a doubtful measure of welfare when the marginal utility
of money is variable. It is well-known that in the usual theory of
consumer demand, the marginal utility of money is censtant in only very
special cases. (See Samuelson [42].) The history of consumers' surplus
is reviewed briefly in Willig [50}, p. 589, footnote 1. Willig himself
gives estimable bounds for errors occurring when the marginal utility

of money does vary.

Acknowledgement I worked out the connection between the

permanent income hypothesis and consumers' surplus together with
Hal Varian. Also, together we found that consumers' surplus was
the potential function for the t3tonnement price adjustment process.

I had earlier shown only that there existed some potential function.
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Part III: Consumers' Surplus

The result proved in this section is probably almost self-evident
to someone well-versed in the theory of consumers' surplus. There are,

however, some slight technical difficulties in the proof.

L
Let u; = R, - (- ws0); Ki and gi’ for i =1,...,I, be as in

the previous section. Let p(t), where 0< t < 1, be a continuously
differentiable path of prices in int Ri, such that gi(t) is well-defined

for all t and i. The measured change in consumers' surplus along this
I
1
path is - r 5, Ei(p(t))' p' (t)dt, where p'(t) denotes the derivative
0 i=l
of the function p.

I1I.1) Theorem Assume that each u, satisfies assumptions II.2.1 =~
I I
I1.2.3. Then, -[ ' I&®(®)-p (dt + 3 [p(D)- g, (D)
‘ o i-1 i=1
I
RO g GO = T AT € (D) - uy (8 (R(0))]
i=

Proof First of all, assume that gi(p(t)) is piecewise differentiable
as a function of t. Then for each i =1,...,I,

1
i E;(p(0)) - p' (DAt + [p(D)- &, (p(1)) - p(0): £, (p(0))]
0

1 d
Fop(t) © 3o By (p(t)dt

1

; AL Du (e, (0(0) -+ S g, (p(E))at

1
Y

1

-1 d -
T w e @O = AT € () - v E RO
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The first inequality above follows from integration by parts. The second

du, (£, (p(1))
Oy

k=1,...,L, with equality if gik(p(t)) > 0. Hence,

1A

equality follows from the fact that Kipk(t), for

1 Ou; €, (p(E))
oy

if each function gi(p(t)) is piecewise differentiable.

d
T This proves the theorem

e B @(E) =0 1if p () >N
In order to complete the proof, it is enough to show that the path

p(t) may be approximated arbitrarily closely by paths q(t) such that

gi(q(t)) is piecewise differentiable. q must be such that q(0) = p(0),

q(l) = p(1), and sup ”q'(t) - p'(t)[[ is small. Since the theorem

O=st=1

would be true for any such gq, it would be true for p.
For each subset A c {1,...,1}, let f£,,(p) be defined by (I1.5.4),

with u, substituted for wu. Recall that f, is continuously differentiable,

iA

so that fiA(P(t)) is continuously differentiable as a function of t. Hence,
it is sufficient to perturb p so that the path p(t) leaves each region

of form {q € int Ri \ gi(q) = fiA(q)1 only finiteiy often. The boundary
between two such regions is of the form C(i,A,B) = {q € int Ri "

£ (D =0, ifand only if kea, Bui(gi(q) - Mp s if k€ B, and

Tk

aui(ii(q))
ayk

{1,...13, AnB#9 and A|)3B = {1,...,L}.

> Xipk, if kjf B 1, where A and B are subsets of

I will show that

C(i,A,B) is contained in a submanifold of RL of dimension (I1I.2)

less than L and is closed in the domain of definition g,, for

all i , A and B .
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It will then follow by a standard application of the transversality theorem
that a perturbation of p exists which intersects each of the sets

C(i,A,B) only finitely often.

~

ug has a twice continuously differentiable extension, u,, to an
1

Lo L . R .
open set containing R, The existence of such an extension is, in fact,
the usual definition of differentiability for a function defined on a

closed set. Since assumption II.2.3 4is an open condition, I may assume

. 2~
that it applies to u, - That is, I assume that D ‘HKX) is everywhere

negative definite.

~

Let £

. . L
fi,A\\B be defined as follows. For q ¢ int R

+ f,a\ (@ 7Y

is the solution (if it exists) of the following equations:

du, (¥)
*S;;—— = Xiqk, if k€& B and Vi = 0, if k % B
~ i L7 ~
Let ¢ (i,A,B) = {q ¢ int R, \ fiﬂa\B,k(q) =0, for ke AN B
C (i,A,B) c C(i,A,B).
I claim that
c(i,A,B) is a submanifold of R® of dimension L - | AN B | III.3)

and is closed in the domain of g,

where |ANB | denotes the cardinality of A N B. Clearly, (III.3)

implies (III.2).

Observe that £ maps into the linear space vV ={xeR

L
i,A\B 1% =0

x, =
for k 4 B 1 and that €(i,A,B) is the inverse image under fi,A\_B of
the linear subspace {x eV \xk =0, if k¢ AnBl. Hence by the

implicit function theorem, C(i,A,B) 1is a submanifold if the derivative

of fi,A\\B everywhere has full rank.
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In order to see that D

fi,A\B(q) has full rank, consider the

|B| x |B| matrix

~

Of, . (a)
M = E;A\E 2] , where j and k wvary over B.
k

It is easy to see that M = X.N-l, where

d ui(fiJA\B (a)) . '
N = % Sx , where j and k vary over B. Since
i Tk
Dzui(y) is always negative definite, N~ is negative definite and

hence invertible. This proves that D}i,Af\B(q) has full rank. and hence
proves (III.3) and so (III.2).

I do not spell out how one uses the transversality theorem. (Transversal-
ity theory is described in Abraham and Robbin [1], chapter 4.) The idea
is as follows. Since the path p(t) is of dimension 1, it can be
perturbed so as to avoid all sets a(i,AriB) of dimension less than L-1,
except at its endpoints. There are IL sets é(i,ArwB) of dimension L -1.
Order them and call them 6(1),...,6(IL). Perturb p(t) so that it
intersects 5(1) transversally (that is, so that it is never tangent to
a(1)). If the perturbation is small enough, p(t) will still miss all
the sets a(i,A,B) of dimension less than L-1. Now perturb p(t) so
that it intersects 6(2) transversally. If the perturbation is small
enough, p(t) remains transverse to 6(1) and still intersects no set of
dimension less than L-1. Continuing inductively, one obtains a path
p(t) which intersects all the sets 6(j) transversally and intersects no
set of dimension less than L -1. Since it intersects each set a(j)

transversally, it does so finitely often.
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Consumers' surplus has been the subject of controversy for more than
a century. Most of the controversy has centered around the fact that con-
;umers | surplus is a doubtful measure of welfare when the marginal utility
of money is variable. It is well-known that in the usual theory of
consumer demand, the marginal utility of money is censtant in only very .
special cases. (See Samuelson [42].) The history of consumers' surplus
is reviewed briefly in Willig [50], p. 589, footnote 1. Willig himself

gives estimable bounds for errors occurring when the marginal utility

of money does vary.

Acknowledgement I worked out the connection between the

permanent income hypothesis and consumers' surplus together with
Hal Varian. Also, together we found that consumers' surplus was
the potential function for the t3tonnement price adjustment process.

I had earlier shown only that there existed some potential function.
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