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Mortensen

1, Introduction

The term matching refers to any process by which persons and/or
objects are combined to form distinguishable entities with some com-
mon purpose that none camn accomplish aione. The allocation of
apartments to tenants, the assignment of jobs to workers or factories
to sites, the pairing of men and women in marriage and the formation
of collections of agents known as firms are all examples. Problems
of interest are those in which matchings take place voluntarily,
substitution possibilities exist in the sense that no individual agent
is an essential member of any coalition, and the '"value" of the joint
activity engaged in by a coalition can be divided among its members in
many ways. There are two questions of interest. For a given environ-
ment described by the set of agents, the '"value'" of each possible
coalition and the technology by which coalitions can form, what is the
"equilibrium" coalition structure? Second, is an equilibrium coalition
structure "efficient" in any meaningful sense?

At this level of generality, there is a small but diverse literature.
The topics include location problems, the theory of coalition production
economies, labor managed firms, marriage and divorce, and the theory of
local public goods. That the value of a coalition's activities depends
on the identities of its members and that the willingness of the members
of a coalition to participate depends on the division of that value
are essential ingredients. A further complication arises when the
identities and/or locations of potential members are not known with
certainty ex ante. In this case the existence of recruiting and

search costs create quasi~rents. How these are divided affects the



incentives that individual agents have to allocate resources to the
process of coalition formation. The focus of the paper is on this
aspect of the problem.

The problem of coalition formation under conditions of imperfect
and costly information is most closely related to the search theoretic
approach to market analysis. There are two recent papers on the topic,
one by the author [1978] and another by Diamond and Maskin [1979]. Both
papers are attempts to extend existing search theory in ways that allow
equilibrium analysis. The relatively simple problem of bilateral
matching, pairing, is treated. The divisions of the surplus attribut-
able to the existence of a match is by nature a bilateral bargaining
problem. A particular solution to this problem determines the value
of the match to each member of a pair. If values associated with the
potential pairings are not identical, then an individual agent neither
holds out for the best possible match nor sticks with an existing one
if a better opportunity presents itself. In the absence of a require-
ment to compensate each other in the event of a separation, separations
occur too frequently. In a partial equilibrium context, I show that
any matched pair maximizes their joint wealth, however they choose to
divide it, if each is required to compensate the other for the lost
share of the surplus in the event of a separation initiated by the
former.

Diamond and Maskin, using the descriptive language of contract law,
call an agreement concerning the division of the value of a match a
"contract", a separation initiated by one of the two parties a '"breach
of contract", and required compensation equal to lost rent 'compensatory

damages'. Compensation for breach voluntarily written into a contract



is called "liquidated damages'. By taking into account interactions
that I ignore, they show that liquidated damages are sometimes greater
than compensatory damages. They also study the issue of the efficiency
of the matching process under both damage regimes when the surplus
attributable to any match is divided equally between the members of

the pair.

The focus of the paper is on the relationship between the bargain-
ing outcome expected by the as yet unmatched pairs and the incentive
of each unmatched agent to invest in the process of forming matches.
This focus is resolved by using a model based on two distinguishing
assumptions. First, no search by matched agents is allowed. Second,
the aggregate rate at which matches form is endogenously determined by
the search intensities chosen by individual unmatched agents., The
breach of contract issue is ignored given the first assumption, but
the divisions of the value of a match that agents expect to be written
into contracts is crucia} as a consequence of the second. Finally,
following Diamond and Maskin, both "linear" and ‘"quadratic" matching
technologies are considered.

The method of analysis follows. Given a particular individually
rational solution to the bargaining problem that any two agents of
opposite type face when they meet, the problem of determining the search
intensity choices is formulated as a many person repeated game. The
game is played by all the unmatched agents of the two types. A constant
steady state fraction of matched agents of each type exists given a
bargaining outcome, any solution to the game and a specification of the

technology. Each agent's payoff function is the discounted flow of



expected future net benefits and benefits are transferable across agents.
The non-cooperative Nash solution to the game of search intensity choice
is imposed.

Not surprisingly the joint Nash search intensity choices and hence
the matching process that is induced by it are generally inefficient in
the sense that another possibility exists which would make all players
better off. If the probability that a match will form in a short time
interval is independent of the number of unmatched agents, the '"linear"
technology case, no unmatched agent searches intensively enough given
any fixed division of the value of a match. The externality involved
can be described as follows. If an unmatched agent searches more intensely,

he and some agent of the opposite type will form a match more quickly

on average. However, in contemplating his search intensity choice, the
agent only takes account of his own expected benefit which is propor-
tional to his share of the surplus obtained in the future match. The
share to be obtained by his future partner is ignored. An alternative
contract exists that will solve this incentive problem. Specifically,
when the agent responsible for the formation of a particular match is
allocated all the surplus attributable to it, then the joint wealth

of all players is maximized by the Nash solution to the game of search
intensity choice.

Given a ''quadratic" technology, the probability that a match will
form in a short time interval is proportional to the number of unmatched
pairs. The contingent contract just described does not yield an effi-
cient matching outcome in this case. Although the externality discussed
still exists, more intensive search by all other agents reduces the num-

ber of agents of the opposite type that each individual can expect to



find in the future. As a consequence of this second externality alone,
unmatched agents search too intensively. Interestingly, the effects
of the two externalities in combination cancel, given an appropriate
bargaining outcome. In one limiting case of the model, the Nash solu-
tion to the game of search intensity choice maximizes the total wealth
of all the searching agents if every partnership divides the surplus
equally. More generally, the agent responsible for the formation of
each match must be allocated a share of its surplus that lies between
one-half and unity.

In sum, matching outcomes depend on the bargains that agents not
yet matched expect to negotiate. Although there is no reason to be-
lieve that one individually rational outcome will occur rather than
another, the incentives induced by virtually all motivate inefficient
search. However, a particular bargaining outcome does exist that
yields an efficient matching process in each example considered in
the paper. The imposition of this contract can be viewed as an
assignment of property rights that would induce a cooperative solution

to the game of matching.



2. Matching Technologies

In this section we sketch an aggregate matching model, formally
a stochastic process of the 'birth/death" type. Following Diamond and
Maskin, the problem is one of forming pairs composed of agents of two
different types for the special case in which the numbers of agents
of both types are equal. Let m denote the common number of agents
of the two types or, equivalently, the number of possible pairs. Let
n denote the number of unmatched pairs. The state space for the match-
ing process is the set of all possible values that n can take on, the
set {0,1,...,m}.

Let a(n) denote the average instantaneous rate at which new matches
form and b(n) denote the average instantaneous rate at which new un-
matched pairs enter the process given that there are n unmatched pairs
at the moment. ( Both of these functions are specified in detail later.)
Hence, the probability that exactly one new match will form in a short
time interval of length At is approximately a(n)At and the probability
that one new unmatched pair will enter the system is b(n)At. Since
either or neither of these two possibilities will occur during the

interval with virtual certainty for sufficiently small values of At,

we have
Pt+At(O) = Ata(1)P (1) + (1-Atb(0))Pt(0) + 0(at) !
Ptht(n) = Ata(n+l)Pt(n+l) + Atb(n—l)Pt(n—l)
+ [l—Ata(n)—Atb(n)]Pt(n) + 0(AE) !,
n=1, 2, ...,m
m
Y P (n) =1,

n=0



where Pt(n) is the probability that there will be n unmatched pairs at
time t and 0(At)!/At - 0 as At > 0. The first equation reflects the
fact that there can be no ummatched pairs at the end of the interval
(t,t+At) only if either there were one at the beginning and a match
formed during the interval or there were none at the beginning and
none entered during the interval. The second equation reflects the
fact that either a "birth" or a "death" can occur or neither does
when n > 0. The last requirement reflects the fact that [Pt(O),
Pt(l),...,Pt(m)] is the probability distribution over possible states
at time t.

Divide both sides of the first two equations by At, rearrange
terms appropriately and take the limits as At - 0. The result is the

system of differential equations

P(0) = a(1)P(1) - b(0)P(0)
é(n) = a(n+l)P(n+l) + b(n-1)P(n-1) - [a(n)+b(n)]P(n),
n=1,2,...,m
m
) P(n) = 1.
n=0

It is well known that the solution to this system converges to a unique
steady state as t - @ if (a(n),b(n)) > 0. (See Feller 1968, pp. 454-
458 .) The limiting distribution is the particular solution to the dif-
ference equation

(L a(n+l)P(n+l) + b(n-1)P(n-1) = [a(n)+b(n)]P(n)

associated with the boundary conditions



(2a) a(1)P(1) = b(0)P(0)
and
m
(2b) Y P(n) =1
n=0

For each n, the limiting probability is the relative frequency with
which the process is in state n along any sample path of infinite

length.

I consider two alternative specifications 6f the matching rate a(n),
linear and quadratic. 1In the linear case, the probability that some one

of the n wunmatched pairs meet in a short time interval is independent

of the number of unmatched pairs. Hence, the average instantaneous

rate at which pairs form is proportional to n s i.e.,

(3) a(n) = an.

where aAt is the probability that a particular pair of the n possibili-
ties form a match. In the quadratic case, the proba-

bility that a particular umnmatched pair will form a match during a
short time interval is proportional to the fraction of agents of

either type that are not matched. Hence,
' _ _ 2
3" a(n) = a(n/m)n = an”/m.

These alternative specifications can be interpreted as follows.
Let o denote the frequency with which each ummatched agent of type

1 meets agents of type 2 and let g

) denote the frequency with which

each ummatched agent of type 2 meets agents of type 1. The contact

frequency per ummatched pair is the sum



(4) o= o + o

If matched agents of the opposite type are never met (3 ) obtains.
However, if all matched and unmatched agents of the opposite type are
contacted with equal probability, then (3') obtains because n/m is
the probability that a contact made will be ummatched. Hence, in the
quadratic case matched and unmatched agents can't be distinguished
ex ante.

For the specification of b(n), the rate at which new unmatched
pairs enter the system, we suppose that existing matches dissolve at

an exogenous average rate B. Hence
(5) b(n) = B(m-n)

where 1/8 is the expected duration of a match. In other words,

B is. the "turnover' rate.

In principle one can solve (1) for the explicit functional form
of the limiting probability distribution over the states of the process
for each specification of a(n) and b(n). For our purpose, it is
enough to derive an expression for the expected fraction of unmatched
pairs. Since we are primarily interested in the large numbers of agents
case, this task is facilitated by an appeal to the law of large
numbers.

Given (2a), an inductive argument applied to (1) yields
(6) P(n) = [b(n-1)/a(n)]P(n-1), n=1,...,m,

in general. Of course,



10

m m m+1l
En = 2 n P(n) = 2 n P(n) = 2 n P(n)
n=0 n=1 n=1
m
= Y (a+l)P(a+l)
n=0

by virtue of the fact that (2b) implies P(m+l) = 0. Hence, in the

linear case (3), (5) and (6) imply

m
En= ) (n+l)[B(m-n)/c(ntl)]P(n)
n=0
m
= (8/a) ) (@-n)P(n) = (B/0)[m-E n]
n=0
or, equivalently,
n En/m = B8/(o+B).

Indeed, experts will recognize that P(n) is the binomial dis-
tribution with "probability of success" B8/(o+8) and''sample'size m.

Hence, the variance of n/m,
=, [8/(at+8) 1[1-8/ (aB) 1,
m

vanishes as m > »,

The explicit form of the distribution function is not so trans-
parent in the quadratic case but the law of large numbers still
applies. The latter fact allows us to derive the limiting value of

E (n/m) using the following argument. First, note that

m m m+1l
En’z J o’ = J a’Pa) = § n’P(n)
n=0 n=1 n=1
T 2
= 2 (n+1) "P(n+1)
n=0

by virtue of (2b). Consequently, (3'), (5) and (6) imply
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2 = 2 2
En” = ) (o+l)[mB(m—n)/o(n+l)“1P(n)
=0
m
= (mB/a) ) (m-n)P(n) = (mB/a)(m-E n)
n=0

or equivalently
E (n/m)2 = (B/a)[1-E n/m].

As the variance of n/m, E (n/m)2 - [E n/m]z, vanishes as m > =, the

mean is approximately equal to the positive root of the quadratic
2
[E n/m]” + (B/a) E n/m - (B/a) = 0

when m is large. In other words,

" B (a/m) = 2{ B/ + 4@/ ] - S/

Equations (7) and (7') imply that
(8) E (n/m) = £(B/a)

in both cases where f(x) is a strictly increasing concave function
such that £(0) = 0 and f(«) = 1. Furthermore, the elasticity n(x)

= xf'"(x)/f(x) is decreasing and tends to zero as x - « in both cases,
but

if linear,

n(0) =
if quadratiec.

NI =

In other words, the expected fraction of unmatched agents is approxi-

/2

. . 1 . .
mately B/o in the linear case and (B/a) in the quadratic when the
turnover rate, B, is small relative to the contact rate, a. The specifi-

cation assumed by Diamond and Maskin [ 1979] is equivalent to this
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approximation. As the observed fraction of unmatched agents is small
in many contexts, the unemployment rates in labor markets and the
vacancy rates in the markets for apartments are examples, its consider-

ation is not without interest.
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3. Matching Equilibria

An equilibrium theory of search intensity choice by unmatched
agents is developed in this section. Since these choices determine
the stochastic rate at which matches form, specifically the parameter gy
in the previous section, the theory provides a behavioral foundation
for studying bilateral matching processes. The model is special in
the sense that only ummatched agents are permitted to search. This
restriction is imposed to permit a clearer view of issues relating
to efficiency of matching processes.

An agent's search intensity is defined as the expected frequency
with which agents of the opposite type are contacted. The cost of
search per unit time period, ci(s), i =1 and 2, is an increasing
strictly convex function defined on the positive real 1line with the
property that ci(O) = 0. The argument s; is the expected number
of contacts made by the agent per unit time period. Hence, siAt is
(approximately) equal to the probability that agent i will initiate
a contact with an agent of type j # i in a short time interval of
length At. Hence, At(sl+sz) is the probability that a particular
wmatched pair will meet during the interval in the linear matching
technology case. In the quadratic case, At(sl+sz)n/m is the same
probability.

Ex ante all unmatched pairs are identical in the sense that the
expected total value of any match is the same for all possible pair-
ings. Prior to a face to face meeting nb one has information on
which to base an inference concerning how the value of a particular
match will differ from that of any other. However, ex post a sta-

tistic x € [0,1], which we interpret as the 'quality" or "fit" of the
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match, is observed. It determines the value of the match w(x). In
other words, at the actual meeting of the two agents the ''goodness of
fit'is determined. This process of 'getting to know one another'is
viewed as a random draw from a distribution characterized by the
c.d.f. F(x). This formalization of ex post heterogeneity is due to

Wilson [1979].

Consistent with the interpretation of x as an indicator of qual-
ity, w(x) is a positive increasing continuous function on [0,1]. The
distribution function F(x) is also assumed to be continuous.

A division of the value of a match between the members of a part-
nership contingent on the fit realized is a vector function (wl(x),
WZ(X)) where wi(x), i =1 and 2, is the allocation obtained by the
agent of type i. Ultimately, the division is determined as an outcome
of the bargaining that takes place between the members of actual pairs
after they meet. For now, the division and the c.d.f. F(x) are
regarded as given, the same for all potential pairs, and known to all
unmatched agents.

Let v.(t), i = 1 and 2, denote the expected present value of
i

an agent's future net stream of benefits given that he pursues an
optimal search strategy. The agent's choice problem is one of
dynamic programming and vi(t) is the value of the agent's optimal
program at time t. We wish to apply Bellman's principle of dynamic

optimality. To do so, we must specify the outcomes of all events
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that can occur during a small future time interval of length At.

I start with the case of a linear matching technology. The
probability that a particular agent of type i will meet some unmatched
agent of type j is At(s+sj(t)), j # i, where s is the search intensity
to be chosen and sj(t) is the search intensity common to all agents
of the opposite type. Suppose that the latter is known to our agent
and is regarded as given. If the agent doesn't meet another of oppo-
site type during the interval, then he continues to search which has
expected value vi(t+At) by definition. If a prospective partner
is met during the interval, then a fit x ¢ [0,1] is realized and
the pair considers the split (wl(x),w (x)). An individually rational

match is consummated if and only if
9) (wl(x),wz(x)) z_(vl(t+At),V2(t+At)).

Call A(t+At) C [0,1], the subset of qualities defined by these inequal-
ities, the set of acceptable fits. Bellman's principle then requires
that our agent's optimal strategy and its value, given the same for
agents of the opposite type, satisfy

(10) Vi(t) = :;g {-btc, (s) + ié_Zf (s+sj)[Pr{x e A(t+Aat)}

+ E {wi(x){x e A(t+at)} + Prix £ A(tHat) v, (t+bt) ]

1
* Tirat

[l-At(s+sj)]vi(t+At)}, j# i, i =1 and 2,
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where Atci(s) is the cost of search incurred by the agent during the
interval and r is the discount rate common to all agents.

A joint search strategy (si(t),so(t)) that solves (10) for both i =1
and 2 is a  candidate for a Nash solution to the game of search
strategy choice played by unmatched agents. Because the supergame is a se-
quence of the same instantaneous game continuously repeated, the
solution is stationary. By requiring v(t) = v(t+At) for all (t,At)
and by making the obvious limiting argument, (10) can be made to
yield the following necessary and sufficient conditions for a non-

o

cooperative stationary Nash search intensity pair denoted as (s;,sz).

Letting (v;,v;) denote the associated payoffs obtained,

(10.a) rvi = mixo [(sl+s;)Pr{x £ Ao}[E{wl(x)|x £ Ao}—v;] - cl(sl)]
l_

and

(10.b) rv; = mfxo [(s:+sz)Pr{x € AO}[E{WZ(X)]X £ AO}—vg] - CZ(SZ)]

2 Z
where A0 is the set of acceptable fits defined by (9) when vi(t+At).',
=v,, 1=1and 2. In a Nash equilibrium every unmatched agent selects
his own search intensity to maximize the expected net benefit flow
attributable to his own search given the optimal choices made by all
other unmatched agents.

Now consider the bilateral bargaining problem that two agents of
opposite type face when they meet. Because the division (wl(x),wz(x))
is arbitrary at this point, it can happen that the realized fit x is
not in the accéptaﬁie set A% even though w(x), the total value of a
match, exceeds the sum of both agents' values of continued search,

vi + v;, However, in this situation an alternative division of the



17

value of the match exists which would make both agents better off by
inducing a consummation of the match even if both expect the division
(wl(x),wz(x)) to obtain for any alternative matching opportunity.

In other words, only divisions that are feasible and both individually

and jointly rational; i.e.,
(11.a) w(x) = wl(x) + Wz(x)

and

) o o o
1+ \2 ='(wl(x),w2(x)) Z_(vl,vz), Vx ¢ [0,11,

(11.b) wx) > v
can be equilibrium outcomes of the bilateral bargaining problem that
unmatched agents face when they meet.

The existing theory of symmetric bilateral bargaining does not

provide any generally accepted restrictions on outcomes beyond

those given in (11). Hence we must be content with the following defi-
nition of equilibrium.:. --

Definition 1. An allocation of the value of every possible

o o 2 , o o 2
match (wl,wz) :+ {0,1] +£R+ and a search strategy pair (sl,sz) gﬂ&+

is an equilibrium solution to the combined non-cooperative/bargain-

ing game of matching if they satisfy

(12.a) rvi = Slm;%O [(sl+sg)E max[wi(x)—vi,O] - cl(sl)]
(12.b) rvg = Szm;"o [(s‘l’+s2)E max [w) (x) v, ,0] = ¢,(s,)]
and

(13.a) v (x) +wo(x) = w(x), Vxe [0,1]

(13.b) w(x) 2 vy + vy = (W (0, X)) > (v],vy)

given a linear matching technology.
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The equations of (12) are implied by (10) and (11) and the equations
of (13) are a restatement of feasibility and individual rationality
respectively. In sum, an equilibrium search intensity pair is a Nash
strategy relative to a bargaining outcome and the bargaining outcome
is feasible and individually rational given the non-cooperative Nash
payoffs induced by it.

Because (13.a) implies that the converse of (13.b) is true, the

set of equilibrium acceptable fits is
A° = {x ¢ [O,l]]w(x) 3_v;+vg}.

. . . . . . o
Because w(x) is non-decreasing in x,a critical reservation fit x < 1

exists such that all fits x Z_Xo are acceptable. The minimally accept-

able fit is the smallest solution to

o}
2°

(14) w(xo) = v; + v
As a consequence of the well known indeterminacy of the bilateral
bargaining problem, many equilibria exist in general. To illustrate

this point, consider the following family of divisions of the value of

every possible match as candidates for equilibrium bargaining outcomes:

(15.a) w;(x) = vi + S[W(x)-vi—vg vV x e [0,1],
(15.b) wg(x) = vg + (1—6)[w(x)-v]O_—v; V x e [0,1].

This rule satisfies both conditions of (13) for every choice of

8 £ [0,1]. Obviously the family is the class of rules--divide the
surplus of the match between the two types of agents according to
the shares 6 and (1-8). The special case of 6 = 1/2 is Nash's [1950]

solution to symmetric bilateral bargaining problems.
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Proposition 1l: Given a linear matching technology, a unique

non~trivial matching equilibrium exists for every 6 e [0,1] if
either (i) ci(O) < BE w(x) or (ii) cé(O) < (1-8)E w(x).

Proof. Combine (12) and (15) to obtain

(16.a) rvi = Siéi%O [(sl+s§)eE max[w(x)fvo,O] - cl(sl)]
(16.b) rvg = szm_;“_xo [(s(])_+sz)(l—6)E max[w(x)-v,0] - e, (s,)]

where v° = vi + vg. Since every element of the class of rules defined
by (15) satisfies (14), we need only show that unique strategy/payoff
pairs exist that solve (16) for every 6 e [0,1]. As the cost functions
are strictly convex, the solutions to the two optimization problems im-~
plicit in (16) are unique for an arbitrary value of vo, call it wv.

Let (sl,sz) = (cl(v),cz(v)) denote the functions implicitly defined

by the following sufficient conditions for optimality:

(17.a) ci(sl) > 8 E max[w(x)-v,0], equality if s, > O,

1

(17.b) Cé(sz).i (1-8) E max[w(x)-v,01], equality if s, > 0.

Since ci(sl) and cé(sz) are both continuous and increasing, the implicit
functions defined by (17), ol(v) and oz(v), are both continuous and non-
increasing. Furthermore, ci(sl) > 0, cé(sz) > 0 and w(l) > w(x)
v x ¢ [0,1] together with (17) imply ol(w(l)) = oz(w(l)) = 0. Finally,
the hypothesis implies either ol(O) > 0, 02(0) > 0 or both.

An inspection of (16) and (17) reveals that vO = v? + v is a

1 2

fixed point of the continuous function ¢(v) defined by
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(18)  To(v) = _ "2F [(sy0,(v))e E[w(x)-v,0] - c,(s))]
1 -
+ szmgxo [(0,(v)+s,) (1-8) E[w(x)-v,0] = c,(s,)].

Since (si,sg) = (cl(vo),c (vo)), it suffices to establish that ¢ (v)
has a unique fixed point. Because E w(x) > 0 and cl(O) = c2(0) = 0,
the fact that either 01(0) >0, 02(0) > 0 or both implies ¢ (0) > O.
Furthermore, ¢(w(1l)) = O because cl(w(l)) = cz(w(l)) = 0. Hence,
the continuity of ¢(v) is sufficient to guarantee a vo = ¢(v°)
¢ (0,w(l)). Finally, the fixed point is unique because (18) and
ci(v), i =1 and 2, non-increasing imply that ¢(v) is decreasing.
The hypothesis is necessary as well as sufficient for a non-
trivial equilibrium. If both (i) and (ii) fail, then the equilibrium
is (S;’S;) = 0. No unmatched agent searches because the marginal
cost is too high relative to the expected benefit of trying to find
a match.

In equilibrium, the matching rate is
(19) a0= (s;+s§)Pf{x £ AO} = (si+s§)[l - F(xo)]

where x° is the marginally acceptable fit as defined by (14). 1In
other words, the equilibrium matching rate is equal to the product
of the equilibrium meeting rate and the equilibrium probability
that a random meeting of an unmatched pair will yield an accept-
able match. Both of these and, hence, the equilibrium steady state
fraction of unmatched agents E (n/m) = B/(a+8) vary with 6, the
shares of the surplus obtained by the two agent types.

Given an appropriate modification of the equations of (12), the
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existence of a matching equilibrium can also be established for
the quadratic matching technology. During a short interval

of length At, the probability that an individual agent of type i
will either find or be found by some unmatched agent of the other

type, § #1, is
At[s+sj 1(n/m)

Here s is the agent's own search intensity, sj is the common inten-
sity at which agents of the other type search, and n/m, the fraction
of unmatched agents of each type, is both the probability that an
agent found by our individual is not matched and the probability
that some one of the n unmatched agents of the other type will find
our individual. With large numbers of agents, n/m is (almost) non-
stochastic and equal to f£(R/a) in a steady state, where f(-) is the
function defined by (7').

By virtue of Bellman's principle, a particular agent of type i

selects an intensity that solves

_ max At o]

Vi T g > 0 {-At ci(s) + l+rAt(s+sj)f(B/a) E max[wi(x),vi]
F = [1 - Bt(s+s,)E(B/) Iv, )

T+rit 5784 Vi’e

providing that bargaining outcomes are individually rational. If
the search intensities chosen by all other agents are known and
regarded as given, then the joint solution for all agents is the
non-cooperative Nash search intensity pair (si,s;) with associated

payoff that satisfy
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(20.a) rvi = o mixo [(sl+sg)f(8/u°) E max[wl(x)—vi,O] - cl(sl)]
l —

(20.b) rvg = [(s +s )f(B/u ) E max[w (x)- v ,0] - c, (5.)]
32 2

where

(21.a) 0® = (s;+s<2))[l - F(x9)]

and

(21.b) x° = W_l(vo).

Replacing the conditions of (12) with (20) we obtain sufficient con-
ditions for a matching equilibrium in the quadratic case.

Consider again the family of feasible and individually rational
bargaining outcomes that divide the surplus of every match according
to fixed shares, those defined by (15) for all values of 68 ¢ [0,1].

Proposition 2: Given a quadratic matching technology, a non-

trivial egquilibrium exists for every 6 e [0,1] if either (i)
ci(O) < 8 E w(x) or (ii) cé(O) < (1-8) E w(x).

Proof. Given (15), the equations of (20) can be rewritten as

0 _  max
(22.a) rv; = 5y >0 [(sl )f(B/u )0 E max [w(x)- —~° ,0]-c (sl)]
o max o
(22.b) v, = 5, > 0 [(sl+sz)f(8/a )(1-8) E max [w(x)-v",0]-c (851
where v° = vl+v2 Again consider the necessary and sufficient con-

‘o . X , . o
ditions for an optional pair (sl,sz) given an arbitrary v , denoted

as v. These are



23

(23.a) ci(sl) = £(B/x) 0 E max[w(x)~v,0], equality if s1 > 0,

(23.Db) c;(SZ) =z f(B/a) (1-0)E max[w(x)-v,0], equality if s, > 0.

Because f(B/a) is increasing and o = (s, + sz)[l-F(ﬁ;%v))] 5

1

the equations define continuous functions (cl(V), cz(v)) such that

(01(0), 02(0)) > 0 and ol(W(l)) = GZ(W(I)) =0.
Hence, v(w(1l)) =0 and v(0) >0 so that a fixed point vo = d(vo)

e (0,w(1l)) exists where ¢@{v) 1is the function defined by

ré(v) =Sm:xo[ (s1 +02(V)f(8/oc(V))  E max [w(x) - v,0] —cl(sl) 1

=
max
5,20 [ (o, (v) + s,)£(B/a(v)) (1-0) E max [w(x) - v,0] -c,(s,) |

and -1
a(v) = [oc1(v) +6,(V] [1-Fw " (v)) 1]
Because the functions (Ol(v), cz(v)) need not be non-increasing, the
argument used to establish uniqueness in Proposition 1 does not go

. . o o O, _ o o
through. Nevertheless, for every fixed point v ,(sl,sz) = Q;l(v ),gz(v ))

is an equilibrium search intensity pair.
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4. Matching Efficiency

In the linear matching technology case, unmatched agents do not
search intensively enough in any of the equilibria identified in the
previous section. Specifically, an intensity pair (sl,sz) > (s;,sg)
exists that is strictly preferred by every ummatched couple. Because
the matching frequency is determined by the search intensities of
all agents, an increase in that of one type augments the value of
search to every member of the other type. However, no individual
agent takes account of this external economy. In this section, I
show that this externality is internalized by the bargaining outcome
that allocates all the surplus attributable to every match to the
agent responsible for making the match.

Although this same externality is present given a quadratic
technology, there is another with a countervailing effect. It
arises because the expected meeting rate is proportional to the
fraction of unmatched pairs which is itself endogenously deter-
mined as a decreasing function of the sum of the intensities with
which the two agent types search. 1In the absence of the first
externality, more intensive search by all other agents reduces the
return to search for each individual by reducing the probability that
an agent met will be unmatched. Interestingly, if the surplus
attributable to every match is shared equally, then the effect of
the second externality just cancels that of the first in the limit
as the fraction of ummatched agents tends to zero. In the general
case, joint wealth maximization requires that the matchmaker receive

the larger share of the surplus attributable to each match.
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The principal purpose of this section, then, is to show that most
equilibria are inefficient but that joint wealth maximizing equilibria
exist if a more general class of feasible and individually rational
bargaining outcomes is allowed. The class includes those that make the
division of the surplus attributable to every match between the part-
ners contingent on the identity of the agent responsible for making

the match.

To formally establish that every equilibrium identified in the
previous section is inefficient given a linear technology, we use the
fact that the conditions of (16) implicitly define two functions
v,(s,.) and v,(s.) such that v° vo) = (v (so) v (so)). Both are

1°°2 271 1272 1202

clearly continuous and strictly increasing due to the external economy
already discussed. If (si,s;) > 0, then these functions and the first
order conditions for a Nash strategy choice by members of each agent
type implicitly define the equilibrium intensity pair (si,s;) as the

intersection of the two reaction curves. Formally, (16) and (17) imply

ci(sg) = E max [wi(x) - vI(sg),O]

and

cé(sg) E max [wg(x) - vz(si),O].

Let gi(sj), j # i, denote the two reaction curves implicitly defined

by these two equations. As ci(si) and vi(sj) are all strictly in-
creasing, the optimal choice by one type given the other's intensity

gi(sj) is continuous and decreasing as illustrated in Figure 1. The

o o . .
curves labeled vy and v, in the Figure represent the intensity pairs
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that yield the same value of search to agents of type 1 = 1 and 2 as

that obtained at (si,sg). Since the payoff realized by each type in-
creases with the other's search intensity, all intensity pairs in the

shaded region in Figure 1 are strictly preferred by agents of both

types to the equilibrium (si,sg).

Figure 1 : Nash Equilibrium

S' A
Q
si
o 5 S,
The average quality of the matches that form in equilibrium is
also too low. Since v = vl+-v2 > v0 = vi+vg for any intensity pair in

. -1 .
the preferred region, the minimally acceptable fit w (v) is larger

than in equilibrium. As a consequence, the matching rate
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o = (sl+s Y[1 - F(w (v))] can be too small even though (s +s )>-(s +sz)
In other words, the existence of the externality does not unambigu-
ously imply that the equilibrium fraction of unmatched agents

B/(a°+B) is too large except in the special case in which all

matches have identical values ex post (w(x) =wV x ¢ [0,1]).

No ummatched agent searches intensively enough because none
expects to receive the net social benefit attributable to the forma-
tion of a match, w(x)—vl v2, in the future in return for the marginal
investment required to seek out some agent of the opposite type.
Viewed from this perspective, it would appear that the externality
could be internalized by allocating the entire net benefit, the
surplus attributable to such a match, to the agent who succeeded
in making the contact responsible for the formation of the match.
This particular allocation rule is a special case of the class of
bargaining outcomes that are contingent on this random event.

Let Wij(X) denote the value of a match with fit x € [0,1] to the
agent of type i given that the pair met as a consequence of a con-
tact made by the agent of type j. The argument provided in the pre-

vious section justifies the following generalization of the equili-

brium concept.

Definition 2. An allocation rule (wij,ng) : [0,1] QJRi, j =1and

2

2, and a search intensity pair (s;,sz) s]§+ is an equilibrium solution to

the non—-cooperative/bargaining game of matching given a linear technology if

o max
(24.a) rv, = s, 5 0 {sl

E max [w (x) v ,0]

+ 2 E max [w (x) V ,0] - cl(sl)}
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o _ 0, .0
(24.b) v, = {s; E max [WZl(x) v2,0]

+ s, E max[wgz(x)—v;,o] - cz(sz)}

and for j = 1 and 2,
_ o 0
(25.3) w(x) = wlj(x) + W2j(x) vx e [0,1]

(25.b) w(x) 3_vi+v =>(wij(x),w;j(x)) 3_(vi,v;) Vx e [0,1].

o
2
The conditions of (24) define a non-cooperative Nash search intensity
pair and reflect the fact that the surplus obtained by each party to
a match is contingent on who made the contact. The conditions of
(25) require that the contingent allocation of the value is feasible
and individually rational. One can easily establish existence in the
sense of Proposition 1 for every rule that divides the surplus
attributable to every match according to shares contingent on the name
of the agent making the match.

An inspection of (24) reveals that the externality is still pres-

ent except in the special case

o o o e . ,
v, + wx) - v, - v if j = 4,
o i 1 2
(26) w, (x) =
1_‘] (o] . . .
vy if § # 1.

This rule obviously allocates all the surplus of every match to the
agent responsible for the contact that led to its formation. Given

(24) and (26), we have

rv° = (sl,sj?xz o [(s7#s,) E max [w(x)=v°,0] = ¢ (s;) = c,(s))]

o 0, 0
where v = vl+v2. Hence,

Proposition 3. Given a linear technology, the joint wealth of

every ummatched couple is maximum in equilibrium if and only if all
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the surplus associated with every match is allocated to the agent
responsible for its formation.
Given a quadratic matching technology, the analogous definition

of an equilibrium is obtained by replacing the conditions of (24) by

(27.a) rv; = Slmifo {slf(B/ao) E max[w;l(x)—v;,o] - cl(sl)
+ st(B/ao) E max [wiz(x)—vz,O]}
(27.b) rvg = Szégfov{szf(s/ao) E max[wgz(x)—vg,O] - CZ(SZ)

) o o 0
+ slf(B/a ) E max[WZl(x)-vz,O]}
where f(B/a) is the increasing function defined by (7') and
(28) 0® = (sPrsPIL - FGw ' (vO))]

is the equilibrium rate at which acceptable matches form. Again
equilibrium can be established for any rule that allocates the
surplus according to shares contingent on the name of the agent
responsible for the contact using the argument of Proposition 2.

An inspection of (27) reveals the following fact. Were the
efficient allocation rule for the linear case (wzj = vz, i # i)
adopted, then every agent searches too intensely. The reduction of
the probability that an agent contacted in the future will be
unmatched attributable to more intemnsive search by all (£'(s) > 0)
is not taken into account by any individual. This observation
suggests that some rule that allocates less than the entire surplus
to the agent responsible for making a particular match might have

the desired incentive properties.
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The joint wealth maximizing problem is

(29.a) vk = (Sl’zz§ > 0 {(sl+sz)f(6/a) E max [w(x)-v*,0]

= ey(sy) = cy(sy)d

(s+s3)£(B/a%) E max [w(x)-v¥,0]-c,(s§)-c, (sh)

where

(29.b) o= (s;+s,)[1 - Fw v 1.

1

As f£(+) is an increasing concave function such that £(0) = 0 by
virtue of (7'), the right hand side of (29.a) is strictly concave
in (sl,sz). Hence, the following first order conditions are suffi-
cient to determine the search strategy pair (si,s%) that maximize

the sum of the values of search v, +v_.

12
V(o ; ' o (8
(30) i 2 [£(s/an) + (spraps (s/%);é#%}
9(s,+s,)
. ——gé——g E max [w(x)-v#*,0]
i

= [1 -~ n(B/a*)]1f(B/a*) E max [w(x)-v#*,0],

with strict equality holding if si >0, i = 1 and 2, where n(x)

x£"(x)/f(x) is the elasticity of £(*). As n(0) = 1/2 and £(0)

0 while n(») = 0 and f(«*) = 1 by virtue of (7'), one can establish

that v* exists by applying the now familiar fixed point argument.
Equations (29) and (30) imply that the joint wealth maximizing

intensity pair.'is a Nash solution given the following feasible and

individually rational contingent bargaining outcome:
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(v + (1 - n(Blem)][w(x)-vivo]  if j = i,
G W, (x) = {
H chl’ + n(B/a*) [W(X)-V%VE if j # 1,

i=1and 2. Given this rule, every Nash solution (s;,s;) satisfies

() 1= ) 5 o (eIl - n(B/an)12(8/a%)
> 2 -

* E max [w(x)—vo,O] - cl(sl) - CZ(SZ)}
+ (sSHsn(B/a) £(8/0°) E max [w(x)-v°,0]

o o o
where v = v +v

115 by virtue of (27). Consequently,

(33) Ci(Sz) > [1- n(B/a*)]f(B/ao) E max [w(x)—vo,O]

with strict equality holding it sz >0, i =1 and 2.
Clearly, every solution to (29) and (30) satisfies (32) and (33).
Hence,

Proposition 4. Given a quadratic technology and a contingent

bargaining outcome that allocates to the agent responsible for making
every match the share 1-n(B/a*) of its surplus, a search intensity
pair that maximizes the joint wealth of every ummatched couple is a
Nash solution to the game of search intensity choice.

Because of the possibility of multiple equilibria (see Propo-
sition 2), the converse isn't guaranteed. However, if there is an
inefficient equilibrium, neither agent type searches intensively
enough.

Proposition 5. Given the hypothesis of Proposition 4, the joint

wealth maximizing search intensity pair (si,sg) is unique and at least
as large as (si,s;), any Nash solution associated with the allocation

rule (31).
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Proof. Because 1/2 > n(B/a) > 0 and ci(sl) and cé(sz) are

continuous and strictly increasing, the functions V(Sl’SZ) defined by
- ' ' - % - -
rv(s ,8,) = [s1¢7(8;) + s,c.(s,)1/[1 = n(B/a®)] - ¢ (s)) - ¢,(s,)
is continuous and strictly increasing.

% = * ok
v V(Sl’sz)

and

' * = 1 * 1 % %
Cl(Sl) CZ(SZ) if (Sl’sz) >0
by virtue of (29) and (30), while

o _ o o
v o= v(sl,sz)
and

1092y = ~1'(° X o o
cl(sl) CZ(SZ) if (sl,sz) >0

by virtue of (32) and (33). Hence, the fact that v* is unique and

such that v¥* Z_vo by definition implies (sf,sg) unique and (sf,sg)

o
2)'

Furthermore, Proposition 5 provides the means needed to estab-

> (s],s Q.E.D.

lish the following converse of Proposition 4.

Proposition 6. Given the hypothesis to Proposition 4, a Nash

solution to the game of search intensity choice maximizes the joint
wealth of every unmatched couple if all matches are identical ex
post (w(x) = wV x e [0,1]).

Proof. Because all matches are acceptable (w Z_vo) in equili-

brium o° =(so+so)[l - F(W‘l(vo)] = si+s .

17S, Hence, under the hypothesis,

(33) can be rewritten as
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(36.a)  el(s)) > [1 - n(B/a®)1£(B/(s]+s))) [w=v°],
equality if si > 0,

and

(34.5)  cy(sy) > [1 - n(B/a®)I£(B/(s]+s))) [w-v°],

equality if s; > 0.

Because f(B/a) is strictly increasing and continuous and ci(sl) and
cé(sz) are both strictly increasing and continuous, the solution to
(34) is unique for every choice of v° and decreases as v° increases.
As (s*,s%*) solves (34) when v = vk, vk > v° implies (s¥*,s%) < (so,so),
1°72 1°72 1°72
which contradicts Proposition 5. Q.E.D.
One way to interpret these results follows. When the agent who
makes each match receives the entire surplus, a joint wealth maxi-
mizing equilibrium is possible if the agent's share [w(x)—vo] is taxed
at the proportional rate n{(g8/a*) and if the proceeds of the tax are
redistributed to the other agent. The optimal tax rate depends on
the joint wealth maximizing meeting rate a* = (sf+s§)[1 - F(w—l(v*))}.
To calculate it, one would have to solve explicitly the joint wealth
maximizing problem. However, because E(n/m) = f(8/a), £(0) = 0 and
n(0) = 1/2 and f(x) = 1 and n(=») = 0, the optimal tax rate is approxi-
mately 1/2 (the surplus is shared equally) if the equilibrium fraction
of unmatched agents is near zero and unique and is zero (the agent
who makes a match gets all the surplus) if the equilibrium fraction
of unmatched agents is near one and unique. Finally, uniqueness of

equilibrium is guaranteed if matches are not too heterogeneous ex post.
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5. A Summary and a Reinterpretation

A unique feasible and individually rational division of the surplus
attributable to every match that motivates all unmatched agents to
search efficiently exists given either technology. The allocation has
the property that a larger share is received by the agent responsible
for making the match. The sum of the ex ante present values of the
future net incomes accruing to the members of the typical unmatched
pair is maximum when they expect this allocation rule to obtain. How-
ever, no individual once contacted by another has an incentive to
agree to that division. ex post. Furthermore, the agent who made the
contact has no special bargaining position as a consequence once the
meeting takes place. Hence, there is no reason to believe that ex
post bilateral bargaining will yield the efficient agreement.

Agents who are as yet unmatched might precommit. Each may well
be willing to agree ex ante to assign the unknown agent who will make
the match the appropriate share of the surplus. However, there exists
no means by which the typical ummatched pair can meet ex ante for this
purpose. Once the pair meets, the two no longer have the incentives
required to obtain the agreement that might have motivated their meet-
ing. The fact of having met only presents them with the bilateral
bargaining problem as we formulated it in the text.

This paradox might be resolved by introducing a class of third
parties, brokers or middlemen, who supply matching services and by so
doing have a continuing interest in the bargaining outcomes. Of
course, brokers exist in many market contexts in which matching is

important. Labor markets, markets for housing and at various times
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and places the "marriage" market all serve as examples. The presumed
ability of specialists to provide matching services of better quality

and at a lower cost is the usual explanation given for the existence

of such middlemen. Although these advantages may be necessary to explain
the existence of brokers, another possible role is suggested by the
following reinterpretation of the model.

Suppose that there are two types of principals that can be matched
as pairs for some purpose. However, assume that the cost of self
search by each principal is prohibitive relative to the expected bene-
fit attributable to a future match. A principal can hire a broker to
search in his stead at a reasonable price because the latter can search
more economically. Given that none of the principals search for them-
selves, w(x) is the difference between the total value of a match with
fit x and the sum of the opportunity cost that the two would incur
were they matched. Given this interpretation any match with fit x such
that w(x) - p(x) > 0 is acceptable to the pair where p(x) is the sum
of the contingent commissions that the two principals pay to their
brokers. If the sum of the opportunity costs of being matched is the
same for every ummatched pair, then competition among the many unmatched
principals for the scarce matching services supplied by brokers would
bid the sum of the commission up to w(x). Given this brice structure,
the agents in our model can be interpreted as the brokers who repre-
sent the 2n unmatched principals.

Because all the matches are equivalent from each principal's
perspective and each is indifferent to the length of time required to
obtain a match, the search intensities and the criterion for an accept-

able match are discretionary decisions taken by the brokers. Hence,
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s is the intensity of search chosen by a broker who represents a
principal of type i and v, is the present value of the profit that the
broker can expect in return for his effort to locate a match for that
principal. An allocation of w(x) between the two agents who meet to
form a match is now a division of the commission,that both principals are
willing to pay, between their respective brokers.

The one difference is that the brokers have a continuing interest
in the market for matching services that principals searching for
themselves would not have. Having formed one match, they look forward
to the prospect of doing the same for other principals in the future.
They not only have an incentive to precommit themselves to the effi-
cient allocation rule; as third parties they also have the means to
do so. The fact that in some market contexts the broker responsible
for creating a match receives the entire finder's fee while in others
commissions are split between the principals' brokers in a prescribed
manner is suggestive in the light of our fesults concerning the depend-
ence of the efficient allocation rule on the form of the matching
technology.

This reinterpretation of the model is obviously a very special
case once brokers are introduced. The opportunity costs of being
matched isn't the same for all principals of the same type. This
kind of heterogeneity will create inframarginal rents for some and
hence an interest in the intensity with which the broker searches.

A general model must also allow for search by the principals as well
as the brokers. These complications may yield quite different results.
Nevertheless, the reinterpretation suggests a fruitful path for further

research.
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