ECOMNZTOR

Make Your Publications Visible.

Megiddo, Nimrod

Working Paper

A Service of

ﬂ I I I Leibniz-Informationszentrum
° Wirtschaft
o B Leibniz Information Centre
h for Economics

On Repeated Games with Incomplete Information
Played by Non-Bayesian Players

Discussion Paper, No. 373

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and

Management Science, Northwestern University

Suggested Citation: Megiddo, Nimrod (1979) : On Repeated Games with Incomplete
Information Played by Non-Bayesian Players, Discussion Paper, No. 373, Northwestern
University, Kellogg School of Management, Center for Mathematical Studies in Economics and

Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/220733

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/220733
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

DISCUSSION PAPER NO. 373

On Repeated Games with Incomplete Information

Played by Non-Bayesian Players

by Nimrod Megiddo

March 1979






On Repeated Games with Incomplete Information

Played by Non-Bayesian Players

Nimrod Megiddo

Abstract

Unlike in the traditional theory of games of incomplete
informétion, the players here are not Bayesian, i1.e. a player does not
necessarily have any prior probability distribution as to what
game is being played. The game is infinitely repeated. A player
may be absolutely uninformed, i.e. he may know only how many
strategies he has. However, after each play the player is
informed about his payoff and, moreover, he has perfect recall.

A strategy is described, that with probability unity guarantees
(in the sense of the liminf of the average payoff) in any game,

whatever the player could guarantee if he had complete knowledge

of the game.



1. Introduction

A game is said to be of incomplete information if at least
one player does not know excactly which game is being played.
Harsanyi [3] proposed an embedding of the games of incomplete
information within the class of games of complete information.
The embedding is based on the assumption that the players are
Bayesian. Specifically, the game is assumed to have been chosen
by chance, with probability distribution which is itself public
knowledge. Also, some information about chance's choice has
been revealed to different players, according to rules that are
themselves public knowledge. Essentially, different players
have different prior probability distributions with respect to the
game being played. As the game (i.e. the game that has once
been chosen by chance) is repeated, these probabilities may be
updated and, typically, a player has to consider future changes
in other players' probability distributions that may be caused
by his own decisions in the present.

Following Harsanyi [3], contributions to this field have
been made by (alphabetically) Aumann and Maschler [1l], Kohlberg
[4,5], Mertens [6], Mertens and Zamir [7], Ponssard and Zamir [8],
Stearns [9] and Zamir [10,11]. All these papers deal with
infinitely repeated two-person zero-sum games. They all assume
that an uninformed player is also not informed about his payoff
at the end of each stage; his payoffs are rather credited (or

debited) somehow to his bank account, and he never receives any
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statements. On the other hand, he is informed about his opponent's
choice according to preseribed rules.

In general, an informed player in a repeated game of in-
complete information can take advantage of the fact that his
opponent is uninformed about the payoffs. A known example is

as follows. The game being repeatedly played is [O 1] o
0 O

However, while player I (the rows player) is informed about the

game, player II starts with prior probabilities of .5 for the true
0 0
1 0

strategies with the same probability, then player II never gains

game and .5 for [ ] . If player I mixes his both pure

any additional information, and his optimal strategy under these
circumstances is also to mix his both pure strategies with equal
probabilities. Thus, the expected payoff is 1/4 per stage. On
the other hand, the value of the same game with complete informa-
tion if of course zero.

In this paper we consider a model which is quite different
from the traditional one. In the first place, our players are
not necessarily Bayesian, i.e. they do not necessarily have any
prior probability distributions as to which game is being played.,
Secondly, the players are informed about their payoffs at the end
of each stage, and they have perfect recall with respect to these
payoffs. Our goal is to present a strategy for an absolutely
uninformed player, that essentially guarantees him in any game,

whatever he could guarantee if he were completely informed.



The ocame does not have to be two-person zero-sum. By playing our

strategy, an uninformed player is guaranteed in any non-cooperative
n-person game, to get as a long-run average, a payoff that is
not less than his maximin expected payoff in the one-shot game

with complete information.

2. The strategy

The game that is being repeated infinitely many times is
given in the normal form, i.e. a real ry ¢ matrix G. Player I
is the rows player and II is the columns player. The entries
correspond to payoffs made by player II to player I. Even
though we formulate everything in terms of two-person zero-sum
games, the results can be interpreted in a more general setup,
if G is the matrix of player I's payoff where columns correspond
to joint strategies of all other players.

The strategy presented below is meant for player I. How-
ever, all player I needs to know at the start, is the number r.
It is assumed that player I is informed about his payoff at the end
of each play, and that he recalls all his payoffs from previous
stages.

For every positive integer n, let {G?,...,Gg } be the set
of all two-person zero-sum games of size ry n, whosg entries are
all of the form %, where k is an integer such that [k| < n2. Thus,

S

m (2n2+1)rn (n=1,2,...). Without loss of generality assume

that those games are ordered according to their values, namely,
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V(G?) 2 e :_V(Gz ). For any game G', let s(G") denote an optimal

n
mixed strategy for player I in G’'. Finally, define ‘a sequence
4
1
K= | —2on (n=1,2,....).
n | - -1/2['1
1-2

We are now ready to describe our strategy for player I
in an infinitely repeated game. We describe the strategy in a
form of an algorithm which includes the operation 'play."
Specifically, the algorithm is run for definite amounts of time
between consecutive plays of the game G, and always provides

player I with a strategy for the following stage.

Strategy S

0. Initialize with STACK =@ and 3 =0 (k=1,2,...).
1. Set n to the least number such that both jn < m and for
every STACK member GE, k < n.
2. jn =J, t 1.
3. Repeat steps 31 and 32 Kn times:
31. 1If STACK=g then go to 32; otherwise let G? be that
STACK member whose upper index k is maximal. Play
s(G?) during n3mn consecutive stages, subject to the
following discipline: If at any time the average payoff
for plays of s(G?) so far drops below V(G?)-— % , then

immediately remove G? from STACK and go to 1.

32. Play s(G? ) once.
n



4. 1f the average payoff for plays of s(G? ) so far is at least
n
V(G? ) - , then place ¢? in STACK.
In In

5. Go to 1.

= W]

The actual payoff at every stage depends of course only
on the pure strategies chosen by the players. If mixed strategies
are used, then the payoffs are random variables. Our main theorem

is

Theorem. If player 1 plays strategy S and player II plays any

strategy, then the payoff sequence Xl,Xz,... satisfies.

Prob {[liminf 1

=z X, > v(G)} = 1.
q—b@ q i

q
=1 1t

3. Proof of the theorem

Before proving the theorem we state several lemmas. By

. ) 4
IG’I we mean the maximum absolute value of an entry in G .

Lemma 1. For every n > Max(|G|,c)there is a game Gg 12i Sm)
n
such that if I plays s(G? ) in G, then his expected payoff
. n 1
is at least v(Gi ) - 5

n

Proof. Without loss of generality we assume that n=¢= |G|, since
columns of G may always be replicated without affecting

the value. Obviously, there is a game Gg (1 : irzs mn) .
n
such that the absolute difference between any entry of Gg
n
and the corresponding entry of G is not less than —%E .

That implies our claim, a



n 1
Corollary. lv(Gin) -v(@G)| < ~z -

Lemma 2. Let Yl’Y2’°°' be a sequence of indepnendent random

- k
(0,1)= variables, such that Py = Prob [Yk==1} = 2 1/2

(k=1,2,...). Under these conditions, with probability

one, there is a number K such that for every k > K,

Y, = L.

Proof, For every K > 0, let AK be the event in which Yk==1 for

all k > K. Obviously,
k

-]

Prob (AK) = I 2
k=K+1

-1/2% _ ,t1/20

pK‘

Thus,

[--]

Probl (ZK) (T > 1) (=1} = p(&) + = (1-py)p(Ay)

@ i ok
5+ 3 (1-271/2ky,-1/2

k=1

K
- 1im 27127 2 g,

koo

For any n > Max(|G|,c), let G? be the game whose existence
n
is asserted in Lemma 1., Also, let

16n*

n - ) n
1ep71/2

Lemma 3. Suppose that player I repeatedly plays the strategy

s(G? ), where n > MaX(IG|,CL in an infinitely repeated play
n




Proof.

of G. Under these conditions, with probability not less

o n
than 2 1/2

first k stages is at least V(G? ) - % .
n

Without loss of generality, assume that player II

repeatedly plays his best-reply strategy with respect

to s(G? ) in G. Let Xi be the payoff for the ith

n

(i=1,2,...). Xl’XZ"" are mutually independent random

variables with the same expectation u

(Lemma 1) and the same variance 62 <n

>
2

n
V(Gi

1

2n

stage

, for every k ;‘Kn the average payoff for the

Kolmogorov's inequality (see [2,p.220]) states: For every

e > 0 and integer q,

Prob{ (Vk < q)( % X, >u -

It follows that

nv

>

==
™
<
\"
T
]

Prob{ (vk > K )(

Prob N {K 2
. n
j=1

A
.
A
~
=
S
e
\/

1 - Prob U {(Hk)(anj‘l <k < anj,

j=1

-}

1 -Prob U {(k) (K 2"t <k <k 2],

j=1

1 - = Prob{(Zk <K Zj)( L
. n k .
j=1 i=1

X

==

=l

1
)}
j
| an
- 2n k
)



anj -1

v
=
]

n
2-1/2

v

We now turn to the proof of the theorem. First, note that
during a play of the infinitely repeated game, the variable n in
strategy S exceeds any finite value. Also, the variables jn
change monotonically and hence each one of them finally attains
some maximal value.J (L£J,sm). Given any sequence of
strategy-choices by player 1II, Jn may be viewed as a random
variable.

For every n > Max(|G|,c), let i be the lower index of
the game Gg (L= in < mn) whose existence is asserted in Lemma 1.

n

Assertion 4. For every n > Max(|G|,c),

n
Prob{J < i} > 2-1/2
n="n"=

)}]



Proof.

In order for Jn to exceed in’ it 1s necessary that

strategy S(G? ) is played k times, where k > Kn’ and the
n
average payoff per play for these plays is less than:

V(G? ) - % . However, the probability of such an event

n n
is, by Lemma 3, less than 1 ~ 2'-1/2 .

Assertion 5. The probability that there is N, such that Jn S1i

Proof.

n

for all n 2 N, is cne.

The proof follows from Lemma 2 and Assertion 4. However,
note that the events {Jn < in} are not independent, since
the number of times a strategy s(G?) is played does depend

on average payoffs obtained during plays of another strategy

n+1

s(Gj ). Thus, we have to use the following argument.

Suppose that the player extends his play of the strategy

s(G? ) beyond strategy S. Suppose that he keeps playing
n
it, against a fictitious player, as long as the average

1

payoff remains above V(G ) - o If it drops below

Jn’
that level, he switches to playlng S(GJ +1) and so on.

Let J be the final value of J in such a fictitious play.
Obviously, the events [Jn < in} are mutually independent

and with probability one there is N such that Jn s J; < in

for all n > N. u
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Henceforth, let N be fixed as that number which exists with
probability one according to Assertion 5.

For any time t and every game G? that has entered STACK
at one time prior to t, we use the following notation. By
Z?(t) we mean the average payoff per play, for plays performed

prior to t, of either s(G?) or of some s(G? ) immediately
n

folldwing a play of S(G?), but such that G? was not a member
n

of STACK at any time prior to t.

Assertion 6. If G? enters STACK at time t_ and if k > N, then for

k 5
all t > to’Zi(t) > v(G) - K e

Proof. First note that as long as G? belongs to STACK, the
average payoff for plays of s(G?) remains at least

V(G?) - % . We now estimate the impact of plays of

s(G? ) on Z?(t). Since each play of s(G? ) (which is
n n

included in Z?(t)) has been preceded by at least n3mn

plays of s(GE),it follows that the average payoff for plays

either of s(G?) or of a specific s(G? ) preceded by s(G?),
n
(note that n > k) is not less than

3 ky 1
v(G:) -] -n 2

n mn[ ( l) k z V<G§) - -l_]é - _2_.

n3mn + 1 n m[‘]_ s

Thus, if G5 is still in STACK at time t, then
1

@ » 3
k_ . k 1 . 2 > V(Gl.(-) - 5 ©°
) > G. - = - = m Z k
Zl(t) z v( l) k n=k+l o an t
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If G? leaves STACK at time t, then since s(G?) has

been played at least Kk times,

k 3
(v(G,) - =] -k
(e 5 X R z Ve -

~

o

Finally, once a game G, leaves STACK, s(G?) is never played

i
again. Thus, since k > N, for all t > t,
k k 4 5
Zi(t) > v(Gi) - g2 v(G) - = .

Let N?(t) denote the number of plays accounted under Z?(t).
It follows that the average payoff per play, for all
plays prior to t, is

=, N?(t)zﬁ(t)

z(t) = Koi 1 ,
5 N§<t)
k,i

(when Z?(t) may be set arbitrarily to v(G) if N?(t)==0)o
Note that N?(t) is monotone non-decreasing and has some
maximal value N?. ‘For any t,

k 1
kzi N; (B) §
Z(t) = v(G) - "2 n .
Z N, (t)
k,i *

Given any number M, for any t,

o .z = oNi
2y S vy o kel =1 1
Z(t) 2 v(e) - T -
Z N.(t)
k,i *

Since X N?(t) - ® as t increases, it finally follows that
k,i

liminf Z(t) zfv(G). This completes the proof of the theoremn.

t—s
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If G? leaves STACK at time t, then since s(G?) has

been played at least Kk times,

R v@ED - 31 -k

k
2i () z R 1

> v(G?) - % .

e

Finally, once a game G, leaves STACK, s(G?) is never played

v =

again. Thus, since k > N, for all t > t,

e
1AV
<
~
()
e
'
'

z5(e) 2 v(EY) -

Let N?(t) denote the number of plays accounted under Z?(t).
It follows that the average payoff per play, for all
plays prior to t, 1is

k k
Z, N, (t)z.(t)
Z(t) = k,i 1 i ’
k
= N.(t)
k,i *

(when Z?(t) may be set arbitrarily to v(G) if N];(t)==0)°
Note that N?(t) is monotone non-decreasing and has some

maximal value N?. For any t,

k 1
z(t) 2 v(@) - S — :
= Ni(t)
k,1i
Given any number M, for any t,
M T
LT
z(t) 2 v(G) - k=1 1:1 -% .
Z N.(t)
k,i *

Since = N?(t) - = ag t increases, it finally follows that
k,i
liminf Z(t) > v(G). This completes the proof of the theorem,

t—q@
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4, Discussion

When a completely informed player plays an optimal mixed
strategy in an infinitely repeated game, then he guarantees, in
general, no more than that with probability one the 1iminf of the
average actual payoff will not be less than v(G). This is
precisely what can be guaranteed by an absolutely uninformed player.
However, one may argue that payoffs should be discounted, rather

than averaged in the long run. It seems hard to analyze what percisely
can be guaranteed in terms of a discount factor o(0 < &« < 1). However,

in the light of the lemma proved in the appendix the following is true.

< 1) such that for all o > o, (a« < 1)

For every ¢ > 0 there is aO(O < o 5

(o]

w .
strategy S guarantees the discounted payoff = alxi to be at

i=o
least !L%%éi .

Another common approach in infinitely repeated games is to
look at lim gﬂ , where V, is the value of the finitely repeated game
with n s?gzes . A finitely repeated game here has no value,
since the players are not assumed to be Bayesian. However, if
Vn is defined to be the amount that player I can guarantee as his
expected payoff then strategy S (followed up to n stages)

\Y
guarantees expected payoffs such that lim —% = v(G).
n—e

We should mention that it is much easier for an uninformed
player to achieve his maximin payoff relative to pure strategies.
This is done as follows. The player always plays either a pure
strategy he has not played before, or, if all have been played,

the one whose worst case payoff so far is the greatest among all
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worst-case payoffs so far. Playing like that, the number of
stages in which the player may be paid less than his maximin
(in pure strategies), will not be greater than r ~1 (where r is
the number of his pure strategies).

Finally, one may wonder about the rate of convergence
of the average payoff to the value of the game, while strategy S
is being played. We were, of course, quite generous in selecting
the different parameters of the strategy. It is conceivable that
a more careful design of a learning strategy would lead to a
better convergence rate, especially in situations where a player
does have some partial information about the game at the start.
However, our goal here was only to point out the feasibility of

guaranteeing the value in the long-run under any circumstances.
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Appendix

-
Lemma, If {an3n=o is a bounded sequence then

o

liminf L. z; a; s liminf (1~ @) = a ozn

n — o n+1l i=o o - 1- n=

This lemma is in fact a special case of an Abelian

theorem stated in The Laplace Transform by D. V. Widder,

Princeton University Press, 1941. Specifically, apply Theorem
1 on p.181 with y=1, éS=<1, and ao(t) a step-function with
jumps at the positive integers, whose sizes are a,. For the
sake of completeness we provide here a simple proof for our

special case.

Proof, Without loss of generality we assume that

: n
1 = = 1 i=
% T.gf T 15, 8 = ©° and Iai|§ (i=o0,1,...).
n
Denote S_ = X a.,. It follows that for all o, 0 < @ <1,
n i1=0 1
lim S_a"™ = o. That implies
n—o®
© k n
a, o = lim = a k =
kEO k n—e k=0 k&
1. n"]. k
_n:r: [((1 - o) Z Ska +Sna]
2 k
= ( l-d\ kzo Ska
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Let ¢ > o be given and let N be such that for every n > N,

S
n - £
L > 4 Let o7 be such that for all o, o < o < 1,
) S N-1
(1-) nZo Sp 7 7 2
Note that
2 2 2 ®
f = (1- = n _ - n+l .t
(@) = (I=)™ By (nt]) o = (1-)" [ Z "
2 N+L
= (l-a)” [ &1 = (1) (l-a) N + N1 o1
1-o (o~1)

and let o, be such that for all « (g < @< 1) £(a) < 2. It follows

that for all o« such that Max (al, az) < o<1,

© ©
n

no_ 2
(1-a) nzo an ¢ = (l-0) n——z-:o 5,

«©

3 2 N-1 n 2
= (1-¢) IIEO Sna/ + (1-0a) =

— (nt1)d?
n=N  ma1 (°FDe

€

> % - () >- e

«©

That implies that liminf (l-o) = 5

o - 1- n=o0 1

iy
(o]

and hence completes the proof

Remark. Under the same conditions it is known that liminf
S a-w ol

[+-]
liminf (1- > o
o> 1- (1=2) n=o “n

(See The Theory of Functions by E.C. Titchmarsh,

Oxford University Press, Second edition, 1939, pp. 226-229).



