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I. Introduction

To state a preference is to state a relation over pairs of alternatives.
Normally such a relation over a pair of choices is exclusive--if I prefer
tea over coffee today the reverse cannot also hold. It may be consistent
over three choices--if I prefer wine to beer and beer to water it seems con-
sistent that I prefer wine to water also. It may also be complete-~if I
am willing to state this relation for all pairs of alternatives. But for-
mally further distinctions are required. 1I may be indifferent between tea,
with no sugar and tea with almost no sugar; and indifferent between tea with
almost no sugar and tea with some sugar but still prefer no sugar to some.
Similarly preferring A to B and B to C may only mean that I definitely do
not prefer C to A.-- 1 may be indifferent between the two. Whether such pre-
ferences 'make sense' depends often on what the alternatives are. These
notions apply equally to individuals or to groups. But if a group decision
is to be explained by its members preferences, we may have to relax what is
meant by a preference. As the voting paradox shows, transitive individual
preference does not preclude intransitive group preferences--unless some
restrictions are placed on admissible individual preferences as Black [2],
Inada [17, Pattanaik [ 18], Sen [25] and others have shown. This is usually
demonstrated by reference to logical arguments over the binary relations
representing these preferences. These arguments, however, are of little
help in explaining how such domain restrictions operate and in suggesting
how to construct all such restrictions for a given set of permissible pre-
ferences .

This paper develops a simple geometric construction to explain the

occurrence of cyclical group preferences. The value of this method is that



it yields a general procedure to define domain restrictions on individual
preferences guaranteeing noncyclical group preferences under majority vot-
ing. This is illustrated with known as well as new domain restrictions

for various classes of individual preferences. Specifically, we use the
lattice structure of binary aggregation procedures over the unit cube. This
structure allows us to unify and extend these conditions. Section 2 states
the definitions and model we use. Section 3 contains a derivation of the
basic rule for avoiding cyclical outcomes via domain restrictions. In Sec-
tion 4, this rule is successively applied to transitive, quasi-transitive
and weakly acyclic individual and group preferences. Another set of condi-
tions for noncyclical outcomes using the distribution of voters on order-
ings is discussed (e.g., Saposnik [21], Gaertner and Heinricke [ 8]) in
Section 5. Finally,concluding remarks on the strength of these various

conditions are made.

2. Model Formulation

A. Definitions
Let S = {x,y,2,...} stand for the finite set of m alternatives under

consideration. A binary relation T on S is a set of ordered pairs {(x,y),

(%X,2)5+..} i.e., TC S X S, 1Individual and group preferences can display

various properties. In particular we say that T is:
(2.1) Reflexive <=> xTx Yx €S

(2.2) Complete (or connected) <=> xTy or yIx ¥V x,y € 8§

(or nonexclusive)

(2.3) Symmetric <= xTy = yIx ¥V x,y €8



(2.4) Asymmetric <=> xTy => ~ yIx V x,y €5

( ~ means not)

We use 3 types of binary relations: P which is irreflexive and asym-
metric; I which is symmetric and reflexive; and R which is P or I. R is
taken to be complete. Let T denote any binary relation defined through P and
I, and J denote the set of all such relations. Let the society consist of
voters i = 1,...,n from the set V.

An aggregation rule f is a relation that specifies one binary relation

for each set of individual preference relations; namely,
T = f(Tl,...,Tn)

where T is binary relation P or I and T ,Tn are the binary relation of n

10

individuals on S. A rule is binary if and only if for two sets individual

relations {Tl,...,Tn} and {T{,...,Té} on S and for any two x and y belonging

to S:

\I}

(2.5) [(7i){ (xP,y <=> xPy) and (xI,y <=> xIy)]
(xPy <=> xP’y) and (xIy <=> xI'y)]

In this paper we are concerned only with binary choice rules. This
restriction amounts to imposing the Independence of Irrelevant Alternatives
condition on pairs (Arrow [1]).

A binary relation T on S is transitive (t) if and only if
(2.6) [ (xRy and yRz) => xRz] Y x,y,z €8

A binary relation on S is quasi-tramsitive (q.t,) over S if and only if

2.7) [ (xPy) and (yPz) => xPz] ¥V x,¥,z € S



A binary relation on a triple is weakly acyclic (w.a) if and only if

(2.8) [(xPy) and (yPz) - ~(zPx)] ¥x,y,z € S

A binary relation on a triple is cyclic if and only if it is not weakly acyclic.

Domain restrictions are normally stated on triples of alternatives (Sen and
Pattanaik [27]). If we take S as containing 3 alternatives {x,y,z} we ob-
tain 27 relations: one of the three binary relations P, I or ~R on the

3 pairs = 33 . They are:

(i) Transitive preferences:

(1) xPyPz (2) yPzPx (3) zPxPy
(4) xPzPy (5) zPyPx (6) yPxPz
(7) xIyPz (8) yIzPx (9) zIxPy
(10) xPylz (11) yPzIx (12) zPxly
(13) =xIylz

(ii) Quasitransitive preferences:

(l4) zIxPylz (15) ‘zInyIz (16) yIxPzly

(17) yIzPxly (18) xIyPzIx (19) =xIzPyIx

(iii) Weakly acyclic preferences:

(20) xPyPzIx (21) =xPzPylIx (22) yPxPzly

(23) yPzPxly (24) zPxPylz (25) zPyPxIz

(iv) Cyclic preferences:

(26) xPyPzPx (27) xPzPyPx



For future reference we define the following sets for the three alter-

native case:

(2.10) TR = set of transitive relations ((l) to (13)).

TS = set of transitive relations with strict preferences
only ((l) to (6)) (strong order).

TW = set of transitive relations with only one indifference
((7) to (12)) (weak order).

UC = the relation xIyIz (13) (unconcerned).

Tl = quasitransitive but not transitive relations ((1l4) to (19))
(two indifferences).

AC = weakly acyclic but not quasitransitive relatioms ((20) to
(25)) (two preferences).

CY = cyclic preferences ((26)and @7)).

QT = (TR) U (TI) quasitransitive relations ((l1) to (19)).

WA = (QT) U (TP) weakly acyclic relations ((1) to (25)).

J = (TS) U (Tw) U (UC) U (TI) U (AC) U (CY) (1) to (27)).

SP = strict preference relations (TS) U (CY)

TP = (TW) U (AC) (two preferences). Also,

J = (SP) U (TP) U (TI) U (UC)

B. Majority Voting Rule

For geometric convenience we represent each individual preference over
k m(m-1 h
S as a vector D € R where k = —Lg——l. The hth component of D, D cor-

responds to a fixed ordered pair and the subscript i corresponds to the

individual 1i.



-6 =~
0 <= yPiX

1/2 <=> xI1.y

i
o}

(2.11) Di

1 <=> xP.y

So given any binary relation and fixed sequence of ordered pairs of alter-
natives we can form the Di vector for this relation. Let E be defined as the

set of all possible Di's
E = {D|D € R , P € {0,1/2,1}}

Then we can define the function G:T - E, so that given a binary relation Ti»

a Di vector in E based on a sequence of ordered pairs is obtained, Di = G(Ti).
Similarly let H be the inverse function of G, i.e. given a D; vector, we

can form the binary relation Ti c;rresponding to it, i.e. H: E » J, Ti==H(Di).

In this framework aggregation rules can be written as
D = f(Dl,Dz,...,Di,...,Dn)
A binary rule is separable in the sense that

DXy = fXY(DTY,...,ny)

Letting U = {0,1/2,1}, we now impose four conditions on f for every (x,y)
pair.
(I) (Decisiveness): £ is defined and single valued for every ele-

ment of U XU X ... XU for all x and y in S.

Xy xy)

. (II) (NeutralitY): fxy<1 - D]. PR ’1 - Dn = 1 - fxy(DTy’ PR ,D]};y). :

(111) (Anonymityx f is symmetric in its arguments.

- (1IV Positive Responsiveness): 1If XY = f(ny,...,ny =1 or 1
: P 1 n 2

X
and D =D’® for i # § and /¥ > D) then £/ ,...,0) = 1.
i i j j 1 n



Let us define Bxy as

(2.12) 7Y = (= D’i‘y)/n
i

May [14] has shown that these conditions completely characterize majority

voting. Majority voting can then be defined as

1 iff DY > 1/2
(2.13) Y = {1/2 iff DV =1/2 Yx,y € S
0 iff DY < 1/2

Let us denote by Maj({Ti}) = T# € J as the majority outcome binary rela-
tion and Maj({Di}) = D% as the corresponding D vector, i.e. D¥* = G(T*). We
also denote by Maj (B) the vector of group preferences obtained from D.

Pairwise majority voting is independent of the number of alternatives;
but, of course, it can lead to a cyclical group preference for more than two
alternatives. To avoid such cycles, domain restrictions on allowed individual
preferences have been derived by Sen [23], Sen and Pattanaik [27], Inada [12].
They have derived necessary and sufficient conditions on the list of individual
preferences that could be allowed to guarantee an acyclic social preference
under majority voting. The requirements are on every triple of alternatives
and if those conditions are satisfied the social outcome on m alternative is
also acyclic. So hereafter we consider only triples. This makes a clear

geometrical representation possible.



III. General Characterization of Domain Restrictions for Majority Voting

A. Geometry of Binary Relations for Three Alternatives:

As we saw earlier there are 27 binary relations on 3 alternatives {x,y,z}.
We can characterize them by a three-dimensional vector, with each component
corresponding to an ordered pair: (x,y), (y,z) and (z,x). So a typical re-
lation, say #16 (xIy, yPz, zIx), is represented by the Di vector (%,1,%).

An obvious way of representing these relations in a lattice is to use
the unit three-dimensional cube as shown in Figure 1. The strict preference

orderings are the vertices (extreme points).

Figure 1

The center of the cube is the point of complete indifference, xIyIlz.
With our cyclic labelling of the arcs (x,y), (v,z) and (z,x), the two cyclic
relations are the two ends points of the main diagonal from the origin.
Transitive relations with indifferences are on edges joining transitive ver-
tices. Quasitransitive (but not transitive) relations are on the center of
the six planes bounding the cube. Weakly acyclic but not quasitransitive pre-
ferences are on edges leading from cyclic preferences. With m alternatives

there are 2° vertices (k = m(m-1)/2).

B. Geometry of Aggregation

Since we are concerned with binary choice rules only, the aggregation
problem can be defined on our lattice. Each individual picks one point from
the allowed set of points which itself is a subset of J. That is, a domain
B, that is to be allowed is fixed with B € J; equivalently, the Di's cor-
responding to the Ti's are fixed in, say, C € E. Aggregating the Di's means
picking some point from E. Constrained aggregation restricts us to some
proper subset of E--e.g. the transitive relations. As majority voting is
defined by the mean D of the Di's €C, D lies in the convex hull (CcV) of

C: D € cv(C).
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k
Let d(a,b) denote the distance from point a to point b, a,b € R as

defined by the f-metric /s

)
(3.1) i (a,b) =L [a*-b where £ > 0
1

1

Mo

Then we can describe the majority voting as a '"closest point rule'.

Specifically:

(3.2) £(D) = D* if ED* €SP, 3 d(D*,D) < d(D,D) ¥ D €SP, D# D*
If no such D* exists then

(3.3) £(D) = D%, if Ep* € TP, 3 d(D*,D) < d(D,D) ¥ D E TP, D # D%
If no such D* exists then

(3.4) £(D) = D*, if ¥D* €TI, 3 d(D*,D) < d(D,D) ¥ D ETI, D# D*
If no such D* exists then

(3.5) D =£(D) = (3.51).

Theorem 1 allows us not to have to specify 4. First, some notation:
L be any set of integers i, 1 < i < k and ]IJ =h (cardinality of L=h). Let Wh
be the family of all such sets L of cardinality h, i.e. IIJ =h if L €& Wh; h
can be zero in which case all L's are empty. For a fixed h let Eh=={alai==% if
i€Land ad=0 or 1 if i ¢ L for some L € Wh], and Uh=={alai:=%-if 1 €L and
0< al <1if i € L for some L € Wh]. The following theorem states that the

=] h
‘closest' a in U to any u in U does not depend on the metric 4 we use

Theorem 1l: Given h and u € Uh if @ a € Eh 3 dl(u,z) < dl(u,a) for all
a €T, a #3a, then d’&(u,Z) < d’&(u,a) for all a € T, a # 3,

L > 1.

Proof: We note that all a € ﬁh have %'s in exactly h places. u € Uh has

lui ) ai]— 1/4
1 .

at least h 3's.

@) d(u,a) = (

™M=

i
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(a) Suppose there are exactly h %‘s in u. The k terms of (i)

are either ul or ]ui-%l or 1-ul. To form any a € T we
have to put 3's in h places and 0's or 1's in the (k-h)

places of a. From this observation we can form a given u as

i

£ iff u =3
(ii) at = 0 iff u'<3
1 iff u > 1 i=1,...,k

That is the %'s of a~ and u' match. We can easily show that at of ii) mini-
2

k, i 3 - ) —
mizes .leﬁl-al]. Suppose 2 # a was the closest a € UL. Then 3 violates one
1=

of (ii).

~i i ~i
Suppose a was not equal to & when u” = 4. Soa =1 or 0. As there

are at least h 3's in a and u dj#1i >3 =1 and ul #4. Letb € u® such

that b~ = £ and b =1 if ul > % and bd = 0 if ul < % and bp = Zp for p # i,
p # j. Then
1 k p i i : ; i :
d"(,u) = 5 [P -dP] + bt -0t #pl-ud] = A+ B -
p=1,p#i
p#]
(denoting the first term by A)
alGuy = a+ 3.3 #1379 -ud] = A+ 3+ (3 - W]

Now as ]bj -uj] < %, by definition of b{ dl(z,u) > dl(b,u) contradicting a is
minimum.

Similarly we can show that if 3t 20 1ful< % or 31 £ 1 when ot > 1,
dl(z,u) cannot be minimum. So a from (ii) is the closest a € Eh from u

for A=1.

—-i i .
We can also see that the numbers ]a - u ] take the lowest possible wvalues
among !al - ul] I1f 3 # a was closer, then as shown earlier, the ordered ser-

—i iy . . ~ i
ies of numbers lal - u| will be less that the ordered series of numbers |3~ -u].

Therefore taking Lth powers of [;l-ul[ and summation keeps dz(z,u) as smallest.

So a as defined in (ii) is the closest under any metric 4.
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(b) Suppose there are more than h %'s in u. Let there be just h+l %'s.

P - %. We can form two a € Eﬂ, a; and a, such

that d(al,u) = d(az,u) and a minimum as in Theorem 1 will not exist. For

Pick an arbitrary p such that u

i#p set ay and a, from (ii) equal. Set ai = 1 and ag = 0. We easily see that
d(al,u) = d(az,u). So a minimum does not exist.

In our notation 0 = Sp, ﬁl = TP, U° = TI and 63 = UC. So at any of the
stages in (3.2) to (3.5), the minimum if it exists will not depend on the
metric we use.

Informally this method can be described thus. It first picks the
closest point to D from the set SP.(l) A unique D € SP will exist
only if Bi #% for i=1, 2, 3. That is by (2.13) three preferences
can be defined and the unique D* will exist. We can view the unit
cube as containing 8 cubes of side length %. Each of these cubes
has one D € SP only, associated with it. D* exists in (3.2) only if D is
in the interior of D of one of those eight cubes, or in the interior of
the planes of side length %, passing through it. More formally, we define
the regions in the unit cube REG(D) for each D € E such that if D lies in
REG(D), Maj(D)

REG: E -+ R3. A trivial example is D € REG(D) as £(D) = D if D € E. For

D. That is REG(D) is a point to set correspondence

i i
D € SP, REG(D) = {alml,xz,x3em, Apshoshg € (0,11 3 a =A.D +(1-xi)%,
i = 1,2,3}. That is REG(D) is the half cube excluding the planes of Figure 2,
below.
Such a D* will not exist if and only if D lies on the three planes per-

pendicular to each other, parallel to the axes and going through (%,%,%).

1The sets SP, TP, etc. have been defined for the binary relations in (2.10).

To simplify we use the same symbols for the sets of D vectors representing these
relations.
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Figure 2

Only if D lies on one or more of those planes (let us call the union of the
three planes PB) will there be a tie as to which of the D € SP is closest
and this means D has one Bi = .

If such a tie exists then majority voting yields indifference as out-
come. Suppose there is only one indifference (i.e. only one Bi is equal
to %). Then one of the TP points (two preferences and one indifference) is
the outcome as given in (3. 3). A unique point D* € TP (closest to 5)
will exist if there is only one indifference in which case (3.2 ) would
have failed to find a point in SP as closest. This step will fail if and
only if D has more than one Bi = . That means D lies on one of the three
lines passing through {%,%,%}, perpendicular to each other, parallel to the

axes. (See Figure 3). Formally,

. . .
I£D E€TP, i.e. DV #%, D  #% for j #k, D =% for i # §, i # k

REG(D) = {alai —%,E}\, A, €R, Xl,}\.z € (0,17, 2

1272

J o pd £ (1% 32 2K = pk 4 o(1-3% )&
a KlD + (1 Kl)g, a KZD + (1 kz)z}

That is REG(D) is the plane in Figure 2 closest to D but excluding

the lines shown in Figure 2.

Figure 3

We then consider ( 3.4). There, a D*¥ € TI will fail to exist if and only if
D = (%,%4,3). The closest point in TI will be chosen which is the same as

obtained by majority voting with two indifferences. Formally,
If only one D7 # %, for some j, i.e. D € TI
REG(D) = {a]IN € B, 0<A < 1, 3a =2 + (1-~-N)(%,3,9]

That is REG(D) is the line from D to (3,%,%5) excluding the latter.

(See Figure 3).
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wl-

If this step also fails; then f(D) =D%* =D = (%,%,%). Formally,

REG(%’%’;E;) = (_]2-"%’

Wl
p—e

It is clear that by construction, our algorithm yields the same solu-
tion as majority voting.

Now if a set of points C & E is chosen as the domain (corresponding to
B € J) of permissible voter opinions, D will necessarily lie in CV(C) the
convex hull of C. From D using (3.2 ) to (3.5 ) majority voting will pick
a D* as social choice. We apply this reasoning to characterize domain res-
trictions guaranteeing acceptable outcomes via majority voting, in section

three. But first we define the domain restriction problem.

C. Domain Restrictions

It is well known that even strict conditions on B will lead to a cyclic

social outcome. The famous voters paradox where D, = (1,1,0), D, = (0,1,1)

e
~

and D3 = (1,0,1) leads to D = (2/3,2/3,2/3) and from (3.2 ) p

which is cyclic. Thus if cyclicity of social choice is seen as a problem

£(@) =(1,1,1)

then we cannot allow C to be very large, since even with individual transitive
preferences only, the majority choice might be cyclic, In general we may want
the majority outcome not to belong to a subset of J. For instance, such a
set might contain cyclic preferences CY or cyclic and weakly acyclic pre-
ferences and the like. Let P be the set of preferences we wish to exclude
as majority voting outcomes.

Let Q denote a family of subsets of J with the property that subsets

of members of Q also belong to Q:
1 2
(3.6) Q = {q|lqc J, if q1 € 0 and q2 C q  then q° € Q}

q is allowed if the n voters can choose any relation from q without any res-

trictions. Now we come to our main problem.
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(3.7) We say that Q is sufficient for the P- problem,

if Ti €q, i=1,...,n, for some q € Q implies

Maj({Ti}) ¢ p.

(3.8) Q is necessary for the ;-problem if, for every
q& J, q € Q, there exists Ti €q,i=1,...,n,

such that Maj({T,}) € P.

The general domain restriction problem reads:

(3.9 ) Given P and n, find Q that is necessary and suffi-

cient for the 5- problem.

We first note an obvious fact: PN q = § for all q € Q if Q is suffi-
cient for the E-problem. Otherwise, let TEPN q and Ti =T for i = 1,...,n.
Then Maj({Ti]) =T € P and hence not P-sufficient.

Here we are interested only in the cyclicity properties of P. Also we
might expect the voters to always vote from a subset C of J. In that

case the definition Q in (3.6 ) must be modified to
. 1 2 1 2
(3.10) Q=1{qlqec, if ¢ € Q and ¢ € q then q~ € Q}

That is we are interested only in the subsets of C in which individual pre-
ferences are defined. For instance, in some situations we may wish to
interpret preferences strictly, excluding indifference, etc.

These concepts will be clear when we define some specific 5, C. These
will be generally (and always in this paper) defined in terms of quasitransi-

tivity and acyclicity conditions. An example would be

(3.11) P

]

(AC) U(CY)

1]

C TR
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which corresponds to the traditional social choice problem: Given that indi-
viduals vote transitively, what conditions must be put on the allowed lists--
i.e. in defining Q--for majority voting to lead to no cyclic or weakly acyclic

relations.

The preceding analysis leads to an easy result.

Theorem 2: Q is sufficient for the E-problem if and only if for

every q € Q, and for every p € P, CV(q) N REG(p) = @.

Proof: Suppose Q is sufficient for the E-problem. This implies for
any q € Q, if T, €q, i=1,...,n. Maj({Ti]) ¢ P. Let D, be the corres-
ponding vectors and D the society's vector. Then Maj(B) does not lead to
aD €P. This by definition of REG implies D ¢ REG(p) for every p € P.

As D can be any convex combination of p's € g CV(q) N REG(p) = 0.

Suppose CV(q) N REG(p) = @ Yp € P. Then no point a in CV(q) can
lead to a p € P. As D has to be in the convex hull of q, q is sufficient
for the P-problem. As the condition CV(q) N REG(p)=@ is true for all q€Q,
G is also P-sufficient.

C.E.D.

The theorem is very easy to understand from the way we constructed the
model., All the sufficient conditions so far obtained in theory for majority
voting can be proved by looking at the convex hull of allowed preferences
and its intersection with the regions of unwanted preferences. This construc-
tion makes the generation of new sufficiency conditions straightforward.

As we noted earlier P and C will be defined, based on acyclicity and
transitivity. So, for these restrictions on P and C we will generate suf-
ficiency conditions.

As to necessity, we need to systematically consider all q's belonging

to the necessary Q. We also note that as Q contains many sets that are
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subsets of other members we only need to concern ourselves with the maximal
q's. In a family of subsets, Q, defined by (2.19), a set E € Q is maximal
iff fq € Q>3 q> E. The technique for identifying maximal members of Q
will be discussed in the next section. We now take specific cases of P

and C and develop necessary and sufficient conditions.

IV. The Geometry of Domain Restrictions

A. Transitive Individual Preferences

We will first consider the case when individuals can express only tran-

sitive orders, i.e. C = TR. Then the convex hull CV(C) is shown in Figure 4.

A.1l Cuasitransitive social preferences

Suppose we allow quasitransitive social outcome. Then CY and AC are ruled

(1

out. So the regions ruled out are (1) REG(CY) , i.e. the interior of the

Figure 4

half cubes corresponding to the two cyclic preferences and the three planes
of side § passing through these two cyclic points; and (2) for points in AC,
REG(AC) which is the half squares passing through this point but excluding
their two inner sides intersecting at (%,%,2). (See Figure 5).

Taking these regions out of CV(C) we get Figure 6. The interior of the inter-
section with the corner cubes is out, as well as the interior of the triangles
(13,14,18),(13,17,18) and (13,17,14), along with the lines (18,17),(18,14),
and (14,17). But the lines (13,18), (13,14) and (13,17) are included since,

if D lies on them,pmj(ﬁ) is (18) or (l4) or (17), respectively which are

quasitransitive relations.

(1)For any PC J, REG(P) is defined as

{fa € IR3 |a € REG(p) for some p € P}.
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Figure 5

Figure 6

For necessary and sufficient cgnditions we have to list all the pos-
sible g's such that the convex hull of q does not intersect with REG((AC) U (CY)).
This consists of two cubes complete, but for the three perpendicular lines
of REG(TI). Let us denote by W = CV(C)\REG((AC) U (CY)), where q must con-
tain only points from C (i.e. q € C).

We first note that convex hulls of maximal q's can be a plane in two
dimensions or a three-dimensional.region. But a maximal CV(q) cannot be
in one dimension, for any edge or line through W will have another p € C

not on the line allowing us to form a planar maximal q.

(i) Three-dimensional q's

A simple maximal three-dimensional (3-D) set in C is shown in Figure 7.

Figure 7

This region does not intersect W. The only place the region touches the

cyclic half cubes is along the segment (13)-(15) which is included in W.

REG(0,0,0) is entirely below and behind CV(q) while REG(1,1,1) is to the
right of CV(q). We also note that q contains only the preferences yPx or
yIx. So we get the first sufficiency condition which was called Limited
Agreement (LA) by Sen and Pattanaik [27]. There are six such shaped re-
gions with apex (such as (2) in Figure 7) in any one of the six TS relations.

Each corresponds to an ordered pair where xRiy. Formally:

(4.1) LA(I): For all Ry € q, xR,y for some (x,y) ordered

pair, Vi €V

()

Without ambiguity, a family of q's--i.e. sets of preferences--satisfying
a particular condition will be denoted by the initials of the condition,
e.g. LA,
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To get any other (3-D) maximal q we have to drop one or more p € q,
g € LA, otherwise q € LA would not have been maximal. Points (11), (6) and
(7) are symmetrical with (8), (5) and (12) in Figure 7. Only points p € q,
on a plane touching REG(CY) will be constraining in the sense that dropping
them might allow us to expand and get new polytopes. Dropping (12) allows

us to add (1) and get Figure 8.

Figure 8

In this volume the cyclic REG(1l,1,1) is above and to the right and REG(0,0,0)
is behind and below and so CV(C) N REG(P) = 0.

In this figure we note that the preferences have one alternative, i.e.
y is never last (NL) or xIylzly. Also we see that similar shaped 3-D poly-~
topes can be formed by picking any four consecutive edges along the six
transitive preference outer edges, i.e. (5-2), (2-6), (6-1), (1-4), (4-3)
and (3-5). So there are six possible sets of p. For instance looking at

the polytope originating from (1) we get Figure 9:

Figure 9

Here we note that one alternative y is never first (NF) or xIylzIx. So we
have our second sufficient condition. This was called Value Restriction by

Sen and Pattanaik [27]. Formally NL and NF can be stated:

(4.2) NL: For all Ri € q, xIyIlz, or ¥y € S such that
xRiy, zRiy, Yi € V.

(This is also known as the famous single-peakedness condition

of Black [21).
(4.3) NF: For all Ri € q, xIylz or @®y € S, such that
yR;x, yR;zZ, Yi € V.

We denote by NFL = (NL) U (NF)
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We can see that these two shapes are the only three-dimensional bodies

such that Theorem 1 is satisfied. Let us show this fact. Suppose edge

(2-11) is included in CV(C) (referring to Figure 6):

(a) If (3-9) from the directly opposite edge is also included there
are only two other maximal figures. They are:
(i) [(2-11),(3~9) and (5)] which is an LA polytope,

(ii1) [(2-11),(3-9) and (6) and (4)] which is two-dimensional.

(b) 1If (9~4) is included then we get (2-3-4-6) the only q which is

two-dimensional.

If any part of the interior of the opposite edge (3-4) is not added the only
maximal sets obtained are of the form LA or NFL. For example q = {2,11,12,3}
is contained in (3-12-5-2-6) which is in NFL or (9-3-12-5-2-11) which is in
LA. We can show this similarly for any other segment not in (3-4). Thus

LA and NFL are the only three dimensional polytopes such that CV(C) 0 REG(P) = @.

(ii) Planar Maximal W's

All the planar maximal q's not intersecting REG(E) must pass through
(13) which is (%,%,%). Let us take an axis for the plane along (11-13-9)
and consider the plane through (2-6-4-3). This is a maximal q (Figure 10).
There are 2 other axes symmetrical to (11-3-9), namely (12-13-7) and (8-13-10).
So we have our first planar condition by noting that in (2), (11), (6), (&), (9),
(3) and (13) =xIyIlzIx or y is never in the middle. This was part of Value
Restriction (VR) proposed by Sen and Pattanaik [27]. We call this NM. Note

VR = (NFL) UQ@M).

Figure 10

4.4) NM: For all R, €q, 3y € 8 3 (yPix and yP, z) or (yIix and
i

yIiz) or (xPiy and zPiY), Yi € V.
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If the plane is rotated with (11-9) as the axis we get Figure 1l. Again

this planar hexagon does not intersect REG(P). We note all the allowed pre-

ferences have one or three indifferences. This is the same as Dichotomous,‘

Preferences (DP) of Inada [11] and [12].

(4.5) DP: For C = TR for Ri € q dx,y € § 2 iny, Vi €v

If we tilt the plane further we get Figure 12, Here we note that if
(xyz) and (zyx) are involved then xIz always among other orderings. This

is the same as Antagonistic Preferences (AP) of Inada [11] and [12].

(4.6) AP: For C = TR, if (xPlyPlz) € q and (szszx) € q

then q contains Pl,P2 and orderings 2 xIz.

Figure 11

Figure 12

We cannot rotate the plane further as (9), (13) and (1l1) are the only
points in the plane. We also need not look at any other axes other than
(9-11), (8-10) and (7-12) which have been included by NM, DP and AP. All
the other axes through (13), entirely in CV(C), are of type (2-13-4) which
produces only AP as in Figure 12, i.e. (2-12-4-7); or NM like (2-5-4-1) or
(2-3-4-~6); so we have exhausted all the planar maximal q's. Hence we have

the necessary and sufficient conditions for Problem A.l, i.e. when we take

P= (AC) U (CY) and C = TR.

Theorem 3: (LA,NFL,NM,AP and DP) are necessary and sufficient for the

(Ac) U (CY)-problem with C = TR.

Some remarks are in order. Sen and Pattanaik proved this theorem in [27].

They called NFL and NM together Value Restriction (VR hereafter). They had

another condition Extremal Restriction (ER) which was
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(4.7) ER: For C = TR, if di > V, xPiniz, then Vj # 1

zP.x * zP.yP . .x.
J J ]

We can easily see what kinds of figures are allowed by ER. 1If q contains
only members from Ty, i.e. transitive preferences with indifference then ER
is trivially satisfied. So let us assume di such that xPiniz then we

must have Yj # i, szx - szijx. We now have two cases:

Case a) 4 # 1 2 szx. Then only zPyPx is allowed in TS and this implies
that if xPz, only xPyPz is allowed. So the only other preferences
allowed have zIx, 1i.e. (2x)Py and yP(zx). This is easily seen

as AP (Figure 12),

Case b) dj # i3 ZP X . (2,8,5,12 and 3 ruled out), then either

(i) &85 #1413 xszPjy(4). So yP,x - yP szg(Z) which was already

k k
ruled out (szx ruled out). Then (6,11) are also ruled
out, so we have only the figure (7-1-10-4-9-13) as the

convex hull:

Figure 13

We easily see that this volume is a subset of NL with
% never last, i.e. the figure formed by (6-7-1-10-4-9-3).
Or this can be also characterized by saying that x is always

first (i.e. xRy, xRz). Let us denote this class by AF.

(ii) d5 #1i > ijXsz. Then we have 4 and 9 ruled out. We
get figure (11-6-7-1-10) which is a subset of NF
with z never first (2-11-6-7-1-10-4)., Or this is
characterized by z always last (i.e. xRz, yRz), let

us call this class by AL.

(iii) i #1 3, ijxsz or xszszy. Then the allowed orderings
are xPyPz, yP(zI ), (xIz)Py, (xIy)Pz, xP(yIz) and xIyliz .

The figure is (1-7-11-13-9-10-1) as in Figure 14.
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Figure 14

This is easily seen as a subset of LA with xRz. Let us de-
note this set by LA. So this case has also been taken care
of and we see that (VR) U (LA) U (ER) = (LA) U (VR) U (AP) U (DP).
But keeping AP and DP avoids double counting with VR or LA

when ER is used, as noted by Inada [127.

A.2 Transitive Social Preferences

Here C = TR. But P = (CY) U (AC) U (TI). REG(E) includes the interior
of all the half lines emanating from (3,%,%) to the TI points. This case
illustrates the power of our analysis to generate new results.

There are two types of necessary and sufficient conditions we can talk
about (i) The number of concerned voters, denoted as n (those who do not vote
xIyIz) is unrestricted, (ii) n is restricted through some conditions.

Pattanaik and Sengupta [19] and Fishburn [ 4 ] assumed that n was odd.
Here we derive a theorem with weaker conditions on E, for necessity and
sufficiency of social TR-type preferences. This will be case (ii) where n
will have to satisfy some requirement for which n being odd will be suffi-
cient but not necessary.

Let us consider case (i) first. 1If n is unrestricted we must make
sure that D never fall on REG(TI) or the half-lines from (%,%,%). In LA
(Figure 7) we see that B can lie on the line (13-15) which is REG(15). So
LA is not sufficient. We also see that with NL as in Figure 8, (15-13)
and (13-18) are in REG(TI). So NL is not sufficient and similarly NF is
also not sufficient. We also see NM is not sufficient as (17-13-18) is in

REG(TI). Together we see VR is not sufficient.
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But we see that the hexagon of DP in Figure 11 does not intersect REG(TI)

(13 does not belong to REG(TI)). It is also obvious that AP (in Figure 12)

is sufficient. AF (as in Figure 13) does not intersect any REG(TI). This

is also maximal as we cannot add yPxPz (6) as a D can be on (6-9) and

REG(16). Similarly AL is sufficient. We also note that 1A (of Figure 14)

is also sufficient. This is also seen to be maximal. Together we can say

ER is sufficient. TIt is easily verified that these are the only families

of sufficient conditions. So we have:

Theorem 4: 1If n is unrestricted, ER is necessary and sufficient for the

(AC) U (CY) U (TI)-problem with C = TR, R

For case (ii) ER is still sufficient.

For case (ii), i.e. with conditions on n if q satisfies LA the only
TI preferences that can result is (15) zIyPxlz which will occur if and only
if D falls on (13-15) line excluding (13). This will occur if and only if
half the total number of voters concerned vote on the line (12-5) and the
other half votes on the line (6-7). If even any one concerned voter votes
away from these two lines (6-7) or (5-12) D will not lie on the line (13-15).
S0 if q satisfies LA, a necessary and sufficient condition for transitive

social outcomes with C = TR would be:

(4.8) LAO: For C © TR, for all R; € q, for some ordered pair

x,vy €8S yRix for all i € V and for z # x z # v,

(4.9) [N(ranking z uniquely first) #

[Y]al

] or

(4.10) [N(ranking z uniquely last) # =]

Here N(+) is the number of people voting the way indicated inside the bracket.
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If n is odd n/2 is fractional and immediately LAO is satisfied if LA
is satisfied. This is the case Pattanaik and Sengupta [19] considered and
our conditions are weaker and also necessary and sufficient. The following
example illustrates a case where our condition is satisfied while theirs is

not:

]
9]

z(xy) for i 1,2 (xy)z for i

zyx for i=3 yzx- for 1 6,7,8

yxz for 1i=24

They all satisfy LA with yRix for i = 1,...,7. But the number of concerned
individuals is even (=8). Majority voting leads to yPz, zPx, yPx => yzx

for the society. So the result is: if tramsitive social orderings are re-
quired, n, odd will guarantee that LA leads to transitive ordering. But our
LAO is sufficient. Note finally that if only (12), (7) are voted AP is satis-
fied, which has been treated earlier.

Similarly if q satisfies NF as in Figure 9 only the lines (19-13) and
(14-13) lead to TI. Again the only way D will lie on (13-14) is if the num-
ber of people voting the line (5-3) equals n/2 and those voting (1) is also
n/2, i.e. N(z uniquely first) = n/2 and N(z uniquely last) = n/2. Similarly
for D not to lie on (13-19), N(x uniquely last) # n/2 or N(x uniquely 1ast)=¥5/2.
But then note that in this pattern (q) N(z uniquely first) > N(x uniquely
last) and N(x uniquely first) > N(z uniquely last). So if N(z uniquely first)
is > n/2 then the social outcome will be on line 5-3. 1If N(z uniquely first)
is < n/2 then even if N(z uniquely last) = N(z uniquely first) < n/2 D will
not be on the plane (5-3-1) and hence not on (13-14). So the necessary and

sufficient condition if NF is satisfied is

(4.11) NFO: For C = TR for all R, € q, xIylz or fy € S 2

yRix, yRiz, Vi € V and
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(4.12) [[N(x uniquely last) # n/2] or [N(x uniquely first) # n/2]] and
(4.13) [[N(z uniquely 1last) # n/2] or [N(z uniquely first # n/21].

Here again if n is odd then the conditions (4.12 and 4.13) are immediately
satisfied. Our conditions are also weaker than just requiring T to be odd
and are sufficient and necessary.

Similarly for NL we can write NLO as:

(4.14) For C = TR, for all R, € q, xIylz or ¥y € S 2

zRiy, xRiy, Vi €V and
(4.15) [[ N(x uniquely first)# n/2] or [N(x uniquely last) # n/2]] and
(4.16) [[ N(z uniquely first)# n/2] or [N(z uniquely last) # n/2]].

Let NFLO denote NFO and NLO.
If q satisfies NM, then it is obvious from Figure 10 that if N(y uniquely
first) # n/2 or N(y uniquely last) # n/2 D will not lie on (16-17). So we

again have a weaker sufficient and necessary condition:

(4.17) NMO: For C = TR, for all Ri €q, Hy €853 (yIix and yIiz) or
(yPix and yPiz) or (xPiy and zPiy), Yi € V and

(4.18) [N(y uniquely first) # n/2] or

(4.19) [N(y uniquely last) # n/2] .

With these we can state the following

Theorem 5: LAO, NFLO, NMO and ER are necessary and sufficient for

the (CY) U (AC) U (QT)-problem with C = TR.

This is a complete generalization of Pattanaik and Sengupta's result.
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A.3 Weakly Acyclic Social Preferences

Here D is just CY. D can lie on the inner sides of the half-cubes of
the REG(CY). The regions that were dropped from REG(E) for P = (CY) U (AC)
were the inner sides of the half-cubes of the REG(CY). But since they can
occur only if the TI preferences of individual relations are allowed this

does not increase any of the old maximal q's (of section 3.A for social QT

preferences). So the same conditions of 3.A hold good, i.e.

Theorem 6: LA, NFL, NM, AP and DP are necessary and sufficient for

the (CY)-problem with C = TR.

B. Individual QT Relations

In this section we allow all the individual relations from QT, i.e. C=QT.

Surprisingly CV(C) still looks as in Figure 4 which was also CV(TR).

B.1l Quasitransitive Social Relations

Here P = (CY) U (AC). We still get the region CV(C)\REG(E) as in Figure 6.
The interior of the sides of the half-cubes of REG(CY) are not included and
only the half-lines from (13) to (19), (18), (17), (16), (15) and (l4) are included.
The LA condition region of Figure 7 is still maximal. We cannot add any
adjacent point to the polytope. For instance (18) cannot be added as (18-12)
intersects with REG(23). Similarly (17) cannot be added as (17-7) intersects
with REG(23). Other points were as before in section IV.A.1l. We exclude (16),

(17), (18) and (19) by

(4.20) LAQ: For all Ri € q, xRiy if Ti € TR and xPiy if Ti € QT
Vi €R

for some ordered pair (x,y).
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Similarly for NL we cannot increase the maximal set as the planes (5-2-1)
and (5-1-6) were constraining. So NL and NM are still maximal q's. Also
(16) cannot be added; y is still never last as defined in (4.2). For in the
added relations (15: zIyPxIz), and (18: xIyPzIx) y is still not last. There-
fore NFL is sufficient.

Then we come to the planar conditions. NM as in Figure 10 is still suf-
ficient. Relation (11) and (16) are added yIzPxIy and yIxDzIy. Here we
have xRy, yRz but both R's are indifferences. But these two relations are
allowed by the definition NM of 4.4,

DP and AP still hold good and are sufficient. We cannot rotate the
plane any more along the axis (11-9) since when it is perpendicular to the
zx axis it touches the sides of REG(AC) plames. So there are no new poly-

topes. Hence we have:

Theorem 7: LAQ, NFL, NM, AP and DP are necessary and sufficient

for the (AC) U (CY)-problem with C = QT.

B.2 Transitive Social Relations

Here P = (CY) U (AC) U (TI) and C = QT. Pattanaik and Sengupta [ 19]
have shown that if Q contains LAQ, NFL, NM, AP and DP and if the number of
concerned transitive individuals is odd, majority voting will lead to
transitive social preferences. Again we develop weaker conditions.

As we discussed earlier the only way a quasitransitive social pre-
ference will occur is if D € REG(TI). These regions are the half-lines join-
ing (%,%,%) with the TI points. Let o be the number of individuals voting
transitively and who are concerned--i.e. do not vote xIyIzIx.

For LA type conditions Figure 7 still holds. The only way D can lie

on REG(TI) is for D to fall in (13-15). This will not occur for LA if and



_28_
only if (i) the number of people voting on the line (5-12) is not equal to
the number of people voting on (6-7) or (ii) if they are equal it should
not be n/2. In the first case 5, even if it lies on the plane (5-12-7-6),

will not lie on (13-15) and in the second case D will not lie on the plane

(5~12-7-6). This can be stated as:

(4.21) LAQO: For all Rj € q, yRix if Ti € TR and yPix if
T, €TI, Vi €S for some ordered pair (y,x) and for

z #x, z #y and
(4.22) [N(ranking z uniquely first) # n/2] or

(4.23) [N(ranking z uniquely last) # n/2]

Again if n is odd (4.22) and (4.23) will be satisfied; this case was
treated by Pattanaik and Sengupta. Even if T is even LAQO might be satisfied
and so LAQO is weaker and is sufficient. It is also obvious that it is
necessary since if both the N(.)'s are equal to 3/2,.5 will lie on (15-13)
excluding 13. Also, if only (12) and (7) are voted AP will be satisfied.

Similarly if q satisfies NF as in Figure 9 we can argue along the lines

developed in section IV.A.2 and get the conditions NFQO and NEQO as:
(4.24) NFQO: For C = QT for all Ri € q, xIyIlz or ¥y € § D

yRix, yRiz, ¥i € V and
(4.25) [ [N(x uniquely last) # n/2] or [N(x uniquely first) # n/2]] and
(4.26) [ [N(z uniquely 1last) # n/21 . or [N(z uniquely first # n/2]].

(4.27) NLQO: TFor C = QT for all Ri € q xIylz or #y € s3>
zR;y, XR;¥, Vi €V and
(4.28) [ [N(x uniquely first) # n/2] or [N(x uniquely last) # 7/2]] and

(4.29) [ [N(z uniquely first) # n/21or [N(z uniquely last # n/21].
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Similarly if q satisfies NM as in Figure 10, in the same way as we de-

fined NMO in section IV.A.2 we get:

(4.30) NMQO: For C = QT, V Ri €q, 3y € 52 (yPix and
YPiz) or (yIix and yIiz) or (xPiy and zPiy) Viecv
and
(4.31) [N(y uniquely first) # n/2] or

(4.32) [N(y uniquely last) # n/2].

Let VRQO = (NFQO) U (NLQO) U (NMQO).
We can easily see that if q satisfies AP or DP, D will never lie on

REG(TI). With these we have the following:

Theorem 8: LAQQ, VRQO and ER are necessary and sufficient for the

(TI) U (AC) U (CY)-problem with C = QT.

B.3 Acyclic Social Relations

Here P = CY. The regions that are dropped from the old REG(E) are the
inner sides of the half-cubes of REG(CY). We can expand the LA shape into

Figure 15

Figure 15

Two QT preferences have been added (17: yIzPxIy) and (18: xIyPzIx). All

the allowed relations can be expressed as:

(4.33) LAC: TFor all Ri € q, for some ordered pair (x,y) and z # x

z ¥y, yRix and if zPiy, zPix and if xPiz, yPiz

We note that NL,NF and NM cannot be expanded. AP and DP are also maximal.
But we see that AF (x always first) in Figure 13 can be expanded by adding
(19) xIzPyIx, (1l4) zIxPyIz, (18) xIyPzIx and (16) yIxPzIy. All the allowed

relations have xRy and xRz (Figure 16). We can define AFC as:
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AFC: VRi €q, Ex 3 xRiy, xRiz.
Similarly for AL we can define ALQ as:

ALQ: For VRi € q, 3x 2 yRix, zRix.

Figure 16

In Figure 15 the face (13-14-18) lies on REG(20) (Figures 1 and 6), and
a D on that face will lead to the acyclic relation yPzIXPy. We can state our

result as:

Theorem 9: VR, LAC, ER, AFC and ALC are necessary and sufficient for

the (CY)-problem with C = QT.
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v V. Distributional Conditions

So far we have looked only at the conditions that were defined on the
subsets of profiles. If the voters chose their preferences from that set
then quasi-transitive majority social relations (QMSR) were guaranteed.
Another way of imposing restrictions is to specify some conditions on
the distribution of voters. 1In this section we consider only transitive

individual relations. i.e. (1 to 13). A distribution of voters is the set

of number of voters voting relations (1) to (13). These will be represented
by n;, 1 = 1,...,13; as unconcerned individuals do not matter in majority

_ 12
voting we need to look only at n (x n_, = n) and hereafter we have m = n.
i=1 1

This line of attack was considered by Nicholson [15 ], Saposnik [21],
Slutsky [28] and Gaertner [7 ]. Our geometic construction can be used to
analyse these conditions. A sufficient condition of distributional nature
specifies conditions on the set n,. We first allow only strict préferences

(1 to 6), and then look at some extensions.

A. Strict preferences:

The convex hull of allowed preferences is the same as in figure 7
To simplify our analysis we use a reduction procedure which, given a distri-
bution n,, i=1l,...,6, produces an equivalent but more easily handled distri-
bution.

We follow Slutsky [28] as he has developed necessary and sufficient
conditions for transitive majority decisions. Let V denote the society by
which we mean a set {ni], i=1,...6. Since we are considering majority voting
which depends only on the number of people having strict preferences for

one alternative over another, individual indifferences do not matter. So
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to any society we can add people with complete indifferences and this will
not alter the majority voting outcome. We recall that D has been defined as
the average of the Dj vectors of the voters, j=1,...,n and , for majority
voting, the function f in equation (2.13) took the difference between D and
{%,%,%} to determine the group preference. Note that adding indifferent
individuals although it changes D, does not change the outcome under f.

So if two individuals have opposite preferences e.g. xPyPz and zPyPx then
we can drop both voters without changing the outcome,

Two societies V1 and V2 are said to be equivalent iff
N(xPiy) - N(yPix) = N(xPjy) - N(ijx) for iEV1 and jEV2 ¥ v,x€S.

A society V is said to be irreducible if there exists no group of
individuals within it, who are indifferent between the alternatives under
majority voting among themselves.

There are three pairs of preferences (1,5), (3,6) and (2,4) which are

opposite so a procedure to form the irreducible society V from any V is to

remove pairs of voters, voting opposite preferences, Formally, given ni!s,
. = . ~ 3 Yy . .
and letting ni,j min [nfnj] n,'s of V are given by:
G.Dwyp =mn; - g Mg T 037 By g By TR B2
g =05 = M5 g =M ~ P36 e LA
(5.2) Total number of voters in V =n = Zrﬁ5= n - 2(n1’5-+n3,6-+n2’4)
Let
(5.3) no o= + n, + ngs npo=mn, + ng + ng .

Geometrically we are looking at the three diagonals (1-5), (2-4) and
(3-6) and take a majority vote on the pair. The winner will be one of the

pair and in V that winner receives the difference between the ni's. The
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operation of majority voting just takes the closest transitive vertex to
the weighted centroid. It is obvious that if two societies V1 and V2 are
equivalent they will have the same majority outcome. TIf

0o, o
N(XPiY) - N(YPiX) >0, D > £ as there are more ones than zeroes as

Di's. The following Lemma describes the procedure of (5.1)

Lemma: The social preference order under majority voting does not change

from V to %las defined in (5.1)

Proof:
Let us pick a pair, say (x,y)

ﬁxy(V) =n.+n

1 4 + n3/n

=@, + n, +n, - (n1’5+ n3 6 + n2,4))/(n - 2(n1,5-+n3,6-+p2,4))
Let n1+ n,, + N3 = @, n1,5 + n3’6 + n2’4 =B
By definition of n,,, 8 <oand n> 28 (If n=28, DU(V) =5=D (V))
DY (V) = a/n, T (V) = a-B/n-28
a_aB = an-208 - an + Bn/n-28
n n-2§8

= B (n-2q) /n-2B
>0 1if n > 2
< 0 if n < 2

So if a/n < % i.e. DV(V) < %, D (V)> DI (V)

—x x =Xy o
and if q/n > % i.e. D y(V) > %, D y(V)< D y(V)

In either case B(V) stays on the same side of % as D(V)

So V defined as in 5.1 does not change the social ontcome through majority

voting

Q.E.D.
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So given a society V, we can reduce it through (5.1) to V which is if-
reducible. The irreducibility of ; can be seen from the fact that three of the
six ;;'s are equal to zero and only one from each pair (1,5), (3,6) and (2.4)-
the diagonals - is positive. Now if all three non zero § are from the same
cycle, say I - i.e. (1),(2),(3) - it is obvious that the indifference point
(13) - (3,%,%) - cannot obtain. And further if two are from one cycle and

one from the other (II) say, for instance, (1),(2) and (6) then again the

cenroid will lie on a face of the cube which again rules out point (13).

B. Distribution Restrictions

We first note. that distribution restrictions can be accommodated by our
general theorem 2 after suitable reinterpretation of the convex hull of
q's, CV(q). Instead of CV(q) we should look at the convex hull allowed by

the restrictions on ni's.

Slutsky [28] derived the following theorem:

Theorem 10 (Slutsky): For C=TR majority voting will lead to tramsitive social

preferences if and only if one of the following conditions is satisfied:
(i) (nla nS) (n2 - n4) <0
(ii) (n1 - nS) (n3 - n6) <0
(iii) (n2 - n4) (n3 - n6) <0

(iv) nI = nII

) ]nl— ng + n, - n4[ < (%)] n, - nII‘

(vi) [nl - ng + ny - n6l <(%)l ng - nII]

(vii) I n, - n, +ng - n6l < (%)lnl - nIIl'

Here again the theorem can be readily seen geometrically.
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~

Let us assume that the society V, has already been reduced to V. Then one

n; in each pair of (nlor ns), (nzor n4) and (n3ér n6) is equal to =zero.

~

(ni's are ni's i.e. they are reduced).

In majority voting since D is formed as a sum we can look at a par-

tial sum. . Assume conditien (i) holds then one of (n or

1~ Ds)

(nz- n4) must be less than 0 and the other greater than 0. Suppose n;-ng <0

then n, = 0, ng > 0 and n, > 0 and n4= 0. This means the partial D .

with , and n_ will lie on (2-5). The partial D of n, and n, will

o R ey 5

be on the diagonal and the social D will lie inside the convex hull formed by
(2-5) and (6-3). We immediately see that is the same as a convex hull formed
by NF preferences with x mnever first as in figure 9.

-n_>0thenn, >0, n=0,n_=0,n >0

1 5 1 5 2 4
and D will lie in the comvex hull of (1-4) and (3-6) and this is NL with x not

Suppose (i) is satisfied, n

last. So (i) (ii) and (iii) are sufficient for transitive majority outcomes.
If all of (i), (ii) and (iii) are not satified then one ni from (nl,nz,n3)
is > 0 if and only if all n's from (n4,n5,n6)are =0 or all n, = 0; and
the converse is also true.

If (iv), n (even for unreduced ni's) is satisfied then we can

IR §
see that D will lie on the hexagon formed by (7-8-9-10-11=12) (see figure 11)
The convex hull of (I) is the triangle (1-2-3) and the convex hull of II is
(4~5-6) and the partial D's lie on the two triangles. The two Friangles are
parallel to the hexagon and are equidistant from it, One planar view would

be as shown in Figure 17.

Figure 17




-36 -
If n, = noq the convex hull is the hexagon and D does not lie in REG(;).
This is the region covered by the Dichotomous Preferences of Inada. The
condition n, =mn; ;o was first obtained by Saposnik [21]. Gaertner and
Heinecke [ 8 ] noticed the connection between DP and this condition (iv) which
was called Cyclical Balance by Saposnik. Our geometric approach shows immedi-
ately that both describe the same region. In this case if the ni's are reduced
n, = nII=O. Even if indifferences are allowed this condition is sufficient
since CV(TW) is that hexagon.

If conditions (i) - (iv) are not satisfied then if one ng f?om

(nl,nz,n3) is > 0, n, =n,. =n, = 0; and the converse is also true. That

4 5

is if the ni's are reduced ﬁ;’s then D lies on the triangle (1-2-3) or

6

(4-5-6). Suppose it lies on (1-2-3) as in figure 18

Figure 18

If D lies in the interior of the triangles (2-17-18) A2, (14-17-3) A3, or

(1-18-14) A1 then f(D) will be transitive and the outcome will be £(D) =i for

iy = . . . . 1
DEAi. As nry 0 if (v) is satisfied then (n1+ n2) < 3 (nl + n, + n3) or

ny > ny + n,. Then D will lie in A3 as the weight on the line (1 - 2) is less

than the weight on (3). Similarly if (vi) is satisfied then BEAZ and if (vii)

is satisfied then BEAl. We also see that if D lies on (1-2-3) then (v) through

(vii) are necessary and sufficient for D not to lie in REG(P)- the shaded triangle

in figure 18, Similarly if n_=0, i.e. n,=n

I 1 M2703

n5 or ng is > 0 (if all are equal to 0, (iv) is satisfied) and D lies on the

(4~5-6) triangle. Then np - npo < 0 and if (v) is satisfied ne > n, + ng and

=0 then at least one of s

we see that (v), (vi) and (vii) are sufficient.



- 37 -

As we have gone through the conditions in a sequence if none of (v),
(vi) or (vii) is satisfied then D must lie in (14-7-18) or (15-16-19) (in-
cluding boundaries) and this will lead to an intransitive social outcome.
So it is also necessary that at least one of (i) to (vii) be satisfied.

These conditions can also be extended to include indifferences in
individuals' preferences. But the conditions become complicated and have
no 'nice' interpretation short of saying the obvious, namely that "majority
voting should work." The distributional conditions of theorem 10 were dis-
cussed because they are easier to interpret using the lattice structure. We
can also see that for P = (AC) U (CY), i.e. if quasitransitive social prefer-
ences are allowed we can relax (i), (ii) and (iii) to weak inequalities.
If the equality sign holds for one of (i) to (iii) then in one of the pairs
(nl,n5), (n2,n4) or (n3,n6) both ni's are equal to 0; and we get a plane
such as NM (Figure 10) which is sufficient. If only weak acyclicity is re-
quired then we can relax (v) to (vii) also to weak inequalities. Then B
is allowed to lie on the boundary of the triangle (14-17-18) and this
guarantees weakly acyclic social outcome.

By this geometric construct we see the correspondence between (i) to
(iii) and NFL and between (iv) and DP, Having shown the power of this

analysis we are now in a position to summarize the results discussed so far.
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VI. Summary and Conclusion

We have seen that VR, LA and ER guarantee social QT relations. These
are also necessary and sufficient for social WA preferences. If we want the
social outcome to be TR then we need distributional requirements like those
in IV-B. We also saw that ER is sufficient and necessary if n is unrestricted.
Thus the mileage gained by relaxing the social outcome from TR to QT is on
distributions of n (or addition of LA and VR), while relaxing QT to WA yields
nothing as noted by Sen [26].

But if individual preferences are allowed to be quasitransitive then
there are definite gains when the permissible social outcome is relaxed from
TR to QT and QT to WA: the distributional conditions can be dropped. 1If only
a WA social outcome is required then LAC over LAQ, and AFC and ALC are addi-
tional gains. But the AC relations we considered were only for three alter-
natives and it remains to be seen how these conditions can be extended to
more than 3 alternatives.

The distributional conditions of section V can also be extended. But
they lose their simple structure and become tautological - stating in effect
that majority voting should work. We can summarize the necessary and suffi-
cient conditions for the pair of individual and social relations on three

alternatives in the following table.

SOCIETY

TR QT WA

n unrestricted - ER
TR VR, LA and ER VR, LA and ER
VRO, LAO and ER

7 unrestricted - ER
QT VR,LAQ and ER
VRQO, LAQO and ER

VR, LAC, ER
AFC and ALC
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