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Path Independent Choices

Ehud Kalai and Nimrod Megiddo

Graduate School of Management, Northwestern University
Evanston, Illinois

Abstract. The choice functions considered here are rules

for selecting a probability distribution (or other types of
convex combinations) for every finite non-empty set of
alternatives. Path-independence means c¢(SUT) = c({c(S),c(T)})
for 211 disjoint pairs of sets of alternatives. It is proved
that path-independence choice-functions are so degenerate

that the choice for any set S must coincide with the choice

for some pair of elements of S. Hence, in the lottery chosen
for S, at most two elements may appear with positive probability.
It is also proved that path-independent cholce-functions cannot

be continuous, except for the one-dimensional case.



1. Introduction and discussion of definitions and results

In this paper we examine situations in which an indiﬁidual
or society has to choose one element out of a given finite set of
elements. For example, given a list of candidates for presidency,
the society has to choose a president. Another example: given a
set of commodity bundles in the budget set, a consumer has to
choose one bundle.

Very frequently, a consumer may find two bundles which he
likes equally, and in order to choose one out of the two he needs
a random device that will make the decision for him. Similarly,

a society may find itself in situations in which there are several
candidates with identical amounts of support. Under such conditions,
choosing one of the candidates would have to rely on some randomi-
zation. Thus, we shall be dealing with situations in which a
decision maker (either an individual or a society) has to choose

a lottery (i.e., a probability distribution or any convex combin-
ation) over a finite set, when that set is given to him to choose
from.

As a matter of fact, the set of alternatives, from which
the decision maker has to choose, may itself involve probability
distributions. Consider the following example. A committee has
to decide where some convention will take place. Two cities have
suggested to host the convention. One of the cities has a 50%
probability for rain . on the convention day, so that all outdoors

activities would have to be cancelled, if that city is chosen

and it rains. Thus, the committee has to make a decision without



really knowing what the actual outcome will be.

In view of the above discussion, we would like to incor-
porate lotteries both in the given alternatives, and in the
choices based on them. Thus, we formalize choices in the fol-

lowing way. Let our universe of alternatives X be a subset of

some topological real linear space (for example, a Euclidean
space). The structure of a real linear space enables us to
interpret a point x, in the convex hull of a set S, as a lottery
over the elements of S, Let X* denote the set of all finite

non-empty subsets of X.

Choice-functions: A mapping c:X* =+ X is called a choice-function,

if for every S€X*, c(S)€ convex-hull(S).

Thus, a choice-function is a rule, that selects for every
finite non-empty subset S of the universe of alternatives, a
unique lottery c(S) over the elements of S. This lottery may of
course be equivalent to one of the elements of S, if that element

has probability one in the lottery.

Path =--indepencence: A choice-function C:X* =+ X is said to be

path-independent if for every S&€X*, the elements of S

may be considered in any order p = (xl,...,xé) and the
pairwise choices y, = c({yi_l,xi}) (i=2,3,...,s;yl=x1)
always lead to Yg = c(S). Equivalently, c is path-
independent if for all S,T€X*, such that SNT=40,

c(SUT) = c({c(8),c(M).
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Path~-independent choice-functions are easier to implement
since they are determined by the choices over pairs of alter-
natives. Thus, the decision maker does not have to consider the
entire set of alternatives all at once, and may rather confine
himself to pairwise comparisons. Another benefit of path-
independent choice-functions is that they eliminate the possibility
that a chairman may manipulate the resolution made by some legis-
lative body, merely by putting the different motions to vote
in a suitable order.

It should be mentioned here that the notion of path-
independence has been extensively studied by Plott [1l] (see also
[2] for further references and discussion). However, Plott's
definition differs from ours in the following way. The choice-
function in Plott's definition is a rule, that assigns to every
set S of alternatives, a subset C(S) of S. No lotteries are
allowed. In that setup, path-independence is defined by
C(SUT) = C(S)UC(T) for all S, T. Thus, Plott's definition is
somewhat more restrictive than ours, since not only disjoint
sets, but also overlapping ones have to satisfy the condition.

The goal of this paper is to demonstrate that the path-
independence condition is very restrictive. The main theorem

is as follows.
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Theorem 1. If c:X* » X is a path-independent choice-function,

then for every S<X* there exist x,y€S (not necessarily

distinct) such that c(S) = c({x,yl}).

Notice that no additional conditions are assumed in this theorem.
A consequence of Theorem 1 is displayed in the following example.
Consider a situation where a society has to choose one
out of a set of m condidates. We define the universe of alter-
natives tobe X = {x==(x1,...,xm):2 xi=1,;xi § 0}. The points
of X naturally correspond to probability distributions over the
set of candidates, and particularly, the extreme points of X
correspond to the ''sure'" lotteries, where a certain candidate
is chosen with probability one. Theorem 1 implies that for
every finite subset S of X, the choice over S is a lottery in
which at most two elements of S participate with positive
probability. In particular, the choice over the entire set of
candidates 1s a lottery over two candidates at most. Thus, even
if there are three or more candidates that are symmetric with
respect to the social profile of preferences, still the choice
(if it satisfies path-independence) has to be some lottery
in which no more than two candidates participate. That does
not seem to be a reasonable way of breaking such ties, since it
involves an arbitrary discrimination against some of the

candidates.



We will also prove that path-independence does not comply
with continuity, even in the weak sense defined below. A choice
function is said to be continuous 1f for every x,y€X and every

sequence {yk}k=1 c X, if iim Y =¥ then tim c({x,yk}) = c({x,y}).
=Y.} ]

*
Theorem 2 . If X contains the convex hull of three non-colinear

points, then a choice-function over X cannot be both path-

independent and continuous.

2. Auxiliary lemmas and proofs

We denote in short xy for c({x,y}), for every x,y€X.

Thus, xy =yx and xx =X,

Lemma 1. If for every set {x,y,z} X of three pairwise distinct

elements (xy)z = x(yz), then for every x,y€X, either

x(xy) = xy or x(xy) =x.

Proof. Suppose,to the contrary, that there are x,y<X such that

both x(xy) # xy and x(xy) # x. -

This implies x # y. Also, since xy = x => x(xy) = xx = x,
if follows that xy # x, and since xy = y => x(xy) = Xy, it follows

that xy # y.

"We wish to thank Hugo Sonnenschein for suggesting the investigation
of the relationship between path-independence and continuity.
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Denote z = xy, w = xz, and t = zy. Thus, x,y,z are

pairwise distinct and x,w,z are pairwise distinct. It follows

that
(1) =xt = x(zy) = x(vz) = (xy)z = zz = z, and
(2) wy = (x2)y = (2x)y = z(xy) = zz = Z.

Note that since z is in the open line segment (x,y) and
w is in (x,z), then w#y. Anologously, z€(x,y) and t€[z,y]
imply t# x. Also, w€(x,z) and t€[z,y) imply t#w. Some more

equalities follow:

(3) wt =w(zy) = w(yz) = (wy)z = zz = z,

(4) wz = w(xt) = w(tx) = (Wt)x = 2x = XZ = W,
(5) xw = x(wz) = x(zw) = (XZ)W = ww = W
(6) wz = wxt) = (wx)t = (xw)t = wt = z.

Equalities (4) and (6) are contradciting and that completes

the proof of this lemma.

Remark: Surprisingly, the conditions of Lemma 1 do not imply
x(xy) = xy as may have seemed natural to expect. This
is shown by the following example.

Let X = [0,1]. Define c¢({0,1}) = .5, c({0,.5}) = 0,
c(f.5,1}) = 1. Also, for every XG[O,l]\{O,35,1} define
Or = 1A = ,5A = A and for u€[0,11\{0,.5,1} define

A = Max{A,u}. All the conditions of Lemma 1 are met,

however, 0(01) = 0 # O1.



Lemma 2. If (xy)z = x(yz) for every set {x,y,z}<X of three

pairwise distinct elements, then for all x,y,z€X,

(xy)z€fxy,xz,yz}.

Proof. 1In view of the condition assumed in the lemma,

we may use the symbol xyz whenever x,y,z are pairwise
distinct. The assertion of the lemma is obvious if

X,yY,Z, are not pairwise distinct. Assume, to the contrary,
that x,y,z are pairwise distinct and xyz £ {xy,xz,yz}.

It follows that {x,y,z} N {xy,xz,yz} = @#. (If, for
example, xy =x then xyz=xz, and if xy= 2z then

(xyz) = (xy)(xy) = xy, and in both cases our assumptions

are contradicted.)

Note that (xy)(xz) = (xy)(zx) = (xyz)x = x(xyz), and
by Lemma 1 (with yz here playing the role of y in the lemma)
either (xy)(xz) = xyz or (xy)(xz) = x. We now distinguish
two cases.
Case I. x,y,z are colinear. We may assume,without loss of
generality that y belongs to the open line segment (x,z) and xyz
belongs to the closed line segment [x,y] (otherwise, the names
X,Y,z may be changed so as to conform with these assumptions).
Since xyz €(xy,z) it follows that xy€(x,xyz). Analogously,

since xyz € (xz,y] it follows that xz€(x,xyz). Thus,



(xy) (xz) € [xy,xz] € (x,xyz). In other words, (xy)(xz) # x and

(xy) (xz) # xyz and that contradicts what we have found before.

Case II. X,y,z are affinely independent. In this case
X,yz,xz are affinely independent and hence (xy)(xz) # x. Also,
since xyz € (Xy,z], and since xy,xz,z are affinely independent, it

follows that (xy)(xz) # xyz. Again, we arrive at a contradiction.

The proof of Theorem 1.

The proof is by induction on |S|. The assertion is trivial
for |S| £ 2. If S = {x,y,z} and |S| = 3 then the conditions of

Lemma 2 are met:

(xy)z C(icix,Y3,Zl) = C({X,Y,Z}) =

c({x,c(ly,z})}) = x(yz)

and hence

c(8) = xyz E{xy,xz,yz} = {C({X,Y}), C({X,Z}), C({y’z})}-

Suppose, by induction, that the claim is true for sets
of cardinality not greater than n. Let S = [xl,...,xn+1}. By the
induction hypothesis, there are i,j (1 < i, j < n) such that

c([xl,..o,xn}) = c([xi,xj}). Thus,

c(S) = C(ic(fxl,---,xnl), Xn+1})

e (fe(lxy,x;1), % 411)

= C(ixi’xj’xn+13)
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and by what we have already proved,

c(s) € {C({Xi’xj}’ C([Xi’xn+1})’ C({xj ’xn+1})}-

This completes the proof.

The proof of Theorem 2.

Assume that c:X* +X is path-independent and we will prove

that ¢ is not continuous.

Without loss of generality, assume that

X = convex-hull {x,y,z} where X,¥,2z are affinely independent.

We distinguish two cases.

Case I: There exist a,b€X such that abg{a,b}.

First, note that for every d€X which is not colinear with a and
b, ad€{a,d}; this is because (ab)d = (ad)b and in order for
c({a,b,d}) to belong to [a,b] U [a,d] U [b,d] (Theorem 1) and to
[ab,d] N [ad,b], ad must be a vertex of the triangle a,b,d. Now

let [dk};=1 be sequence of points that are not co-linear with

a and b, and such that lim d; =b. Obviously, if lim c({a,dk})
k== ke

exists then it must equal either a or b, and hence cannot equal

ab. That contradicts continuity.

Case II. For all a,b€X, ab€{a,b}. 1In this case a complete
linear order R is induced on X by aRb <=>:ab==a. [Anti-symmetry:
aRb & bRa => ab = a & ba = b => a=b, Transitivity: aRb & bRd =>
ab =a &bd =b =>jad = (ab)d = a(bd) = ab = a => aRd].

Without loss of generality, assume xRyRz. Suppose, per absurdum,
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that ¢ is continuous. Let A = {w€X:wRy, w#y} and B = {w€X:yRw, w#y}.
It is easy to verify that A and B are both open relative to X and
non-empty. Obviously, ANB = @ and AUB = X\{y}. That implies that
X\{y} is not connected, and hence, a contradiction. Thus, c cannot

be continuous.



References

1. C. R, Plott (1973): '"Path Independence, Rationality and

Social Choice,'" Econometrica, 41 (1973), 1075-1091

1

2. A. Sen (1977): '"Social Choice Theory: A Re-examination,'’

Econometrica, 45 (1977), 53-89.




-7 -

Lemma 2. If (xy)z = x(yz) for every set {x,y,z}<X of three

pairwise distinct elements, then for all x,y,z€X,

(xy)z€{xy,xz,yz}.

Proof. 1In view of the condition assumed in the lemma,

we may use the symbol xyz whenever x,y,z are pairwise
distinct. The assertion of the lemma is obvious if

X,¥,2Z, are not pairwise distinct. Assume, to the contrary,
that x,y,z are pairwise distinct and xyz £ [xy,xz,yz}.

It follows that {x,y,z} N {xy,xz,yz} = @#. (If, for
example, xy =x then xyz=xz, and if xy=z then

(xyz) = (xy)(xy) = xy, and in both cases our assumptions

are contradicted,)

Note that (xy)(xz) = (xy)(zx) = (xyz)x = x(xyz), and
by Lemma 1 (with yz here playing the role of y in the lemma)
either (xy)(xz) = xyz or (xy)(xz) = x. We now distinguish
two cases.,
Case I. x,y,z. are colinear. We may assume,without loss of
generality that y belongs to the open line segment (x,z) and xyz
belongs to the closed line segment [x,y] (otherwise, the names
x,y,z may be changed so as to conform with these assumptions).
Since xyz €(xy,z) it follows that xy€(x,xyz). Analogously,

since xyz € (xz,y] it follows that xz<€(x,xyz). Thus,
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and by what we have already proved,

c(8) € Le(lxyx;d, expx D)y ellxg,x DI

This completes the proof.

The proof of Theorem 2.

Assume that c:X* 4+ X is path-independent and we will prove
that c¢ is not continuous.
Without loss of generality, assume that .

X = convex-hull [x,y,z} where X,¥,z are affinely independent.

We distinguish two cases.

Case I: There exist a,b€X such that abg¢fa,b}.
First, note that for every d€X which is not colinear with a and
b, ad€f{a,d}; this is because (ab)d = (ad)b and in order for
c({a,b,d}) to belong to [a,b] U [a,d] U [b,d] (Theorem 1) and to
[ab,d] N [ad,b], ad must be a vertex of the triangle a,b,d. Now
let {dk};=1 be sequence of points that are not co-linear with
a and b, and such that lim 4 =b. Obviously, if lim c({a,dk})
k- ke

exists then it must equal either a or b, and hence cannot equal

ab. That contradicts continuity.

Case II. .For all a,b€X, ab€{a,b}. In this case a complete
linear order R is induced on X by aRb <=>:ab==a. [Anti-symmetry:
aRb & bRa => ab = a & ba = b => a=b. Transitivity: aRb & bRd =>
ab=a &bd =b =>ad = (ab)d = a(bd) = ab = a => aRd].

Without loss of generality, assume xRyRz. Suppose, per absurdum,



