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ABSTRACT

Let ¥ be the set of all n*n real matrices which have a positive
n—-1
determinant. We show here that at least 2 matrices are needed to
ir

"see" each matrix in P. Alsc, any finite subset of % can be "seen

n-1 .
from & ¢lass of at most 2 matrices in 7.
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& Property of Matrices with Positive Determinants

M. Fojima
R. Saigal

£l. Introduction

Let 7 be the set of all mx1n real wmatrices which have 3 positive deter-
ainant. Given two matrices A and B in P, we say A can be seen from 3, and

vice-varsa, if
{1-t)A+ t8 is nomsingular for every t in [0,1] (1.1}

i.e,, the lina joining A apd B lies Inside P, Also, we 53y a subset & can
gee B if for some & in 2, (1.1} holds. In this note we considar the fol-
lowing question: What 1s the smallest set of matrices (I from which each
matrix in F can be seen? It follows readily that @< P. We give here a
partial amswer to the above question. We first show that | 3_23-1, and
also that any finite set of matrices in P can be seen from a subset of
cardinality at most 2

Certain other properties of F are known. Eaves [l] showed that ¥ is
path connected, and Todd [7] showed that any two matrices in F can be seen
from a third {(and thus considerably strengthened the result of [1]).
fﬂdd‘s work has Implifications for understanding the producs of the fixed
point algorithms [1],[2],[5],[8). This work is motivated by the recent use
of property (1.1) by Kojima and Saigal [3]1,{4] iz estabiishing conditions
when PL mappings are hooeomorphisms, and the usge of property (1.l) im
establishing PL approxzimations to diffeomorphisms, Saigal [6]. Since the

set of all matrices with pegative determinants is a nonsingular linear

transformation of ¥, all our methods are alsc valid for this set.



g2, MNotaricon, Definitions and Preliminary Results

In this section, we present our aetation and establish some prelimipary
results.

For an nxn matrix A, by A(k) we represent the kx k submatrix consisting
of the first k rows and k colummsg of A, for each k = 1,.,.,n, and call these
the laaﬁing principal submatrices of A; and their determinsants the leading
principal ninors of A. A simple fact aboutr these leadipg principal minors

of 4 is the following

Lemea 2.1: Let % = {A: det A{k} # 0 for each k}. Ther, 7% is open and

dense in the space of 2ll nxo matrices.

Proof: PU is clearly cpem. Xow, for 4 ¢ PU, we note that for all sufficiently

small ¢ » 0, A+ el B TD, and thus the denseness follows.
We now state a result, without proof, from the work of Saigal (5]:
Theprem 2.2 (Saigal): Let A and B be nx n matrices in 7. Then

min det[{l-t}a+ tB] > 0 2.1
R

if and only if

inf det[B ‘& + AI] > 0. (2.2
Ax D

Proof: 3See [5, Lemma 3.1.1].

{2.1) chargcterizes the situation when matrix 4 can see the matrixz B

IA has no

in §, and the theorem states that this is so if and only if B
negative real eigenvalues. Now, for § > 0, define an n*n diagonmal matrix:

g
E{5) = 2.3

and a pelynoxial



e

anoT1=1
50:,8) =A%+ 2, (YT 4 eer b a (DR + 2 (8)

{2.4)
= det(E(3)Aa + AI).
Then, wg can prowve:
Lemma 2.3: Let det(E{i)A + AI}) = 4(x,5), and
aign det A(k) = €y for k=1,...,7,
where € € {-1,1}. Then, there exist positive constants &%, bk’ €y X =
l,...,2, such that
2 , 251 9.5
skbkn j_ak(ﬁ} L . (2.5)

Progf: The proof is by induction. For n = 1, we see that

d{h,5) = 4 + 4§ det A
and thus (2.5) holds with b, = ¢, = |det 4. Now, assume that the result

is true forn =1,...,r, and consider the case when &4 ig an {(e+1) = {r+1;

matrix. Let

Then
$(,8) = det(2(8YA + A1)
E(3)A + AT 1 E{3)b
- dE.t —————— J- - e  wm
[ 2f 15254 +x}
1
_ . - E(3)a + AL ! E(&)b
= 3 det(E(A+AI) + 62 det| -~ = = = = = 3o - -
g ! b

Denoting the first term by A3 (%,8) and the second term by x (A,3), we note,
from the Induction hypothesis, that there exist E*, Ek’ Ek’ X =1,,..,T
such thar

=l e+ 308 (2.6)



and g, b5 ::_akiﬁ}ieEa for k = I,...,r, and § in (0,3%),

Also
1 T
xOo8) = 625 ~1 e fdet 4] + 52 w(,8) (2.7

where w(X,5) is a polynemial of degree r in 4, whose coefficients are poly-
reaials In the variable &, w(0,8) = 0 for all &, How, noting that ¢(x,8)

igs the zum ef A times (2.6} and (2.7}, we have cur result.
4 comsequence of Lemma 2.3 is the following:
Theoren 2,4: Let A be an nx n matrix in P, and le:

sign det A(R) = ¢ k=1l,...,0,

k'.'

where g, € {-1,+1}, Then

k
{i) for some positive pnumber é% > QO and all 5§ in (0,6%)

inf $(3,3) > 0
A0

if and only if g, = +1 for all x = 1,...,n~1.
2
(ii) If E‘.P = =1, then there exists a 6% >  such that for all § in (0,46%),

inf $(3,8) < 0.

A0
Proof: Now, if g " +1 for every k, then from Lemma 2.3, ¢(}x,4) > A"
zk—l -k s z £
+ b, & X for some b, > 0, all 5 in (0,56%), and & > 0. Hence, for
k 4 -

e
2
k=1
> 0, #(3,8) » 0, Thus, the if part of (i) follows. Now, let Ep = -] for

soTe P < 1, e, = +1. TFrom Lemma 2.3, there exist positive numbers ¢, and 3#*

k
141 2 '.'(_'1 ok
such that ¢ (4,3} < A" + } zkck62 b} , for all § in (0,4%). ¥ow, con-
k=]l
(p~-1J X .
sider the above for A(&) = &2 +-3'i, for & in (0,d%). Then

Pl - n
+y B ¥ oee se k)

VL (3).8) = 52 -1¢52 .
#{2(8),8) £, 2 9 (3 1k

0 k=n

Il =13

LY



vhere w(x) = 2% 1) + (0-0CP 1 41y for 211 x>0, and ¢, = ¢, = 41,
Z = o

g
We note that w(x) is comvex, and that wi(p +1) - w(p) = Ep-l - %3 and

by

wip~1) - wip) = -% Hance wlk) - wip) 3% for all k # p. Heunce, we have

: sy = 0 (P) s {k}-u(p)
$ {0 (6).5) =5 {epcp + k#}:p . }.

Since EPCP < 0, we note that ¢(x(8),3) is negative for all sufficiently
seall § » 0, and thus (ii) follows. Alsc, the omly if part of (i) follows

from the above.

§3. The Main Theorems:

In this section we prove our main results that if a class @ of matrices
can see any matrix in P, then [@| > 2°7), and also that any finite subset of
-1

# can be seen from a subset (I of cardinality at most 27 .

For this purpose, consgider the ¢lass of diapomal matrices

De=i:D, =+lor-1, D, =0,ifjic?.

ij
. . -1
Then, as can be readily confirmed, |D| = 27 .
We are now ready to prove cur main theorem:

. -~
Theorem 3,1: Let (£ € P be 2 subset of m nxp matrices. Assume thart m < 2 1.

Then, there exists a matrix B in P such that

@in detf(l-t)A + tB] <D for all & in Q.
Dt

Proof: From Lemma 2.1, since #? is open and dense, there emists a matrix C
such that GA € P? for each 4 ¢ @. ¥ow, since m < Zn_l, there exists a matrix
D & © such that if A &€ @ then DCA has at least one negative leading
principal winor. Hence, by Theorem 2.4(ifi), for each &4 € {, there exists a

positive number 3, such thar for every & £ (0,48,],

A



min det[E{&)DCA + LI] < O.
AzD

Letting 4* = mia SA >, aad B = (E(ﬁ*}DC)_l, we obtadin the degired result

from Theorem 2.2.

We now prove our other main resuli:

Theorem 3.2: Let @ C P be a finite set of matrices. Then, there exist

=1

a < 27 parrices B!,...,8" in ¥ such that if A ¢ &, then

min det{(l -t)A + tBl] > 0 for some 3.
ﬂitil

Proof: Frem Lemra 2.1, there exists a matrix ¢ such that CA € P for each
A in & Now, classify the matrices in {CA: 4 € O} by the equivalence rela-
tion A ~ B if and only if sign det A{k} = sign det B(k) for each k =
l,...,8-1. There are at most 211-1 classes generated by the equivalence

relaticn. How, let {1 ..,ﬁm ba these elagses. Consider ﬁr. For A Eiir,

1"

k=1,,..,n-1, defina
g = sign det A(k)

ard the patrizx D ¢ 9 such that Dii LN with g = 1. Then, sign det[Da)(k)

= E‘E’. >0, for k =1,...,n, and A in ﬂr. Froa Thecrem 2,4, there exists a

SA such that for all & in (U,ﬁA], lm}ig. det[E{d}Da + AI] = 0. ¥Now, define

g% = mwip 4§,, and we note that al.'l._matrice:s in # can be seen from B_ =
A T r

A C &1'
[E{ﬁ*}ﬂ]-l {from Theorem 2.2}, and we have our result.

As is evident from the proof of Theorem 3.2, the "sign matrices" ia J
may not be sufficient, since swmme scaling matrix E(4) is alse involved. It

-1 4]

can be readily verified that the matrices (3 g) and { a _1J can see
:) in ¥. The former camn see any matrix for which

a+d > 0, and the latter can see any wmatrix with (a+d} < 0. Bur we conjecture

all 2 x2 mpatrices (2



that 2™} warrices are sufficient to see all o Xn patrices in . Our
approach appears teo fail for this case. In the space of 3% 3 matrices,

for example, the 3 x3 sign matrices in 9, namely

1 =1 -1 1
L ’ =1 ’ 1 ’ ~1
1 1 ’ -1 -1
-39 20 20
cannot see the natrix 20 =39 20 |. (We are grateful te Todd [9)
20 20 -39

for this exawple.) Thus, in our approach, scaling 1s inportant.
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