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LINEARITY, CONCAVITY, AND SCALE INVARIANCE
IN SOCIAL CHOICE FUNCTIONS

by

Roger B. Myerson*

March 1978

Abstract. Three theorems are derived about social choice functions,
which are defined on comprehensive convex subsets of utility-allocation
space. Theorem 1 asserts that a linearity condition, together with
Pareto-optimality, implies that a social choice function must be
utilitarian. Theorem 2 asserts that a concavity condition, together
with Pareto-optimality and independence of irrelevant alternatives,
implies that a social choice function must be either utilitarian or
colinear, where colinearity is a property closely related to the
maximin criterion. Theorem 3 asserts that only dictatorships can

satisfy scale invariance and independence of irrelevant alternatives.
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LINEARITY, CONCAVITY, AND SCALE INVARIANCE IN SOCIAL CHOICE FUNCTIONS

by

Roger B. Myerson

1. Introduction

The utilitarian principle in ethical theory asserts that the best social
policy is the one which gives the greatest total happiness to the individual
members of society, as measured by summing utility numbers for all individuals.
This principle has been advocated by philosophers going back to Bentham [2]
and others, and more recently from the viewpoint of Bayesian decision theory
by Harsanyi [5], [6].

The maximin principle in ethical theory asserts that the best social
policy is the one which gives the greatest happ£ness to the most unfortunate
individuals in society. Rawls [11] [12] has argued for this principle in
his theory of justice. As long as there is any positive tradeoff between the
welfare of different individuals, the maximin principle always leads to social
choices in which all individuals are equally happy. So the maximin principle
is (in most cases) also equivalent to the equity-constrained collective choice
theories discussed in Kalai [7] and Myerson [9].

As Shapley [15] has pointed out,these two ethical principles both use
interpersonal comparisons of utility, but in very different ways. Translated
into the practical debates of daily life, the utilitarian principle asserts
that "you should do something for me if it will hurt you less than it will
help me', whereas the maximin principle asserts that "you should do something
for me if you are better off than I am (or if you have gained more from our
cooperation than I have)."

This paper will investigate some properties of social choice rules re-

lated to these two principles, with the goal of helping to explain why these

two principles have been so important both in the development of ethical
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theories and in practical social decision-making. Another approach to this
same question has recently been offered by Deschamps and Gevers [3], [4].
In Section 2, we develop the basic definitions relating to social choice
problems and the choice functions which may be used to solve them. In Sec-

tion 3, we show that certain Pareto-optimality and linearity conditions imply

that social choices must be made according to the utilitarian principle, for
some collection of vonNeumann-Morgenstern individual utility scales. This
result is closely related to Harsanyi's Theorem V in [5], with our linearity
condition playing a role analogous to the sure~thing principle in Harsanyi's
work.

In Section 4, we investigate colinear choice functions, which satisfy
a generalized version of the maximin or equity-constraint principle. We

show that, if the linearity condition from Section 2 is replaced by a weaker

concavity condition, and if an independence of irrelevant alternatives condi-
tion is added, then only the colinear and utilitarian choice functions are
possible. This result suggests that it may be their shared concavity property
which makes the utilitarian and maximin-type choice rules more appealing than
other social choice rules. The concavity condition has a natural interpreta-
tion in terms of the timing of social decisions: it guarantees that all indi-
" viduals should always prefer society to plan ahead.

Finally, in Section 5, we investigate the possibility of finding a social
choice function which does not require the individuals' utility scales to be
interpersonally comparable. This is desirable because interpersonal combarison
of utility cannot be justified in the context of individual decision theory.
We will show that, cven without concavity, 1t 1s not possible to find a satis-

factory choice function satisfying this scale invariance condition. This im-

possibility result can be compared to other impossibility results in social



-3 -

choice theory, such those of Arrow [1], Sen [14] (see especially his Theorem
8*2), and Kalai and Schmeidler [8]. It is also closely related to Nash's
theory of bargaining [10], and shows the impossibility of deriving his solu-

tion concept without a reference point.



2. Basic Definitions

In this paper, social choice problems are represented by the sets
of feasible utility allocations available to the society. We assume that
there are n individuals, numbered 1,2,...,n, in the group or society. Thus
any vector x ==(xl,x2,...,xn) in Hfl can be interpreted as a utility allocation,
so that the ith—component X, represents the payoff to individual i, measured
in some vonNeumann-Morgenstern utility scale for individual 1i.

Given any vectors x and y in EJI, we write x > y (or y < x) iff
X > vy for every i = 1,2,...,n. Similarly x > y (or y < x) means that xi>'yi

for every i,

. n .
The usual dot product is used for vectors in R, that is:

n
X.y = 2 XV,
i=1 t 1

n
A set SC R 1is a comprehensive iff:

y £ x and x € S together imply that y € S.
That is, a comprehensive set describes a choice situation in which free
disposal of any individual's utility is always possible.
A set SC R" is convex iff:
x € Sand y € S and 0 < A < 1 together imply that

Ax + (1-\M)y € S,

where Ax + (1l-\)y is the vector whose ith-component is XXi + (l%k)yi.
Since we are measuring utilities in von Neumann-Morgenstern scales, if the
group can always plan to randomize between any two collective choice options,
then the set of feasible expected utility allocations will be convex.

Given any finite collection of vectors {xl,...,xk} c Ifl (so that each
xj = (xlj,xzj,...,xnj) is a vector in Egi), we define H(xl,...,xk) to be the

s 1 k .
smallest convex and comprehensive set containing the set {x ,...,x }. That is:



H(xl,...,x Y =(Cy €R there exist numbers Xl,...,X such that |

k
k
every Kj >0, Z A, =1, and

=1 o
T y < X,xj
=1 )

We call H(xl,...,xk) the éomgrehensive-convex hull of {xl,.,.,xk}.

nmMm

In this paper, a choice problem is formally defined to be a nenempty,closed,

convex, and comprehensive subset onRn, representing the set of feasible utility
allocations. That is, we shall always assume that randomized strategies and
free disposable are allowed in every choice problem,
Throughout, we let CP denote the set of choice problems to be studied.
Also, we define CP® to be the class of all choice problems which can be
generated as the comprehensive-convex hulls of nonempty finite sets of
allocations. That is:

cpe = {H(xl,...,xk)l{xl,...,xk} is a finite subset of R"}.

All the results which we derive will hold for the case of CP = CPO, but we
may allow CP to represent more general classes of convex comprehensive sets
as well.

For any two sets S C R" and T < R" and any number A, we define
AS + (1-M)T to be the set:

AS + (1-M)T = {Ax + (1-M)y|x € S and y E.T}.

If 0 < A <1, then we can interpret this set as follows. Suppose there is some
random variable which may take the value 0, with probability A, or may take

the value 1, with probability 1-A. Suppose further that the individuals know
that they will learn the random variable's true value tomorrow; if the value

is 0 then the group will get a choice problem with feasible set S, and if

the value is 1 then the feasible set will be T. Now suppose the group decides
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to plan its choices today, before learning the random variable. Then
AS + (1-A)T is the set of expected utility allocations which can be generated

by making such conditional plans today.

Given any collection of choice problems CP, we define a choice function

to be a mapping F:CP ~ R" such thé;, forngvery S in CP:

F(S) = (F[(S),...,F_(S)) €S.
That is, a choice function should select a feasible utility allocation vector
for every choice problem. In the rest of this paper, we will study various

properties which we might want a choice function to satisfy, and we will charac-

terize the classes of choice functions which can satisfy these properties.
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3. Linear and utilitarian choice functions

In this section, we consider choice functions satisfying weak Pareto-

optimality and linearity properties.

A function F:CP - Rp is weakly Pareto-optimal (WPO) iff:

(1) F(S) € S, and

(2) x> F(S) implies x ¢ S,
for every S in CP and every x in R™. That is, a choice function is weakly
Pareto-optimal if it always chooses a feasible utility allocation such that
there is no other feasible allocation making everyone strictly better off. If
a choice function were not weakly Pareto-optimal, then it could be criticized
as inefficient, in those cases where it chose a strictly dominated
point.

A function F:CP -» R" 1is linear iff:

F(AS + (1-A)T) = AF(S) + (L-M)F(T)

for every pair of choice problems S and T in CP, and for every number A such
that 0 < A < 1 and AS + (1-A)T € CP.

The linearity property has a natural interpretation in terms of timing of
social choices. Suppose that a social decision will have to be made tomorrow,
at which time the set of feasible utility allocations either will be S, with
probability A, or will be T, with probability 1-A. If F will be applied to
the choice problem tomorrow, then the chosen utility allocation will eithér
be F(S), with probability A, or F(T),with probability (1-A). So the expected
utiiity allocation (as assessed today) is AF(S) + (1-A)F(T), if the social
choices are to be made tomorrow. On the other hand, AS + (1-A)T is the set of
all expected utility allocations which are now feasible by planning tomorrow's
decisions today (using contingency plans which may depend on the information
to be learned tomorrow). If F is applied to the choice .problem on the

planning level today, then F(AS + (1-A)T) should be
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the chosen utility allocation. Thus, a linear choice function is one for
which every individual can expect the same utility from a social choice whether
it is planned ahead today or made on a situational basis tomorrow.
. n 1. , , .
A choice function F:CP - R is utilitarian iff there exists some vector
. '
p = (pl,...,pn) in R such that:
n
@) Z p; = 1 and every p; > 0, and
i=1

(2) p-F(S) = maximum p - x , for every S ¢ CP.
X €8

n
(Recall px = X pixi.) That is, a utilitarian choice function is one which
i=1

always maximizes some weighted average of the individuals' utilities,

We say that CP is a convex collection of choice problems iff AS <+ (1-A)T €CP

whenever S € CP, T € CP, and 0 < A < 1. With this regularity condition on the

set of choice problems considered, we can state our first main result,.

Theorem 1. Suppose CP is a convex collection of
choice problems, and suppose F:CP - R" is a linear
and weakly Pareto-optimal choice function. Then F

is utilitarian.

Proof. Let 4 = {p € Rpl

YL
o

p; =1, all p, > 0}. For any S in CP, define
i

the set
Q(S) = {q ¢ Egll for some x € S, q-x > q'F(S)}.
Notice that Q (S) must be an open subset of R".

If F is not utilitarian, then we must have AC U Q(S), so the Q(S) sets
Secp

must form an open cover on A. Since A is compact, there must exist some finite

collection
k

(st,s?,...,8% < cp such that A< U Q(s)
Jj=1



1 s, By WPO, F(So) must be on the Pareto frontier of
j=1

the closed convex set S, so by the Supporting Hyperplane Theorem (see

Then consider So =

on M=

Rockafellar [13], Section 11 ), there must exist some vector p € A such that

p'F(SO) > pex for all x in SO. However, since the Q(SJ) cover A, we may assume

1

(renumbering if necessary) that p € Q(Sl). So for some x1 in S, p-x1 > p'F(Sl).

Then by linearity, we get

p K j 1 j 1 1, K j

p-F(s?) =p- (¢ ZF(H) =(2 pF(sh)) <px+ = pF(sh)
j=1 j=1 j=2
1,1 k i
=p (" + I F(57))).
j=2
1.1 k_ 1 kg o o
But E(x + X F(S)) € X Z S = §, so this inequality implies p € Q(S),

j=2 j=1

a contradiction of the way p was constructed. To avoid this contradiction, we

must conclude that F is utilitarian.
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4. Colinear and concave choice functions
Let E:CP — R" be the choice function which always selects the highest
feasible allocation giving all individuals equal utility. That is, E is
weakly Pareto-optimal and satisfies:

E;(S) = E,(S) = ... = E_(S)

for every choice problem S. Since all our choice problems are closed compre-

hensive sets, there will always be a unique point on the weakly Pareto-

optimal frontier which satisfies this equity condition, so E is well-defined.
The choice function E is consistent with the maximin principle recommended

by Rawls [12], in that:

minimum(E, (S)) = maximum(minimum(x,)).
; i . i
1 xES 1

(I1f not, then there would exist some X in S such that xj > min Ei(S) = Ej(S)
i
for every j, which would contradict the Pareto-optimality of E(S).)
By generalizing the equity constraints which define E, we can intro-

duce the class of colinear choice functions. We say that F:CP — R is

colinear iff F is weakly Pareto-optimal and there exist numbers

UpslUpseeerty and ¢y > 0, sy > O,...,cn > 0 such that, for every S in CP:

Fl(S3 - ] F2(S3 -y, ) ) Fn(S) - un
“1 €2 “n
That is,. when u = (ul,...,un) and ¢ = (Cl’ ..,cn), a colinear choice func-

tion F always selects the best point in S of the form
F(S) = u + ac,

for some number . Since we consider only closed and comprehensive sets,
there will always be a unique weakly Pareto-optimal point in S on the line

{u+ ac[a € R}. So the colinear choice function is well-defined once the

vectors u and ¢ > 0 are specified.
w

A colinear choice function like E is generally neither linear nor
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utilitarian. For example, (letting n=2) suppose that S = H((4,4),(0,10))

and T = H((4,4),(10,0)). Then E(S) = (4,4) and E(T) = (4,4). But

25 + 3T = H((4,4),(7,2),(2,7),(5,5)). So we get:

E( 35 +3T) = (5,5) # (4,4) = 2E(S) + 2E(T).

Although colinear choice functions do not satisfy linearity, they do satisfy
a weaker property.
A choice function F:CP — Ifl is concave iff:

F(AS + (1-\)T) > AF(S) + (1-A)F(T)

for every pair of choice problems S and T in CP, and for every number A such
that 0 < A <1 and AS + (1-A\)T € CP. (Notice that the formula above is a vec-
tor inequality in Hfl, meaning that the inequality holds in every component.)
In the last section we saw that a linear choice function is one for
which every individual can expect the same utility from a social choice whether
it is planned ahead '"today" or made on a situational basis "tomorrow'. In
these terms, a concave choice function is one for which every individual's
expected utility from planning ahead (Fi(XS + (1-M)t)) is a1wa§s greater than
or equal to his expected utility from situational judgments (kFi(S) + (1-k)Fi(T)).
So, when a concave choice function is used, the timing of social choices can
make a difference; but timing would never be a cause for dispute, because all
individuals would agree that earlier (planned-ahead) choices yield better
expected outcomes.
For illustration, let us return to the numerical example given above,
with S = H((4,4),(0,10)) and T = H((4,4),(10,0)). Suppose that a fair coin
is about to be tossed: if it comes up Heads then the two individuals will
be offered the choice problem S, and if it comes up tails, then they will be
offered the choice problem T. Applying the choice function E after the coin

toss will yield the equitable (and ex post Pareto-optimal) allocation (4,4),
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no matter how the coin may fall. But if the individuals plan their group
choice before the coin is tossed, then the choice function E selects the
equitable (and ex ante Pareto-optimal) allocation (5,5), which is imple@ented
by planning to take (0,10) if Heads and (10,0) if Tails. Thus, we have the
concavity relation:

(35 +21) = (5,5) > (4,4) = 2E(S) + FE(D).

So before the coin is tossed, there is no dispute about whether to plan the
group choices immediately or to wait until after the coin is tossed; both

want to plan the group choices immediately.

Of course any linear utilitarian choice function must also be concave,
since linearity implies cohcavity trivially. Furthermore, any colinear
choice function must be concave. To prove this fact, suppose that:

F(S) =u +ac, F(T) =u + Bc,

and F(S + (1-A)T) = u + yc.

Since
AF(S) + (1-M)F(T) = u + (A + (1-A)B)c € AS + (1-\)T,
and since F(AS + (1-A)T) must be undominated in AS + (1-A)T, we must have:
Y > Aa + (1-))B,

and so:

F(AS + (1-X)T) > AF(S) + (1-A)F(T).

There are concave choice functions which are neither utilitarian nor
colinear. For example, let n=2, and let F' and F* be linear utilitarian

choice functions such that

2
F' (S) maximizes %xl + 3%, over x € S, and

F’ (S) maximizes gxl + =X, over x € S.

3 3

1
2

2

1
2

n

Then let F"’(S) = F (S) + F’ (S) (so that F'' is linear but not weakly
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Pareto-optimal), and let F(S) = (Fl(s)’FZ(S)) be the unique point on the weakly
Pareto-optimal frontier of S such that:

Iz

_ -
Fl(S)‘- F1 (s) = FZ(S) F.O(S).

2

It can be checked that the F:CP —']RZ thus defined is a concave and weakly
Pareto-optimal choice function, but it is not utilitarian or colinear. How-
ever, this choice function may also seem rather complicated, in that it depends
on F'(S) and 7"’ (S), two alternatives which are not actually selected., That
is, this choice function violates the principle of independence of irrelevant
alternatives. |

In general, a choice function F:CP - R" is independent of irrelevant

alternatives (IIA) iff, for any two choice problems S and T in CP,

if SC T and F(T) ¢ S then F(S) = F(T).

To interpret this condition, suppose that
society faces choice problem T and selects F(T). Now suppose that it is dis-
cbvered that some points in T really are not feasible, and so the actual
feasible set is S € T. Independence of irrelevant alternatives requires that,
if the old choice is still feasible (F(T) € S) then it should still be chosen.
Any choice function determined by maximization of a social welfare function,

or by a social preference ordering over utility allocations, will satisff
independence of irrelevant alternatives.

Recall that CP® is the set of all choice problems which can be generated
as comprehensive-convex hulls of finite sets of points in R®. If we impose
the regularity condition that CP E>CP°, then we can state our main result for
this section, as follows.

Theorem 2. Suppose that CP E’CPO, and sup-
pose that F:CP - HJI is weakly Pareto-optimal,

concave, and independent of irrelevant alternatives.

Then F is either utilitarian or colinear.
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Proof of Theorem 2,

The proof will be broken up into a series of lemmas and definitions.

Definition. For any allocations x and y in IJI, let £(x) = F(H(x)) and let

f(x,y) = F(H(%,¥)).

Definition. Let M be the set of all allocations in R° which F could possibly

select; that is:

M= {xlx F(S) for some S € CP}.

it

f(x)}.

Proof. If x = f(x) = F(H(x)) then x € M, for S = H(X). On the other hand, if

Lemma 1. M = {x|x € B" and x

x = F(S) for any S, then H(x) € S by WP0O, and so x = F(H(x)) by IIA.

Lemma 2. M is convex.

Proof. Suppose x = £(x), y = f(y), 0 <A< 1, and z = Ax + (1 -)\)y. Then

H(z) = A(x) + (1 -MH(y), so £(z) = F(H(2)})> W(Hx)) + (1 -MFHY))

Ax + (L-Ny = z.

So £(z) > z by concavity. But f£(z) < z by WPO. So f(z) = z, and z € M.

Definition. Let CP* be the set of all choice problems generated by utility allo-
n
cations in R . That is:

CP* = {H(X,Y,---,Z)IX €M, y EMyeensr2 EM}.

Lemma 3. If S € CP* and T € CP*¥ and 0 < A < 1, then F(AS + (1 -XA)T) = XF(S) + (1-A)F(T)
Proof. Let x = F(S), v = F(T). Choosew € SN M and z € S N M so that
Aw + (1-A)z > F(AS + (1-A)T). (This can be done because, by convexity of M,

S € CP* must be generated from S N M by disposal of utility only. Furthermore,
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by feasibility, there must be some w*¥ € § and z*¥ € T such that

A  + (L-A)z*x =F(AS + (1L -A)T). Then choosew € SMMMand z €T N M so

that w> w* and z > z*¥,) Then by ITA and convexity of M, we must have

w+ (1L-NDz=FOQS + (1-M)T).

By IIA, we have x = f(x,w), since H(x,w) € S. Also:

w+ (1L-MDz==£f0x+ (1-Mz, \'w + (L -A)z2)

by IIA from AS + (1 - A)T. But z € M implies that z = £(z). So by concavity
Aw + (1-M)z 2> AMx,w) + (1 - M)E(z) = xx + (1 -.X)z.

Since A > 0, we get w> x. So x € H(w) and x = f(w) by IIA. But w € M, so

X = w.

A similar argument shows that y = z, Thus Ax + (l-\)y = F(XS-+(1-X)T).U

Lemma 4. There exists some vector p € R" such that Py > 0 for all i,

p: = 1, and:
Lt

nmMB

i
for all S € CP*, and all x € S, p*x < pF(S).

Proof. F is linear on CP* by Lemma 3. CP* is a convex collection of sets, be-

cause M is convex. So by Theorem 1, F is utilitarian on CP*.

Definition. Henceforth let p be the vector constructed in Lemma 4.

Lemma 5. For any choice problem S € CP, for any x € SN M, p+F(S) > p" x.
Proof. Let y = F(S). Theny €M and x € M, so H(x,y) € CP*¥. By IIA,

F(H(x,y)) =y. Sop-+y 2> p"*x by Lemma 4.

Lemma 6. Suppose p*x > p - f(y) and x € M. Then x = £(x,y). (Notice that,
since p Z,R,and y > £(y), the hypothesis of this lemma will hold if p-x> p-y

and x € M.)
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Proof. Let z = f(x,y). For some X such that 0 < A < 1, we have z < Ay + (1-M)x.
Qur goal is to show that A = 0.
If A = 1 then we would have z < y, implying z = f£(y) by IIA. But Lemma 5
requires p * z > p * x, which would contradict the hypothesis if z = f(y).
So we know A < 1. By IIA we know z = f(x,Ay + (1-A)x). But by concavity:
f£(x;. Ay + (1-M)x) > M(x,y) + A-ME(x) = Az + (1-V)x.
So z2>2\Az + (1-M)x, and thus z > x, since 1-A > 0. So Ay + (1-A)x > z > x. This

implies that either A = 0 or y > x. But y > x is not possible, by Lemma 5 and

the hypothesis of this lemma. So A = 0 and z < x. Therefore z = x.

Ax + (1-A\)y. Then p- £f(2) = p - z.

Lemma 7. Suppose x € M, y €M, A\ € R, and 2z

Proof. If 0 < A < 1, then this lemma follows trivially from Lemma 2.

Consider now the case A > 1. Suppose that, contrary to the lemma, for some

e, prz - p-f(z) >e>0. Let w=£(z) +¢], where L = (1,...,1) € R .

If f(z,w) were in H(z) then we would have f(z,w) £(z) by IIA. But this

would violate WPO, since w> f(z2). So z ¢ f(z,w).
By construction, p+z > pew = p-f(x) + €. (Notice p'$l= 1.) Then by
1 A A-1

Lemma 6, f(x, 3V + —ily) = x, since x = %z + =7 (Remember A > 1 is assumed

here.) But by concavity, we must have:
cpen Lo Al 1 Asle oy o1 A-1
x—f(x,}\w+ ) 2 )\f(z,w) + f(y) = kf(z,w) + 5Ty

&

Multiplying through by A, we get Ax + (1-A)y > f(z2,w), a contradiction of the con-
¢lusion in the last paragraph. Thus our assumption of p-z > p-f(2) must be im~
possible, and so prz = p-f(z) if A > 1.

For the case of A < 0, the proof is similar to the A\ > 1 case, reversing

the roles of x and y, and of A and (1-}).
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Lemma 8. Suppose that F is not utilitarian. Then there exist allocations u and

v in R" such that u = f(v) and p*v > pru. Also, there exists a vector ¢ e:mn

such that ¢ > 0, p-c l, and u - ¢ € M.
'

Proof. If F is not utilitarian, then we can find some S € CP such that

sup pe°w > p*F(S). So we can choose some v € S such that p-v > p-F(S). Now
wES

f(v) < v so f(v) € SN M. By Lemma 5, p-F(S) > p-f(v). So p-v > p-u, when we

let u = f(v).

i

To construct ¢, first let d = u - f(uzl). We know u-~d f(u-‘l) € M.

1
Also, u-1> f(u-1), so dZAL>AQ‘ and prd > p:l =1. Letc = (-P—.—d)d. So

44

prc=1,c¢c>0, and u-c (—l-)(u-c) + (R;g:l)u is in M (by convexity of M).
v p-d p-d ‘

Assumption. In Lemmas 9 through 12 we will assume that F is not utilitarian.

We will prove that F must be colinear.

Definition. Henceforth, under the assumption that F is not utilitarian, let u,v,

and ¢ be as in Lemma 8.

Lemma 9. Suppose x € M énd pv > p'x > p-u. Then x> u.

pv - peu + 1
p*V -p-Xx

Proof. Let a = , and let y = v + a(x-v). Notice that g > 1 and

p*y = pu - 1 < p-u, Since u € M, by Lemma 6, f£f(u,y) = u.
Let w = éu + %;lv. Then w< v, since u<v and o> 1. By
Lemma 6, f(v,x) = x, so by IIA we get f(w,x) = x. But H(w,x) = éH(u,y) +-%§lﬁ(v).

Sc by concavity of F:

- 1 a-1 <Ll a1l o
x = f(w,x) > af(u,y) + a f(v) G‘u + S u= u,

Lemma 10. Suppose x € M and p*x = pru. Then x > u,

Proof. Suppose not. Then,for some {1, Xy < u,. Let y = f(u+c). Since u € M

and u - ¢ € M, Lemma 7 implies p'y = p*(u+c) = pru+ 1. But y € M, so for any
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small positive ¢ (0 < € < 1) we have (l-e)x + ey € M. If we choose ¢ small

enough, we get

1- + <

(L-e)x; +eyy, <y

so (1-e)x + ey # u. But p-v>p-((l-e)x +¢ey) =p:ru+e>puas long as ¢
is small and positive. So (l-¢)x + ey will violate Lemma 9 if x 3‘;_ u. So we

must have x > u.

Lemma 11, For any vector d in R", if u-d € M then, for every A in R,

u+ Ad € M.

Proof. Consider first the case of A > 0. Let y = £(u + Ad). Then p*y = p-(u+2Ad)

o

S S S -
by Lemma 7. So o + 1_,_)\(u d) € M (by convexity of M) and

1, A

A
Pyt (-9

1+)
u+ Ad. But y = f(u+Ad) implies y < u + Ad. So

p*u. By Lemma 10, we conclude 1—_}_)\'}7 + (u-d) > u.

Soy 2> (1+\M)u - X(u-d)
u+Ad =y €M

For the case of A < 0, observe that the preceding case showed u =~ (-d) =u+d €M.
So, using our results for positive multipliers, we get u+Xid =u+ (-))(-d) €M

since -\ > 0.

Lemma 12. Suppose x € M. Then x = u + Bc, where B = p*x - p-u.

Proof. By Lemma 11 and the definition of ¢, u - Bc € M. So #x + 3(u-PBc) € M.
But p-(%x + 3(u - Bc)) = #p+x + Ep-u - 5B pc = F(p'x + pru - B) = pru. So
$x + #(u - Bc) > u by Lemma 10. Solving for x, we get x > u + Bc.

Now let y = u + (u-x). By Lemma 1l we know y € M and also u + fic € M. So
#y + #(u+pc) € M. Observe that p-(dy +%(u+Bc)) = #p-u-%4B+%p-u+%p = p-u.
So #y + #(u+Bc) > u by Lemma 10, Thus y > u-Bc, and so x = 2u-~-y < u+Bec.
Together with x > u+pc from the preceding paragraph, this proves the lemma.

Since Lemma 12, stating that F is colinear, was proven under the assumption

that F is not utilitarian, we have proven the Theorem,
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5. Scale invariant choice functions and dictatorships.

Both the colinear and the utilitarian choice functions involve interpersonal
comparisons of utility. The equity constraints of the colinear choice functions
compare utility levels of different individuals, to determine which allocations
are permissible. The utilitarian functional p+x makes interpersonal comparisons
implicitly, to determine the tradeoff between the utilities of different indi-
viduals. Both of these comparisons depend on the scales in which the individuals'
utilities are measured. (For example, suppose two individuals have utility which
is linear in money, and they plan to use a utilitarian choice function maxi-
mizing the sum of the individuals' utility numbers. The choices selected by
this rule would change dramatically if one individual switched his utility scale
from dollars to lira while the other individual stayed with dollar units.) One
might now ask, if we drop the concavity requirement from Theorem 2, can we then
find choice functions which are not so dependent on the way utility is measured?
In this section we will show that, even without concavity, we still cannot get
scale~invariant choice functions satisfying WPO and IIA, unless we give one.
individual's preferences exclusive priority over all the others'.

A transformation of the utility scales is a mapping L:R"= R" of

the form

L(x) = (alx1 + Bl’ A %, + 92,-.q ax + Bn)
for some numbers oy > 0, a, > 0,...,an > 0, and 61,52,...,Bn. Decision theory
defines the individuals' von Neumann-Morgenstern utility scales only up to
increasing linear transformations. So two choice problems which differ by such
a transformation of the utility scales could be interpreted as representing the
same underlying social choice situation, if our utility scales have decision-
theoretic significance only. If we want to avoid making interpersonal comparisons
of utility which cannot be based on decision-theotetic considerations,
then our choice function should be invariant under transformations of the

utility scales.
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. . n ., . , . ,
A choice function F:CP -+ IR is thus said to be scale invariant iff:

F({L(x)|x € 8}) = LEF(S))

for every choice problem S in CP and every transformation L of the utility scales
such that {L(x)lx € 8} € cP. That is, if we transform the utility scales so
that the choice problem S becomes {L(x)lx € S}, then the new solution
F({L(x)lx € S}) should be the old solution F(S) translated into the new utility
scales, if F is scale invariant.
The Nash bargaining sclution [{0] satisfies the properties.of weak Pareto-
optimality, independence of irrelevant alternatives, and scale invariance. But

Nash's solution is for bargaining problems, which differ from our choice prob-

lems in that a bargaining problem_has one feasible allocation singled out as
the reference point, representing the status quo which would prevail if no other
feasible allocation were agreed upon. Without such a reference point, however,
the Nash bargaining solution cannot be defined, and the only choice functions
which can satisfy these three properties are dictatorships.

We say that an individual i is a dictator for a choice function F:CP - R"
iff

Fi(S) = maximum(xi)
x€S

for every choice problem S in CP. So if i is a dictator for F, then F always
selects a feasible allocation which maximizes i's utility. That is, a choice
function with a dictator resolves social conflict by giving the dictator every-

thing he wants.

o n
Theorem 3. Suppose CP 2 CP , and let F:CP—- 1R
be a choice function which 1s scale invariant and
independent of irrelevant alternatives. Then

there must be some individual 1 who 18 a dictator for F.
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Proof. We show first that F(H(w)) = w, for every vector w € R™. If not,
then there exists some individual k and some number 6§ such that

w - F (H@W) =8> 0.

k

(We know that F(H(w)) < w, since the choice must be feasible.) Let v EIRn'satisfy:

W, if §j # i,
v, = J
w =& if j = k.

By scale invariance (translating k's scale by 8) we must have

v, - Fk(H(V)) = w

k

K " Fk(H(w)) = §, but independence of irrelevant alternatives

implies F(H(v)) = F(H(w)). So we get § = W T vk = 0, a contradiction. Thus
F@H(w)) = w must hold.

2

Now consider D = H(dl,d ,...,dn), where each dJ = (dJ,...,di) is the unit

n
vector in IR such that

3 0 if  k # i,
1 if k= j.

Let u = F(D). We will show that u = d* for some individual i. From the preceding

paragraph, we can conclude that u is strongly Pareto-optimal in D, so that

n

Z u, =1 and all uj > 0. (If not, then there would be some vector w in D such
j=1

that w> u, w € D, and w # u. Then, by IIA, we would get F(H(w)) = F(D) = u # w,
which contradicts the preceding paragraph.) Thus we can select some individual

i so that uy > 0. Consider the set C = H(cl,cz,...,cn), where each cj =(c{,...,cg)
is a vector satisfying:

w if jAiand j#Ak{d

1 if § #1 and k = }

0 4ifj#iandk =1

~

i
and ¢~ = u.



- 22 -

By independence of irrelevant alternatives, F(C) = u = cl, since C € D. But

then scale invariance implies that F(D) = at. (Use Li(x) = T and
i
kT 3y o g
L (x) = Tu for k # i, and check that L(c”) = d° for all j.)
k

We now show that this individual i is a dictator for F. If not, find

some choice problem S and some vector y such that y € S and y; > F;(5). Let

z = F(S). Since S is comprehensive, we may assume that Yy < z, for all k # i.

Independence of irrelevant alternatives implies that z = F(H(y,z)). Consider

the vector b = ( %, %,..., %) € R". If we let
~ (n-l)xi +y; - nzg
Li(x) h n(y,-z,)
Yi"%4
X -y
and T (x) = ——K = for all k # i
k n(zk-yk)

then scale invariance implies b = F(H(dk,b)), because L(y) = a' and L(z) = b.

But b € D, so by independence of irrelevant alternatives we must have

at = F(H(dl,b)). This contradiction proves that no vector y in S can be found

to satisfy Y > Fi(S). Thus individual i must be a dictator for F,



[1]
[2]
(3]
(4]

(5]

(6]
(71

(8]

[9]

[10]
(11]

[12]

[13]

(14

[15]

- 23 -

REFERENCES

Arrow, K.J.: Social Choice and Individual Values, 2nd ed., New York:

wiley, 1963.

Bentham, J.: An Introduction to the Principles of Morals and Legislation,

London: Athlone Press, 1970.

Deschamps, R., and L. Gevers: 'Separability, Risk-bearing, and Social

Welfare Judgments'", European Economic Review, 10 (1977), 77-94.

Deschamps, R. and L. Gevers: '"Leximin and Utilitarian Rules: A Joint

Characterization", Journal of Economic Theory, forthcoming.

Harsanyi, J.C.: 'Cardinal Welfare, Individualistic Ethics, and Interper-
sonal Comparisons of Utility", Journal of Political Economy, 63(1955),
309-321.

Harsanyi, J.C.: '"Nonlinear Social Welfare Functions", Theory and Decision,
6(1975), 311-332.

Kalai, E.: '"Proportional Solutions to Bargaining Situations: Interpersonal

Utility Comparisons', Econometrica, 45(1977), 1623-1630.

Kalai, E. and D. Schmeidler: 'Aggregation Procedure for Cardinal Preference:
A Formulation and Proof of Samuelson's Impossibility Conjecture",

Econometrica, 45(1977), 1431-1438.

Myerson, R.B.: "Two-Person Bargaining Problems and Comparable Utility",
Econometrica, 45(1977), 1631-1637.

Nash, J.: "The Bargaining Problem ", Econometrica, 18(1950), 155-162.

Rawls, J.: A Theory of Justice, Cambridge: Harvard University Press, 1971.

Rawls, J.: "Some Reasons for the Maximin Criterion", American Economic
Review, 64(1974), 141-146. A _ U —

Rockafellar, R.T.: Convex Analysis, Princeton: Princeton U. Press, 1970.

Sen, A.K.: Collective Choice and Social Welfare, San Francisco: Holden-Day,
1970.
Shapley, L.S.: "Utility Comparison and the Theory of Games" in La Decision,

Paris: Edition du Centre de la Recherche Scientifique, France, 1969,
pp. 251-263.





