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STABILITY OF AGGREGATION PROCEDURES ULTRAFILTERS AND SIMPLE GAMES

by

Pierre Batteau, Jean-Marie Blin and Bernard Monjardet

I. Introduction

It is well known that aggregating arbitrary sets of individual prefer-
ences in some ethically desirable way leads to some unappealing procedures,
namely a priori externally imposed solutions (''imposed rule"), or internally
imposed solutions ('"dictatorial rule') [1]. Equally discouraging is the
finding that incentive compatibility for democratic choice procedures is
generally an unattainable goal short of an imposed or dictatorial rule {11]
[20]. In the former case it has been shown [12] [16] that Arrow's condi-
tions on social welfare functions (SWF) lead to the construction of the
social ordering by considering subsets of voters whose preferences dictate
society's preferences. Such subsets of voters form particular "families of
majorities" in a qualititative sense rather than a purely quantitative one
as in majority rule. Their properties have been studied in [16] [17]. These
properties make them identical to proper strong simple games. This estab-
lishes a direct connection between the general preference aggregation prob-
lem and n-person games, specifically simple games. The same connection is
explicitly exploited by Wilson [24] [5] and Bloomfield [4]. It would seem
that in the context of the preference revelation problem, an even more direct
connection should exist with game theory. 1Indeed, as Schmeidler and Sonnenschein
[21] point out, the Gibbard-Satterthwaite problem amounts to asking whether
one can construct a voting procedure for which sincere preference revelation
is a Nash equilibrium (NE) or a dominant strategy (DS) (in Gibbard D.S. is used in-
stead of N.E.) of the associated voting game for any conceivable profile of indivi=-
dual preferences. Furthermore, recent work on the relationship between Arrow-

type Social Welfare Functions and non-manipulable voting procedures specifies
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the intimate connection linking the two conceptsk [14]. We submit that
another way of looking at this connection is to characterize the types

of families of majorities underlying any Nash-stable voting procedure.

The potential for this line of research is further suggested by a number
of recent contributions to the preference aggregation-social choice theory
elaborating upon the structure of "families of majorities". For instance
Fishburn [9], Kirman and Sondermann [15] and Hansson [13] all recognize
the ultrafilter structure of the families of majorities implied by Arrow's
conditions. And Brown uses the filter-ultrafilter notion to seek ways to
attenuate Arrow's impossibility theorem; defining the notion of pre-
filter, he characterizes aggregation rules which are both socially de-
cisive and not strictly dictatorial 3 la Arrow [6], [7].

In view of (1) the fruitfulness of this approach as evidenced by all
these contributions to the preference aggregation area, (2) the game-
theoretic nature of the preference revelation problem, and (3) the rela-
tionship found between Arrow-type aggregation functions and Nash-stable
voting procedures it seems useful to examine whether such procedures can
be characterized by families of majorities--or, equivalently, proper strong
simple games. This is indeed the case as we show in this paper. It fol-
lows, of course, that the Gibbard-Satterthwaite theorem is also directly
established through this method. However, we feel that the interest of
our approach lies beyond the derivation of a simple constructive proof of
this theorem; Rather it shows that the essential similarity in the mathe-
matical structure of the two impossibility theorems--Arrow's and Gibbard-

Satterthwaite's--stems from the identity of structure imposed on the one

(R)This connection was, of course, implicitly recognized--at least tech-
nically--in Gibbard's proof [11] and, explicitly in Satterthwaite's paper
[20].



hand upon the "winning sets" of voters ("families of majorities") by Arrow's
conaitions and on the other hand upon the '"preventing sets'" of voters by
the non-manipulability condition. This finding further suggests that, in
dealing with the preference revelation problem, the duality between the
preference profiles approach and the families of majorities approach as
thoroughly investigated and exploited in [16] [17], [18], should also be
useful, for instance in dealing with restricted domains.

This paper is divided in five sections. Following this introduction, sec-
tion two sets the basic definitions and notation. Section three focuses on the
logic of the derivation of the main results leaving the comélete statement of
the proofs to section four. Finally, to stress the originality of this approach,
we briefly outline an alternative--but longer--route from these families of
majorities to an Arrow-type theorem and, further, to the Gibbard-Satterthwaite
result, thus establishing another link with the original proofs.

(1L

II. Notation and Definitions

We consider a set A of (m) alternatives--m > 3--A = {x,y,z,...,w,t}
and a set V of v voters V = {1,2,...,i,j,k,...,v}. S.T.W are subsets of
V, i.e. they are elements of the power set of V, denoted 2V. Families of
subsets of V are denoted by § and indexed appropriately according to the
context. The empty family is denoted & whereas @ denotes the empty set.

\Y% \Y%
Thus any § © 2 whereas § € 2 .
Each voter i has a complete ordering on A denoted Pi (or >i)' & de-

notes the set of all total orders on A.

1 . R

( )For simplicity, only the main definitions needed for the problem state-
ment are given here. More technical concepts and definitions are introduced
in subsequent sections as needed.
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Definition 1: A preference profile @ = (P "'Pi"'Pv) is a v-tuple of

1

total orders on A.

Thus m € & the v-fold cartesian product of €. For convenience we

denote D = &.

Definition 2: A Collective Choice Procedure (CCP) d is a mapping from D

A

onto

Definition 3: A Social Welfare Function (SWF) g is a mapping from D onto .

In the context of collective choice procedures the classical mani-
pulability problem can be stated as the following v-person ordinal game.
Each player (economic agent, voter) has & as its strategy space--i.e. he
is free to state any ordering P € #. TFor each strategy profile m € D the

final outcome is given by the mapping d. Finally each player i orders

ala

the outcomes according to his sincere preference ordering PiA €. Of

course player i may find it advantageous to choose a strategy Pi # Pin given

.,P. ,P.

d = ..
d an TT-]'_ (P i-]_ l+1’

1°°" .,PV).

Definition 4: A voting game (VG) is a five-tuple {V,D,m*,d,A}.

For V,A and hence D given, every pair (m*,d) yields a different game.
For each such game one may inquire about the existence of Nash equilibria
in pure strategies--mixed strategies being ruled out given the ordinal

nature of the game. Formally we recall:

ol

(A)Note that we set the image of D under d as the full range, i.e. d(D) =A.
This, of course, rules out imposed solutions, e.g. some alternative is never
chosen, whatever profile we pick. Given this assumption, we will not mention
the imposed solution case in the statement of the results. The alternative
assumption would only complicate slightly the arguments without changing the
nature of the result.



Definition 5: A profile m is a Nash equilibrium of the game (V,D,T*,d,A)

if Vi €V d(?l,...,i

...,P *ae . yeesP ) ¥ .
¥ ,PV) Pi d(Pl, ,Pi Pv) Pi €&

Thus we can say

Definition 6: A profile m € D is stable for d if 7 is a Nash equilibrium

point of the game (V,D,;,d,A).

Definition 7: A CCP, d, is stable (non-manipulable, strategy-proof) if any

profile 11 is stable under d.

Of course it should be noted that if we used a more general strategy
space than the set of v-tuples of total orders (D), we could still apply
this notion of stability to the strategies--e.g. some abstract messages sent
by the agents--but the interpretation of individual manipulability of the
outcome no longer applies.

As noted in [11] the stability notion --"straightforwardness" in Gibbard's
words--can be used without defining what is meant by sincerity; for in a
value-free sense there are as many notions of sincerity as there are map-
pings from individual preferences to strategy spaces. Furthermore, even
if strategies are taken to be individual preferences, sincerity is not al-
ways obviously defined--~as for instance when outcomes under d are sub-
sets of A,not necessarily singletons. Thus, according to our definition,

a CCP is stable if and only if the sincere strategy m is a Nash equilibrium

of the game (i7,d) for any m € D. This can easily be shown to be equivalent



to saying that, for each player, this sincere strategy is a dominant strategy

(1)

in any case. We should also note that non-stability of a CCP, d, can re-
sult from the existence of at least one non-stable profile or from the non-
existence of a pure strategy Nash equilibrium in the game.

In the sequel we proceed as follows. First we examine how preference
profiles should be mapped into an outcome to yield a stable CCP. Specifically
we consider which partitions of the set 2V, i.e. which 'families of majorities'
are implied by such a mapping. Then we show how these families define a
simple game whose family of winning sets forms an ultrafilter. The Gibbard-

Satterthwaite impossibility theorem for a finite voter set follows at once.

Its meaning for the case of an infinite voter set i1s also mentioned.

(1)

Formally we can state

Proposition: d is stable if and only if (iff) m € D == m is a dominant strategy

of the game (m,d).

Proof: (1) Sufficiency: m is a dominant strategy of the game (m,d), i.e.

¥i [P, €9, W € =>ae.,v ) 4@, )
i -1 1.1 17 4

P -1
i

Specifically, if ﬁ:i = ﬂ_i
. / . > ’
Vi [P, €€ => d(P,,T_.) 2 d(P,m_.)
1
which means that 1 is a Nash equilibrium for the game (7,d). And this argument
holds Y m €D

(2) Necessity: If d is stable this means that m is a Nash equilibrium
of (m,d) Y m € D. Hence

. ’ _ > ’
Vi {Pi €6 =>d(m_.,P) 2 d(n_i,Pi)}
1
But since this holds true Vm, we can write
’ -1 ’
i - = >
Vi: {P, €€ and 1 . €9 > d(m_;»P,) 2 d(m_;P))
Py
which means that P, is a dominant strategy for i, Vi. Hence 1 is a dominant
strategy for (m,d).



TIT. Stable CCPs and ''Preventing Families' of Voters

3.1. Characterization of stable CCP's

let us consider a stable CCP with full range d(D)

A, First we

state a fundamental property which must always hold for any stable d. Let

T o= (Pl...Pi...PV) and ny(ﬂ) =fieg V]| x Piy}

Proposition 1. For a stable CCE d,

Ldam)

=x, n €D, Ve @) o Vey M5y #x] = dm) #y

In other words, if x prevails socially under d for some profile 11,

for any other profile m’ in which the set of voters preferring x to y--

for any y--still includes the voters preferring x to y initially (in m),

then y should never prevail socially for such profiles if d is to be

stable. Proposition 1 has some important immediate implications:

(1)

(ii)

First, if we consider two profiles m and n/ with d{m) = x
and y # x, nyﬁT) = ny(n') from proposition 1, it follows
that d@’) # y Yy # x and thus d(n’) = x. This is nothing
but the independence property adapted for a CCP.

Secondly, if we note that proposition 1 does not require
that ny(ﬂ') = ny(rr') but only that ny(r_r) o ny(rr'), we
conclude that d exhibits a monotonicity property: adding
individuals to the group favoring x over y cannot lead to

a reversal of the social outcome away from x in favor of y.
Roughly, no perverse vote counting is to be allowed for

a stable d.



(iii) But now assume there exists some profile, 1, where VyXQn) = 0.
Then d(mr) = y cannot hold. For suppose it did; then any other
profile n’ is such that Vyx (TT');) Vyx(‘n) = @ while from
proposition 1 d(n’) # x. But then x ¢ d(D) contradicting our
assumption of a full range CCP--i.e, d(D) = A. This property

is known as the Weak Pareto property. Formally stated, d

is weakly paretian iff¥Y me D, ¥V x # ¥y ny(n) =V = d(m) # v.
(iv) Finally the strong Pareto property, Y v # X ny =V 2> di) = x,
also holds for d since d(m) # z Y 2z # x in this case.

These four remarks can be formally summarized in the following proposition:
Proposition 2: A stable CCP is independent, monotonic, weakly paretian and
paretian.

Turning back to Proposition 1 above, it should be noted that it singles
out a particular set of voters (ny) as having a particular power, namely

the power to prevent y from winning whenever they agree on ordering x above

y. Thus we say:

Definition 8: A subset of voters SC V is d-preventing for y by x ) for a

stable CCP, d, if ¥ mw € D with ny(n) =5 d(m # y.

' v
For any pair of distinct alternatives (x # v) we denote by‘fxycz 2" the

family of all subsets of V which are d-preventing for y by x.

(+)The term 'preventing set' was suggested by David Gale.



As we are going to show now these 'preventing families' are fundamental
for the study of stable CCP's. Characterizing these families by their
properties will provide us with a constructive procedure to exhibit stable
CCP's. Specifically, our next theorem specifies the structure of these pre-
venting families and shows that the pair G‘-xy’ '?yx) is a 'blocking system'’
as introduced by Edmonds and Fulkerson [ 8].

Following their terminology, they define a clutter on V as a family R
of subsets of V such that no member of £ is contained in another member of

R. A blocking clutter Y (blocker) of g is the clutter comsisting of the

minimal subsets of V that have non-empty intersection with every member of

&£. The pair (,?,’y) is said to form a blocking system. Edmonds and Fulkerson

have shown that such a blocking system is characterized by the following
property. ''For any partition of V into two sets Vo and Vl(Voﬂ V1 = @ and
VOU V1 = V), either a member of £ is contained in Vo or a member of Y is
contained in V., but not both'".

1
The pair of preventing families (gxy’ gyx) is now characterized as follows:
Theorem 1: Let d be a stable CCP. For each (x,y) pair of alternatives (x # y)

there exists a non-empty family of subsets of V, ‘?xy’ such that

M 7,78 045,
(2) s egxy< =>{¥m € D:VXy(n') =8 = d m) #y}
(3) sc¢ ‘?xy <= d me D: ny(ﬂ) =8 and d() = x

(4) gxy is a hereditary family: S ¢ F oy TD S = Teg F

Y Y

(5) Fyp =Fp, “{TSV:TdE ]

¥ =¢y=$T§V:VSEEXy,TﬂS#0'}
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The following points should be noted.

(i) For the pair (F ,# x) to be a blocking system as we have defined it
Xy

y
above, it suffices to take the minimal elements of these hereditary families
zxy and,gyx. If we now extend the notion of a blocking system to encompass
the hereditary families, we can call the pair ery,,gyx),itself a blocking

system.

(ii) It is easily seen that property 4 ('heredity') is equivalent to
d

F =‘?t-

(iii) Property 4 is also known in game theory as the defining property of

a general simple game - i.e. not necessarily proper nor strong. Specifically,
we recall that a general simple game is such that any superset of a winning
coalition is also winning. (Here, the coalitions would be the elements of

a family, say,gxy). It is proper if and only if S winning implies S not
winning. And it is strong if and only the converse holds: S not winning
implies §'winning.

3.2 The Case of Two Alternatives

It is interesting to examine the case of two alternatives A = {x,y}, for
in this case we find that there are uncommon non- dictatorial stable CCP's.
First, we state:

Corollary: Let d be a CCP defined on a two alternative set; d

is stable if and only if there exists a blocking system(+)(?,&) such that

(+)

In the extensive sense allowing hereditary families as explained in (i) above.
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(1) d@@) =x<> ny(TT)EJI

(2) d@m) =y<=> Vyx(“) € &

(3) % and % are hereditary families
@ 5 =5"=4"

That this condition is necessary follows from Theorem 1. Its sufficiency

is readily verified. For since ¥ =,&d, either ny(ﬂ) € F or Ggy ) = Vyx €.
Hence, either d(m) = x or d(rr) = y. Furthermore, property 3 (¥ and . & are
hereditary families) ensures that d is stable. For suppose that d(m) = x

and 7 is unstable; then  n’ € D and i € V such that d(n') = y and nyﬁT') =

ng(n)lJ {i} which contradicts property 3.

Example

The following example for a set of 3 voters V ={1,2,3} illustrates
how applying the above conditions enables us to construct a non-dictatorial
stable CCP, which differs from the commonly known neutral and symmetric
procedure.

We let

Fop™ (2,33 (1,2,3)]

Fyx T {2); (3); (1,2); (1,3); (2,3); (1,2,3)}
Now if we pick, say, m = (Xy; yx; yxX) we obtain d(m) = y. This example
shows that, in a sense, 2 is dictatorial against x and agreement between
2 and 3 suffices to determine the outcome irrespective of 1, who does not
belong to any of the two families.

3.3 The Ultrafilter Structure of 'Preventing Families' for More

Than Two Alternatives

We first define a notion of neutrality among alternatives for a CCP,d.

Definition 9: A CCP is neutral if and only if ¥m, n’ € D, V(x,y) # (z,t)

[ny(n) = Vzt(n')] => [dm) # y<=> d@’) # t]. 1In the case of stable CCP's
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characterized by their preventing families, it is readily seen that neutrality
can be equivalently stated:

V(X:Y) #V(Z:t) ;Xy = gzt

Thus a neutral CCP can be characterized by a unique preventing family for
any pair of alternatives (x,y). As it turns out, neutrality holds for a
stable CCP. TFormally, we can state:

Proposition 3: For IAJ > 2, a stable CCP is neutral.

Thus, in the case of a stable CCP, we can meaningfully speak of the pre=~
venting family of subsets of voters as it is a unique family, denoted ¥, ir-
respective of the pair of alternatives considered.

Now, focusing on this family §, we furtﬁer specify its properties beyond
those stated in Theorem 1.

Theorem 2: The preventing family ¥ underlying a stable CCP is an ultrafilter
in 27,
An immediate consequence of theorem 2 is:

Theorem (Gibbard-Satterthwaite): A stable CCP (for IAJ_E 3) is dictatorial.

This follows at once from the well-known fact that an ultrafilter on
a finite set has a singleton base., Such a singleton is a privileged voter
whose most preferred alternative always becomes the social outcome for a
stable CCP. The case of an infinite voter set must be treated with some
caution since free ultrafilters do exist on infinite sets. Just as Fish-
burn [ 9], Hansson [ 137, and Kirman and Sondermann [ 15] noted in the case of
Arrow's theorem, it suffices to pick a free ultrafilter on the set of voters

to obtain a 'non-dictatorial' stable CCP.
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IV. Proofs

For clarity of exposition, we first prove two short lemmas. The following

definitions are also needed.

Definition 6: Let Pi be a complete ordering on A. A subset B of A
is mptimal for P, iff (x € Band y ¢ B) > [xPiy]

Definition 7: A subset B A is optimal forw, ={P | i¢ I, IC V]

iff B is optimal for each Pi in T

Definition 8: A sequence (xl, Xys eees Xk)’ k< ]A] is optimal for Pi iff
(1) The subset {x,, X, «.., xk} is optimal for P,
(ii) x Pi X, Pi’ ches Pi X
For instance, to say that {x,y} is optimal for Pi means that x is first and
y second in Pi or vice versa; whereas to say that (x,y) is optimal means
that x is first and y second. Now, considering a profile m, any pair of
alternatives (x,y) and a voter i, we wish to examine certain subsets of
profiles ' obtained by leaving all but the ith component of 7 unchanged.
As to the ith component, x and y go to the top of Pi as first and second
respectively if we had x Pi y originally; or in either order (but still at
the top) if we had i ¢ Vyx () initially. This operation defines a corre-
spondence from D into itself for each i and each (x,y) pair. Namely,

wiy (@) = {ﬁl‘ P3 = Pj ¥j # i and {x,y} optimal for P; and, in addition,

(%, y) optimal for P'i if i¢ vXy @)}

In our first lemma, we consider the image profiles of 1 under the correspon-
dence ¢.

lemma 1: If d is stable, d (M) = x and 17’ Ecpfy @ >d @ ) =x

Proof: Note first that d@’) # x or y cannot hold if n’ is to be stable
since { x,y} is optimal for P;.

Now, either i € ny () and d@’) = y in which case ' is unstable for d;
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or ic¢ Vyxﬁn) and d@’) =y in which case m is unstable for d.

Therefore, if d is to be stable, d(7’) = x must hold.

Then we extend the correspondenceScpixy to @xy by defining:
Xy _ Xy Xy Xy
@ =¢q xcpz X...xcpv

If D is unrestricted @xy defines a correspondence from D into D; that is
it associates with every element of D a non-empty subset of D(l). For
instance, @xy =CP?y chzy is formed by the union of @zy for all ' ¢ @?y ).
In other words, for each M and each (x,y) pair ¢ associates all profiles '
such that

(i) {x, y} is optimal for m’

(ii) if i ¢ vxy(n), then (x,y) is optimal for P’i
If we repeatedly use the proof of Lemma 1 for each i and ' € @ixy we are
led to:
Lenma 2: If d is stable, d(m) = x and '€ *° @) = d@’') = x

Now note that the ¢, and ¢ correspondences verify the following property
i

W)V @)DV @) = o0.0 @) e, m,)
Property (¥*) Xy~ 2 Xyl Fi 2 *1 1

(ii) vxy(nz):_: ny(nl) > fpxy(ﬁz) < cpxy(ﬂl)

(1)

It should be noted that the unrestricted domain condition is crucial

if the ¢ correspondence is to exist. For, with a restricted domain D
Xy , . 2 ,

we may well havecpi =@¢. For instance, if A = R” and D is the set of

all profiles such that Pi € m has no maximal element, then we have

Xy _ ¢
N .
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Proposition 1: For any stable CCP, d

[dem =x, 7 €D, vV () 2V (M, y#x]=>d) ¢y

Proof: By property (%) @Xy(n')fz @Xy(ﬁ) since we assume ny(ﬂ') 2 ny(ﬁ).
Now by lemma 2 if d is stable and x = d(m) then d[{@xy(ﬁ)}] = {x}. Thus

d{e” (@)1 # .
Q.E.D.

Finally a third lemma can be readily proven for stable CCP's.

Lemma 3: For a stable d, if B is optimal for m => d(m) € B.

Proof: TIt follows directly from the weak Pareto property (implication iii,

proposition 1).

This lemma ensures that if a CCP is to be stable, the outcome set must res-
pect unanimous negative opinions

We are now in a position to prove our Theorem 1l regarding the preventing
families of subsets of voters characterizing a stable CCP.

Consider the family iky of subsets of voters preventing y by x. Accord-

ing to Theorem 1 this family # _ must have the following properties.
Xy

Property 1. It is not the empty family: 3%y # 3

Since d(D) = A, Vx € A Hdm € D such that d(m) = x. From proposition 1 (im-
plications (i) and (ii)) any profile m such that ny“¥) 2 ny(ﬂ) yields

d . Th .
() #y Tusvxy(rr)ea’fxy

Property 2. [SCS V, S € g%y] <=»> [Em € D:ny(ﬂ) =S and d(m) = x].

We show necessity first. Let S € F%y and consider a profile m € D such that
(1) Vi eS8 x is first and y is second in Pi ((x,y) is optimal in Pi)

(2) Vi é¢s y is first and x is second in Pi ((y,x) is optimal in Pi)
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Thus ny(n) = S, which means d(m) # y. Further, Vz # y VXZ = V. Now the

weak Pareto property ensures that d(m) # z. Thus d(m) = x. Sufficiency

readily follows from Proposition 1.

Property 3. . is a hereditary family: S €& _, T2S =T €&
Xy Xy - Xy

Let S E.?xy. By Property 2 dm € D such that ny(n) = S and d(m) = x.
Let T D S. Now Proposition 1 ensures that Vi with vxy(n’) =TDS§ = vxy(n)
we must have d(n') # y if d is to be stable. Thus T € ny.

The conjunction of Property 1 and 3 implies that the Pareto property holds

for preventing families: V E‘g—xy'

d -
Property 4. ¥ =% ={scv:s ¢F ]}
yx Xy = Xy

We must show S € "‘yx <= S ¢ "ny

(i) Necessity: Let S ¢ ;yx' Consider a profile m such
that {x,y} is optimal for m, Vyx(ﬂ) = S and ny(n) =S;
that is, (x,y) is optimal for TT§ and (y,x) is optimal
for Mg- Lemma 3 guarantees that d(m) = x or vy.

S € Fyx = d(m) # x. Thus d(7) = y which means S ¢ ny.

(ii) Sufficiency: Suppose s ¢ ny. Taking the same pro-
file 7 as in (i), property 2 implies d(m) # x. Then

d(mm) = y must hold and S E‘?yx'

Property 5. The empty set cannot be preventing: @ ¢ gxy .

Assume otherwise: @ € ny. From property 4 this would imply @ =V é‘?yx

and then ;yx = % contradicting property 1.
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We now further characterize preventing families underlying any stable CCP
by showing that there is only one preventing family for a given stable CCP
whatever the pair of alternative considered. This is what we referred to as

the neutrality property.

Proposition 3. A stable CCP is neutral.

Proof: We want to show that F%y = Fét Y(x,y) # (z,t) for a stable CCP.

(1) First we show that ‘?x C 7

<y Let S € ﬂgy T € Jyz and pick a

y

profile @ such that: (a) {x,y,z} is optimal for m, and

(b)) Vie€sS -T x

>z>y
i i
YiesnrT X3y >z
i i
Vi € (T-5) vy ? z { X
Yi € (TVU S) z2Zy%X

Lemma 3 ensures that d(m) = x,y or z

S E!Xy = d(m #y

T e.;"yz = d(m) # z

x and since sz(n) = S it follows that S € ?%z (by Property 2,

= d (m)
Theorem 1 above).

(2) Permute z and y in (1) to show ;xz cF

(3) The conjunction of (1) and (2) = 3?2 = ?%y Yz # x. The same

reasoning shows ?gy = Fﬁy Yt # y.

Then ¥ =& Vz#xand t #y. And ¥ = ZF Yu # v and v # x.
Xy tz X vu

Letting z = u and t = v, we get ¥ =& =& =F . Neutrality holds
Xy tz vu vz

for a stable CCP. Q.E.D.
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This means that there exists a single family J for a given stable CCP.

Thus F =& =F = Fd = Jd, which means S ¢ F<=> S ¢ &.
xy yx O xy

In other words, J is a 'family of majorities' (3 la Guilbaud-Monjardet); or,
equivalently, ¥ defines a strong and proper simple game.(l)
We can now summarize the properties of the preventing family & charac-
terizing a stable CCP.
(1) ¢ ¢7
(2) Vved
3) SeF, TO2S=TE¢EF

(4) S €eF<=>3S ¢¥F

Now it has been shown by Guilbaud [12] that for a family J exhibiting
properties (3) and (4) to be an ultrafilter it is sufficient that it also
exhibits property (5) [S € F, T €F, WEF] = [SNTNW#PB]. Theorem 2

establishes that J is indeed an ultrafilter by establishing property (5).

Theorem 2: The preventing family F underlying a stable CCP is an ultrafilter
in 2V.
Proof: As explained above, we only need to show property (5). Assume, a

contrario, that S, T, WE€ F and SN T N W =@. Consider the following profile

e (1) {x,y,z} is optimal for

Vi € 8 : xP.y
(2) VierT: yP.z

Vi € W : 2P x

Yi € (SNT) U (TNW) U (WNS), {x,y,2z} come first, second or third.

(D

See 3.1 for a definition of a strong and proper simple game.



Thus Vi € SNT : xP; y P,z
VieTNW: vy Pi z Pi x

Yiewns: z P, X Pi y

Such a profile can be constructed for SN T N W = §. Now from Lemma 3 we have

d(m = x,y or z. But now note that

V (M2s => dm vy
Xy

vyz(n) DT = d(m) # =z
sz(ﬂ) DW = d(m # x

This contradicts the fact that the outcome must be x, y or z as noted earlier.
Q.E.D.

1t follows that

Hi.€ V such that F = {SSV:i ¢ S}. That is, i is the singleton base

of this ultrafilter. 1In other words,

Theorem (Gibbard-Satterthwaite): A stable CCP (for |A| > 3) is

dictatorial.



V. An Alternative Approach

In this section we sketch an alternative indirect route based on an Arrow-
type theorem. 1In contrast to the direct method of the previous sections, this
derivation will, we hope, further highlight the differences with the traditional
approach. In short it will be seen that the common underlying concept is once
again that of a 'family of majorities' as explained before. Thus this notion
can be truly regarded as the fundamental basis for key results in axiomatic
social choice theory.

As we recall, Theorem 1 characterizes the class of stable CCP's by the
existence, for each pair of alternatives (x,y), of a non-empty family of subsets
of V ng verifying five fundamental properties.

Briefly, the alternative approach consists in: (1) associating, with any
stable CCP thus characterized, an aggregation function f mapping any pro-
file of individual preferences into a binary complete and asymmetric relation--
i.e. a tournament relation (thus not necessarily transitive); (2) showing that
for any such aggregation function certain properties hold, the conjunction of
which make it dictatorial.

First, some definitions.

Definition 9: An Aggregation Function (AF) f is a mapping from D onto J--

where J denotes the set of all tournament relations on A.

Definition 10: A Decisive Aggregation Function (DAF) is an aggregation func-

tion f such that f(n1) = T € J_ _~--where J denotes the subset of tournament
max max

(D

relations on A which have a maximal element.

(1)

This type of binary relation (in jﬁax) is, in a sense, 'intermediate'
between fully transitive tournaments (as in an Arrow SWF for strict preferences)

and general tournaments. Thus we have AF D DAF 2 Arrow SWF.
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Given any stable CCP d (thus characterized by its families of preventing

sets ;%y) we define its associated AF,f = {(d), by

[xy) € £(M] <= [ny(ﬂ) € ?Xy]

In words we say that x precedes y in the tournament f£(m) € J if and only if the
group of voters who placed x above y in that profile 17, belong to the family of

sets that are d--preventing for y by x. Theorem 3, below, characterizes the

AF f thus associated with d.

Theorem 3: The AF f = {(d) associated with a stable CCP d is:

(1) a DAF: £(m) €7 i.e. there always exists a

ax?
maximal element in the image tournament. Thus
Vx €A, YmeD [d(m) =x] <=> [Vy #x,(x,y) €£(M)]
(2) independent

(3) weakly paretian

Proof: (l) £ is a DAF. We must show that £(m) € jﬁax ¥m € D.

(i) That £(m) € J (i.e. is, indeed, a tournament) follows
from the fact that V(x,y) either VXy(ﬂ) € E%y or
Vyx(ﬂ) € ?&x; thus (x,y) € £(m) or (y,x) € £(m).

(ii) Now let d(m) = x. Then x is a maximal element of
f(m). For
= <= V z <=
d(m) =x<=>TVy # x, Vyx(ﬂ) éa‘yx > Vy #x
o <=
ny(ﬂ) E.a‘xy > Vy #x, (x,y) € £(m)
(2) To show that the independence property holds for f, consider
7, € D such that V (M) =V_(7) =S. Now note that
Xy Xy
[(x,y) € £(M] <= [ny(n) =5 € ny]. But then also

[vxy(n’) =S ¢ ;gy]. Thus [(x,y) € £(n )]. Hence

[(x,y) €£(m )] <= [(x,y) € £(n')].



- 22 -
(3) The weak Pareto property is immediate. Consider T
such that V (mm) = V. Now since V € §  then
Xy Xy

(x,y) € £(m) and thus d(m) # y.(l) LD

In this case of three alternatives in A, we can readily demonstrate the following

corollary.

Corollary 1. A stable CCP d, on a 3-alternative set A

is dictatorial.

Proof. It is well known that for a 3-element set a tournament on A is transitive
iff the tournament has a maximal element. Thus the DAF f associated with d
always yields a total order on A for ‘A[ = 3, Now since f is independent and

Paretian, Arrow's theorem ensures that it is dictatorial. Q.E.D

In the case of more than three alternatives, (|A| > 3) this simple corollary is
not applicable since we are dealing with decisive aggregation functions (DAF)
rather than the more restricted Arrow-type SWF. Clearly, what is needed is a
result similar to Arrow's theorem but applicable to DAF's. The following Lemma
and theorem 4 generalize Arrow's theorem to DAF's.(Z)
Consider some DAF f. Following standard terminology we call S C V (x,y)~
decisive for f and W if and only if (x,y) € £(m) and ny(ﬂ) = 8. Now if f is

independent and S is (x%,y)-decisive for f and m, S is (x,y)-decisive for any of

such that ny(ﬂ’) = S. Thus, in this case, we can characterize f by the families

(D

Although this is not needed for our purpose here, it can easily be shown
that such a DAF is also monotone, paretian and non-imposed.

(Z)It should be noted that the result is quite independent of the issue of

stability of a CCP. We are considering any DAF (see Definition 10) not one

necessarily associated with some CCP.
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of such (x,y)-decisive subsets of V. Denoting by ﬁgy such a family it can be
shown that it verifies the following properties (as in Theorem 1).
- ﬁ%y is a hereditary family
d

- (oY) € £(M) <> [V (M €8 ]

Furthermore, it can be shown [16] that if f is non-imposed all the ﬁky families
are different from % and 2V. It can also be noted that if f is weakly paretian
it is paretian and, thus, non-imposed.

Now we must show that if f 1is independent and weakly paretian it is
neutral, i.e. for any distinct pairs (x,y) and (z,t): B =0 _. This is the

Xy 2t
object of the next lemma.

Lemma: Let f be an independent and weakly paretian DAF. Then f is neutral.

Proof. The proof of this lemma is identical to that of Proposition 3 establish-
ing the neutrality of a stable CCP.
For instance, we show that for any triple of distinct alternatives (x,y,z)
ﬁky E;ﬁ%z by picking S € ﬁ%y and T € ﬁ&z and a profile m as in the proof of Proposi-
tion ‘3. Then as f is weakly paretian,. we necessarily have the maximal element of the
tournament under £, denoted ?(n) = x or y or z. Now S ¢ ﬁ;z = (x,y) € £(m) =>
E(n) # y. Similarly T € ﬁ&z = (y,z) € f(m) = ?(ﬂ) # z. Hence
f(ﬂ) = x = (x,z) € £() and since VXZ(W) =S =S ¢ ﬁ&y' The rest of the proof

follows as in Proposition 3'Q.E.D.

Hence we conclude that B is the unique family of decisive sets: j>=£%y:=£§x
=54 =
Xy
Thus S € # <=>, S ¢ B which means that & is a 'family of majorities '(a la

Guilbaud-Monjardet) just like ¥ the 'preventing family'.(l)

(D

See Section IV end of Proposition 3 above for the properties of such a family.
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The next theorem generalizes Arrow's theorem to DAF's.

Theorem 4. Let f be an independent and weakly paretian DAF. Then f is

dictatorial.

Proof. The previous lemma establishes that such an f is neutral hence char-
acterized by its ‘family of majorities' /. The rest of the proof is identical

to the proof of Theorem 3 above.

Theorem (Gibbard-Satterthwaite). For !Al > 3, a stable CCP is dictatorial.

Proof. Follows immediately from Theorems 3 and 4.
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