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A Game of Barter
With Barriers to Trade

by
Ehud Kalai, Andrew Postlewaite and John Roberts

Explaining the allocation of resources under voluntary ex-
change is a fundamental problem for economic theory. We here
analyze a simple but natural model of such exchange in which agents
trade directly with one another rather than with an impersonal
market., Our analysis of this model is game-theoretic. In particular,
treating the process of exchange as a game in strategic form, we
show that the allocations corresponding to strong Nash equilibria
of this game coincide with the core of the underlyingveconomy.

In contrast with most models of exchange, we do not automati-
cally assume that all agents are freely able to trade with one another.
Instead, we introduce a structure on the set of traders and specify
that two agents can trade only if they are linked in this structure.
The absence of such a link indicates the presence of legal, insti-
tutional or physical barriers which prevent direct communication be-
tween the agents in question or the flow of commodities between them.
The introduction of such a structure, which was first suggested by
Myerson [ 6 ], provides rich opportunities for modeling and analysis
of alternative forms of market organization. As an illustration of
these possibilities, we examine the question of whether there is an
advantage to being a middleman. To this end, we compare the core
(strong Nash equilibrium) allocations when all pairs of agents can
trade directly with one another with those in the same economy when

there 1s one agent who can trade with everyone but no bilateral



exchanges not involving this middleman are possible. Using the theory
of market games, we are able to show that for the case of three
players, the middleman must gain, although this is not true in
general three person games. We also present an example of a five person
market game in which being a middleman is disadvantageous.

There have recently been a number of applications of games
in strategic form to the analysis of exchange. Among the most promi-
nent of these are [8], [ 9] and [10], in which the Nash
equilibrium is the solution concept studied. In our model, the
Nash equilibria are not particularly interesting because they are
too numerous. On the other hand , the strong Nash equilibria are
of interest both because of their relationship with the core and

because they accentuate the essentially cooperative nature of exchange.



_3._

Description of the Game

We consider an economy described by the characteristics of
the n traders in the economy and by the physical possibilities for
communication and trade between the agents. The characteristics
ai of trader i consist of his endowment wi of goods, his consumption

set Xi and his preferences 31 over XiC:Rm, where m is the number of
comnodities. We assume wi € Xi, all i. The possibilities for
communication and trade are described by a trading structure, which
is a graph g with n nodes.1 The nodes are identified with the res-
pective traders and a link ij belongs to g if 1 and j are able to
communicate and to exchange commodities. The desired interpreta-
tion is that the absence of a link ij Indicates the existence of
legal, institutional or physical barriers preventing communication
and trade between i and j. We denote such an economy E by the pair
(a,g), where a = (al,...,an), ai = (wi,Xi,zi), and g is the communi-
cations graph for this economy. Obvious special cases are those in

which g is connected or even complete.

. . 1 n
An allocation for E is an n-tuple (x7,...,X ) such that
x" € Xl, i=l,...,n,and z:xl = Z w', Let T be a coalition, i.e. a

l,...,Tk} be the

non-empty subset of N = {1,...,n}, and let (T
partition of T such that each T' is g-connected and no strict superset
i,
of any T" is g-connected., An allocation x is feasible for T if,
for each j=1,...,k, 2, . ko= Z . wl. If an allocation is feasible
T T
for N, we simply say it is feasible. A coalition T can improve

upon an allocation x if there exists an allocation y that is feasible

for T such that yl >t x* for all i€T. The set of allocations that



etz

-4 -

are feasible and which cannot be improved upon by N are called
fé;eto optimal., The set of feasible allocations which no coalition
can improve upon is called the core of E. Note that in considering
the core of E it is sufficient actually to consider only the g-
connected coalitions of E.

An n-person non-cooperative game (a game for short) G is a

pair (S,<) where S = Slx...xSn, st + ¢, and < = (il

,...,in) are n
complete pre-orders on S. The set Si is called player i's strategy
set, and 51 is his preference ordering over strategies. It is
often natural to think of this ordering as being induced by his
preferences over the outcomes arising from the strategies.

If s and t belong to S, and T is a non-empty set of players,
define the strategy (sItT) by replacing the ith coordinate si in
s by ti for each i1i¢T. A strong Nash equilibrium (SNE) of G is‘a
strategy s such that for no non-empty T does there exist a strategy
t such that s A (sltT) for all ieT.

Given an arbitrary economy E = (a,g), we now define a game GE

which describes the underlying structure of trade in this economy.

The players in the game simply correspond to the n traders

in E. A strategy s® for i consists of an (n-1)-tuple (si,...,s;_l,
B L R T T T o1, i
Si+1""’sn)’ where Sj € R, sj 0 if ij £ g and L,.Sj + 4= € XL,

i J
We interpret positive components of s; as amounts of the corresponding

commodities i proposes to received from j and negative components
as amounts he proposes to give up in return. Given a strategy

n : . .
n-tuple s = (sl,...,s ), a non-empty subset T of N is said to be

consistent relative to s if, for any ie¢T, if j€T then s; + Si =0



and if j£T then sT = 0. Since the union of consistent sets is con-

sistent, there exists a unique maximal consistent set of players

relative to any strategy. Denote this set by cons(s). Then, define

the outcome corresponding to any strategy s as p(s) = (pl(s),...,pn(s))

i i . i _ i, T 1. )

where p (s) = w™ for if cons(s) and p (s) = w™ + Z.-Sj for ie cons(s).
J ‘

The players' preferences over the outcomes are simply the individual

traders' preferences over their consumption sets, and these induce

preferences over strategies in the cobvious way.

THEOREM 1: For each seS, p(s) is a feasible allocation, and for
every feasible allocation x there is a strategy s¢S such that p(s) = x
and cons(s) = N. Further, if s is a strong Nash equilibrium, there
exists seS with p(§) = p(s) such that s is a strong Nash equilibrium
and cons(s) = N.

Thus, the game's outcomes exactly correspond to the relevant
allocations in the economy. Also if one restricts attention to

consistent strategies the same strategic feasible structure would resul

THEOREM 2: 1If s is a strong Nash equilibrium then p(s) belongs to
the core of E. Further, if preferences are continuous and monotone,
for any core allocation x there exists a strong Nash equilibrium with

p(s) = x.

Thus, by these two theorems, the set N = {p(s)|s is a SNE} of
strong Nash equilibrium payoffs coincides with Core (E). The existence
of a SNE is equivalent to non-emptiness of the core of E, and limit
theorems on the core aiso apply to 7. Thus, for example, the competi-

tive equilibria of E are SNE payoffs, and if we have a sequence of
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economies Ek for which Core (Ek) shrinks to the set of competitive

.equilibria, the same is true of the strong Nash equilibrium payoffs.

PROOF OF THEOREM 1: That p(s) is a feasible allocation is immediate.

To show the second part of Theorem 1, let x be a feasible allocation,

and let Nl,...,Nk be the partition of N such that each Nh is

g-connected and no strict superset of any Nh is connected. Note that

z h(xl-ml) = 0 for each h, so we need only consider the Np

L &L
individually. Take any Nh, say N’, and select one player from N,
say, without loss of generality, player 1. Since N’ is connected,

there exists a path between 1 and any other player jeN’. Select

for each j a path from 1 to j involving the least possible number

and
of links /yielding a tree that is a subgraph of N’. Now define partial

order relations < and < on N’ by i < j if the path from 1 to i passes
L

through j and i < j if 1 < j and i # j. We define strategies for

the players in N° as follows. For each j€N’, if iéN’ is such that

e e

i < j and there is no téN’ with i < t < j, set s3 = Zl(wt-xt) and.s}ﬁ-sq.

i
. t<i :
Otherwise, set si = 0. Now repeat the same steps for all the other

h . . . . -
N"'s in the partition. It is clear that for the resulting strategy

s, p(s) = x, since we are working with tree structures. Further,

" note that cons(s) = N. For the final part of the Theorem, suppose

that s is a SNE but cons(s) # N. Then, define s by st = sl, i€

cons(s) and s+ = 0 if i¢ cons(s). The claim is now trivial to verify.
Note that in the case that™g is connected, the construction

used in this proof shows that at most (n-1) links need be active to



. k
. <
achieve any feasible allocation. More precisely, at most ( A‘nh)-k

links need be active, where nh is the cardinality of Nh. h=1

PROOF OF THEOREM 2: Suppose that s is a SNE. By Theorem 1, we

may take cons(s) = N. If p(s) £ Core (E), there exists a g-connected,
non-empty coalition T and an allocation x which is feasible for

T such that pi(s) <i xi for ieT. Consider the strategy § defined
by identifying some member of T and then, for i<T, following the
procedure used in defining the strategy in the proof of Theorem 1,
substituting T for N’ as required. Then pi(siéT) = xi, ieT, and

s could not be a SNE. Thus, if s is a SNE, p(s)c Core (E).

Now, take x € Core(E) and suppose p(s) = x, but s is not a

SNE. By Theorem 1, we may again take cons(s) N. Since s is not

a SNE, there exists some non-empty T © N and some strategy s such
that pi(sléT) >1 pi(s) = xi for all i<T. 1If p(sigT) is feacsitle

for T, then T immediately can improve upon x by modifying S on T

to consist of trades only in T, and we have a contradition. However,
it may be that p(slgT) is not feasible for T, since it may involve
the members of T trading with members of the complement of T,
although of course these trades must be those made under the original
strategy s. In this case, select some individual j€T, and consider
the maximal connected subset C of cons(sléT) containing j. Observe
that C is not empty, since pj(s|§T) > pj(sj > wj, so trade involving

j does take place at (s[gT). Note that for té&C~T, pt(s) =

t ~T . . . ~T.
p (s|s”). To see this, note first that since C < cons(s{sT),

t

t AT t (‘—’ "T t - o t t "’ .
sis =g + .(s]s7),, while sinc ons = N, = +, .s..
p (sls™) L‘J( ] )J e e cons (s) p (s) w L‘JSJ
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Since t£T, (sléT)t = st Thus, pt(s) = pt(sl§T). Meanwhile, for

£ €T # 8, ptes) <F pis|3Ty. Thus, pt(s) <t p(s18T) for all

t&C, with strict preference holding at least for t = j. Further,
p(slé?) is feasible for C, since C is a maximal connected coalition.
Now, given continuity and monotonicity of preferences, it is possible
to find an allocation y by means of which C can improve upon x.

We should note that it is not completely standard to include the
factors modeled by the graph g in the definition of the economy.
However, if one identifies an exchange economy simply with the
agents' characteristics, but continues to consider only the g-connected
coalitions in defining the core, then our results obviously continue

to hold.



" The Advantage of Being a Middleman

The use of the graph structure on the set of traders permits
the modeling of differing forms of market organization. For example,
if g is not connected, we are effectively looking at a system of
autarkies, while if g is connected but not necessarily complete one
obtains models of different forms of economic systems. For example,
the complete graph in part (a) of Figure 1 represents a system under
which all agents are free to exchange directly with one another,
thle the graph in part (b) represents the existence of a middleman
through which all trade flows. Figure 2 can be considered as
representing two economies, where all foreign trade in the one

economy must flow through an export-~import agency.

PLACE FIGURES 1 and 2 here

A particularly interesting aspect of the question of comparing
r - sy o

different systems involves comparative statics analysis on the
equilibria as the communications graph is changed, with a view to
answering such questions as precisely who gains or loses when a
link is introduced or deleted from g? A specific example of this
involves the role of the middleman. Suppose, for example, that
initially g is complete and then all links except those with one
particular agent are broken (as in Figure 1). Since the graph is
still connected, the set of Pareto optima is unchanged. However,
no multi-player coalitions not involving player 1 are connected

in the second situation. Thus, the core and strong Nash equilibria
of the second economy will include those in the first, Intuitiveiy,

one might expect that the player in the middle would do better in
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this situation: all trade must flow through him, which ought to
‘improve his position. Somewhat more formally, all coalitions
including this player remain as before, while those excluding him
are now powerless. The question is then whether he does in fact
gain from having this special position. 1In analyzing this question
we assume that each trader's preferences can be represented by a
continuous quasi~-concave utility function which is strongly
monotonic in each commodity. We also assume that the consumption
set of every trader consists of the non-negative orthant of the

commodity space.

Let 8. = {ij : 1,j€N} be the complete graph with n traders

and let g = {1i : i€N,i#1}. Then g _represents free trade and
m c

g, represents trading through a middleman (trader 1l). Let E = (a,gc)

and E, = (a, gm) be the economies corresponding to these two struc-
tures. We are interested in comparing 1l's payoffs at core or,

equivalently, SNE allocations in E. and E_

Theorem 3: Let n=3. For every x€ Core(Em) there exists a

y& Core(EC) with x1 > yl.

Thus, for every solution allocation x which arises when he
is a middleman there is a solution allocation y in the economy with
unrestricted trading which is no better than x: any point becoming
a solution when he becomes a middleman is better than some solution
under free trade.

To prove this theorem we use the methods of the theory of

balanced cooperative games.
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An n-person cooperative game is defined to be a collection

v ={V where, for every non-empty SEN, V. is a non-empty,

S}ﬁ#SEN S
strict subset of R™ which is closed and comprehensive (i.e. if XGEVS,

y €R" and y* < x* for every i€S then y €Vg). We let Oy = {xevV

S

for some y €V yl > x~ for every i€S}. The Core (V) = V N o)
S , stp °
where the superscript ¢ denotes the complement of a set,

S

With an economy E we can associate an n-person cooperativé
" game V(E) as follows. We let ui be a utility function for trader i
normalized so that ui(wi) = 0. For @¢#SN, define
VS = {VERn | there exists some S-feasible allocation x with
vij ui(xi) for every 1€S)

A collection of coalitions {Sr} is called balanced (see

r&R
Scarf | 7])1f there is a collection of non-negative real numbers
{6} such that for every i&N Lo 5 =1.
r*r€R . r
r:1€S
r
Lemma 1l: Let EC = (a,gc) be an economy and let V be an n-person

game associated with it.

1. For every non-empty coalition S and for every x,yéEVS, if

0 < 3 < xJ for every j€S and y#x, then ye€O Thus the pareto .

g
surface of VS contains no segments which are parallel to the

axes of the players in S.

2, For every xERn, x€ Core (V) if and only if for some y€ Core (EC)
x = (lh,uf D), . Lt ™).

3. For x€R" let TX = {SgN : xEVS}. If Tx is a balanced collec;%gﬁ

of sets with weights {6S}S€TX’ and if for some S € TX, % éos and

bg > 0,
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- then there exists y’EVN with yl > x* for every i €N.

Proof of Lemma 1: Part 1 follows immediately from the monotonicity

of the utility functions. Part 2 follows from the definitions of the

cores and from part 1.

To prove part 3 we use a method due to Scarf.[7]. Assume x
satisfies the hypotheses of the lemma. For every S éTX there exists

an S-feasible allocation zS'With x* < ul(z;) for every i€S. Also

for some S’eTx z.,can be chosen so that xT < ul(zl,) for every
S

S
i €S’. consider the allocation z defined by z- = z;as z;, where

the summation is over those S €TX with i€S. Observe that zl is

a convex combination of the z;'s and therefore (by the quasi-

concavity of the utility functions) ul(zl) > x' for every 1i€N.

Also, ul(zi) > x* for every 1 €S . Let yl = ul(zl),iEN. Since

Toia0  F sk = T s Tabs T o5 Tute Tut
i€s

i€eN i&€N S€T_,1i€S SET SE€T i€S i&N
X X X

z is feasible and thus y = (yl,...,yn)é VN.

Proof of Theorem 3. Let V be the game associated with Ec’ and V' be -
that associated with B We wish to show that for any z€ core V'
there exists w€ core V with zl > wl. To this end, suppose zl < vl
for all v€B = Viypyy N 0?12} n 0({:13} n 0?1} n 0({:2} 0‘53} , z€B and
3 0[123}.(Note that the core of V'’ is the set of Pareto optima
in B.) If we can show that z £ 0{23}, then z must also be in the

core of V. Then any point in core v’ is at least as good for 1 as

some point in core V, namely z, and we are done.
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Thus, to obtain a contradiction, we will suppose that z€<3{23}.

Let T = {SgN : S#@, S#{23}, and z€V_}. Then 1 € U S, since other-
5 SET

wise the comprehensiveness of the V_, sets would imply that z does

S
not minimize zl. If {1} €T then the proof is completed because
Lemma 1.3 would contradict the Pareto optimality of z ({1},{23} is

a balanced collection). Then suppose {1}éT. We claim i€ U S, i=1,2.

T
For example if 2 ¢ U S, i.e. z £V uV , then for some small
/ (23 Y V12
‘enough ¢ > 0 z; £z - (0,¢0) also minimizes zl, while z’ € B,

z' €(%123}and Z‘EVS for any S # N with 2€S. Therefore for some

small enough &6 > 0, z" = z'

+ (0,0,8) we have z” € 0{123} and

2" €V, for § # S # Nand S # {(2,3)}. Thus z! is minimized at an

S
intericr point of B, which is impossible. So we assume without loss

. of generality that {12} €T and either {3} €T or {13} €T. If {13} €T
then we obtain a contradiction by Lemma 1.3 ({12},{13},{23} is a
balanced collection). So we are left with the cases T = {{12]},{3}}]
or T = {{12},(3},{2}}. 1In either of these two cases it is possible
to transfer a small amount of utility from 1 to 2 while still
staying in B,which again yields a contradiction. Thus, z £ 0{233,

so z is unblocked in V’,;and thus all points in the core of V%are at

least as good for the middleman as some point in the core of V.

This result seems intuitive, and it is surprising that the
proof is so involved. However, the following examples show that the
analogue of this theorem is not true for general three-person coopera-

tive games, or for market games with a larger number of players.
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Wwe first show an example of a 3-person non-market, cooper-

N Y R R RN TR

Al lye game in which the middleman may lose. Let ¢ be a small

§ wn-negative real number and define the game V (=V(e)) as follows:

3

Vfi} = {veR :vi < 0} for i=1,2,3;

V{123} = (V€R3:for some xX€ convex hull {A,B,C,F}, v £ x};

- _ 3.1 2 . )
Vi12) {veR™:v™ + v° £ .01};

3 1 3
= - < .
V£13} {veR™:v™ + v~ < 1};

V£23} = [veRB: for some xe convex hull {C,D,E}, v < x}.

where
A= (14:,0,0) , B = (1,1,0) , € = (0,0,1) ,
D= (0,1,00 ,E-=(0,5,2),F=(0,2,0),
G = (1,0,0)

Place Figure 3 here

The core of V(¢) is B = {(1,1,0)}. When the coalition

{1,2} is no longer allowed to block the core becomes all of the
triangle ABC with the exception of a small set of points neaf C.
.Thus the middleman is worse off at most of the points of the new
core. Moreover, by letting ¢-+0 we can make the proportion of the
points where the middleman loses go to one. When ¢=0 the middleman
18 never better off and he is worse off at almost all the new
points, Note, however, that when e=0 VN contains segments which

Are parallel to the v2 axis. Note too that these games are not

balanced in the sense of Billera and Bixby [2], and so they could

not come from markets.
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Thus, the condition that the game be balanced is crucial to the
middleman gaining in 3 person games. One might still hypothesize that
Theorem 3 would continue to hold for market games with any finite number
of players. However, the following example indicates that this is not
the case.

Consider the economy with 5 goods and 5 people, A, B, C, D and E,

whose utility functions and endowments are as follows:

[rA(Xl,Xz,X33X4,X5) = Xl Xz LUA = (1,0,0,0,0)

0BGy xp,%5,%,%5) = Xy X, w® = (0,1,0,0,0)

UC(x XnyXq,X x') =(x+X_) X C. (0,0,1,0,0)
10%22%83:%,5%5 1+5 3 w sV, 1l,U,

D _ . D .

U (xl,xz,x3,x4,x5) —(x2+x5) X, w = (0,0,0,1,0)

UF Gy 5%y 054, %,,%5) = (54x,) (x5+8) o = (0,0,0,0,1)

With all coalitions allowed, the coalition {A B} can block any
allocation unless UA + UB >1. There are no feasible allocations for
which this is possible except those in which A and B end up with all of
the goods Xy and Xo- Hence core allocations will be those in which the
goods Xy and X, are efficiently distributed among A and B and the goods
Xg, Xy, and Xg are divided among C, D and E in such a way that no
coalition can block the allocation.

Consider now the coalition {C E}. 1If C gets the bundle (0,0,2,0,1)
and E gets (0,0,1-a,0,0), U = o and U° = 8(1-q). If a« > 1/9 the
marginal rate of substitution for C of good 5 for good 3 is 1/q < 9.
For E the marginal rate of substitution between goods 5 and 3 is
8/1-a > 9, and hence this allocation of the goods of C and E is effiéi—

ent with respect to them. Thus among the allocations which {C,E} can

ry
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block are any which give ¢ =« < 1/9 and uE < 8(l-«)., Similarly
{D,E} can block any allocation which gives D, P =« < 1/9 and
uF < 8(1-a).
Now consider the coalition {CDE)}. If C gets (0,0,2¢,0,1/2)
and D gets (0,0,0,2¢,1/2), E gets (0,0,2-4«,0). The utilities are
€ = vP = « and U = 8(2-4a). 1f @ > 1/18, Mng,3 = (1/2)/2a < 9/2

while MRS = 8/(2-4a) > 9/2. Thus the allocation is efficient

E
5,3
with respect to C and E. The same argument shows that it is effici-
ent with respect to D and E. As well, it is trivially efficient
with respect to C and D, and no reallocation among the three agents
can make all better off. Thus this allocation between C, D, and E
is efficient. Thus any allocation which gives utilities UC = UD =

@ > 1/18 and UF = 8(2-42) cannot be blocked by {CDE}. However, if

@ > 1/3 the coalition {CE)} (or {DEJ}) can block since the utility

which E can be guaranteed while C gets ot = o is UE = 8(l-a) > 8(2-4a).
We now claim that at any core allocation, we must have UE,g 16/3.

To see this, note that if UE = B, then {CDE} can achieve UC = UD =

(16-8/32 = « via the allocation given above, with « = 16-8/32.

But if B < 16/3, this allocation is blocked by either {CE} or {DE}.

:Since if either E can get 8(l-a) = 8-8(16-8)/32 = 4 + /4 > B while the
)?' ,..other member gets «, and it is then possible to redistribute so as
to make both members strictly better off.

Now suppose we restrict blocking to only’ those coalitions

containing E. Consider the allocation and associated utilities below:
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x» = (0,0,0,0,0) | v =0

x5 = (0,0,0,0,0) v =0

xC = (1,0,2/3 +¢,0,1/2) v =1+ 3/2 ¢
xP = (0,1,0,2/3 +¢,1/2) P =1+ 3/2 ¢

xE = (0,0,1/3 -¢,1/3 -¢,0) ¥ = 16/3 - 16¢

We will show that for suitably small e, this allocation is in the
core as defined above of the corresponding game V..

The coalitions {A E}, {B E} and {A B E} clearly cannot block
this allocation. The coalitions {C E} and {D E} cannot block since these
coalitions cannot give C or D utility greater than 1. The coalition
{C D E} similarly cannot block since they cannot simultaneously guar-
antee C and D utility greater than 1/2. We will now examine the
marginal rates of substitution of C, D, and E to show that this distri-
bution is efficient among them. MRS?,B is (3/2)/(2/3 + ¢) < 9/4 while
MRSY ;= 8/(2/3 - 2¢) > 12. Thus this allocation is efficient with
respect to C and E. Similarly it is efficient with respect to D and
E and trivially so with respect to C and D. Further, no reallocation

between the three agents dominates this allocation. Adding A and B

to {C D E} cannot yield a blocking coalition either. The only coalitions|

left to examine are those which contain C or D (but not both), E, and
A and/or B.

Consider the coalition {A C E}. Can this coalition block? It
will be enough to show that with their combined resources C and E
cannot both improve upon their utilities in the proposed allocation.

Consider the distribution x* = (1,0,¢/2,0,1), x* = (0,0,1 - /2,0,0).
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This gives U = o and U® = 8(1 - 0/2). 1If a > 2/5, MRSS 5 = 2/(a/2) =
1/« < 5/2 and Mng,3 = 8(1 - «/2) > 5/2, hence the distr£bution is
~efficient between them. In the proposed allocation we have

UR = 16/3 - 16¢ > 8[1-(L+3/2¢)/2] =8(1/2 - 3/4e) for 0 < ¢ < 2/15,
Hence even with A's endowment, C and E cannot both improve upon the
utilities in the proposed allocation. Clearly adding B to the
coalition {A,C,E} will not change this. Also it is clear that the

same argument shows that the coalitions {B,D,E} and {A,B,D,E} cannot

13"

block the proposed allocation.

Thus the proposed allocation is in the core if only coalitions
containing E are allowed to block. Yet this allocation is clearly
worse for E than any previous core allocation (when all coalitions
were allowed to block). In fact, his minimal utility over core
allocations has gone down from 16/3 to 16/3 - 16(4/30)= 3.2.

The preferences in this example are not strictly monotonic, as
was assumed in Theorem 3. However, it is possible to modify the
example so that this condition holds and yet there are still core
allocations when £ is a middleman which are worse for him than any
on§ point in the core of the original game. Specifically, consider

modifying the above example by adding a term r(ij)to each player's
~utility function, which then becomes strictly monotone for all r > O.

We will show that for r sufficiently small, there are still core

E < 16/3.

points when E is a middleman yielding U

E SR Y LR AR

[hERRENRE P
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Consider the allocation

x" = (5,6,0,0,0)

x> = (s,5,0,0,0)

C _

x = (1-25,0,21,0,1)
30, 2

x? = (0,1-26,0;21,0,1)

30° 7
X% =

- (030’2,__a_9__,,0) ’
30 30

This corresponds to ¢ = 1/30 in the example above except that a
small amount of Xy and x2 has been taken from C and D and given to

A and B. Arguments similar to those used above show that for

0 < 8 < 1/84, this allocation yields a utility vector that not only
is in the core of the game V'’ with E as a middieman (and the original
preference orderings), but also has the property that, for all

E

coalitions S # N, it lies outside V.. Note that U

S < 16/3 at any

such pcint.
Now, if we consider the games V(r) and V’(r) obtained by adding
erj to each player's utility function, it is clear that for any point

r

u- in VS(r) (resp., Vé(r)) there is some point uf¢V, (resp., Vé) with

S
ui S u; r|S|, i€S. Now consider sequences {V(rk)} and {V'(rk)},
and let W € core V(rk), Uy + u., Then if is simple to show that u€
core V, so that for any e¢ > 0 there exists K such that core V(rk)
is contained in an ¢ neighborhood of core V for k > K. This in turn
means that for any e, the minimum of UE on the core of V(rk) is at
least 16/3 - ¢ for all k large enough. If we can now show that for

large enough k there are points in the core of V'(rk) which are

arbitraily close to the utility image of the allocation given above,

Y
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we are done. To show this, take the utility image u of this alloca-
tion, and note that for k large enough (rk small enough), u is not
blocked by any S # N, since Vé(rk) is within an e-ball of vé. Now

consider any Pareto optimal point w in V'(rk) with u S u (Such

K
a point must exist since Ui(x) < Ui(x) + rExj for any x = (Xl"°"X5)’
with strict inequality if x # 0). Since V&(rk) is within an e-ball
of V&, this sequence converges to u, and, since T is unblocked
in V'(rk), we are done.

It is worth noting, however, that although core V'(rk) con-
tains points strictly worse for E than any in core V(rk), in con-
trast to the situation with V and V' it also contains points which

are better for him than any in core V(rk). This is, in fact,

generally true with strict monotonicity.

THEOREM 4: Consider an economy where, for some trader i
with strictly monotonic preferences, the initial endowment is not
Pareto optimal for S = N ~ {i}. Then restriction of blocking to
coalitions containing i must result in the addition of points to
the core which i strictly prefers to any point in the core with

unrestricted coalition formation.

Proof: Consider a core allocation in the unrestricted game
which gives the central trader utility ﬁi which is at least as
high as any other core allocation. At least one trader j # i
must have utility strictly higher than his initial endowment yields
because w is not Pareto optimal for N~{i}. Now consider a Pareto

efficient allocation which gives i the maximal utility possible
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subject to the non-central traders' utilities being at least as
big as their initial endowment utilities. Compactness of the
feasible set and continuity of the utility functions guarantee
that there is such an allocation and strict monotonicity implies
that it yields ui > ﬁi. By construction, no coalifion containing
i can block this allocation; hence it is in the core when i is a

middleman.
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Conclusions and Possible Extensions

The model we have presented here seems a reasonable one for
analysis of direct trading between individuals. The strategies are
rather natural, and there is a bare minimum of institutional rules
involved in defining the outcomes. Yet the resulting allocations
are of interest, and the model offers interesting possibilities for
applications of the type suggested in the preceding section. More-
over, several extensions would seem feasible and interesting.

One extension which is relatively easy to include is the pos-
sibility of production. An obvious approach to this is to use a
modeling due to Hurwicz [5], which involves the introduétion of
fictitious agents with whom the other agents can trade. These
agents have zero endowment, flat preferences and a production

set in place of the usual agent's characteristics. Naturally,

in this context, the definition of the core and the strong Nash
equilibrium would require only that the fictitious players not.be
made worse off (rather than insisting on strict preference for
these agents as well). A second approach is to use the model of
a coalition production economy originated by Hildenbrand [4].

'f"We hypothesize that our principal results would continue to hold
with production.

The introduction of externalities in consumption offers another
possible line of investigation. As a first approach to this, one
can take the individual pfeferences to be defined not just over the

consumption sets but rather over the space of allocations in a

non-trivial fashion. Given the well-known problem with defining
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an appropriate notion of the core with externalities, one probably
cannot hope td obtain an analog of Theorem 2 in the context. Still,
the model may be useful and interestiﬁg. For example, if g is con-
nected, then one easily shows that any strong Nash equilibrium is
Pareto optimal. This, of course, is a formalization of the cele-
brated Coase theorem [3] that in the absence of transactions cos:s _
free bargaining will lead to optimality, regardless of externalities
~and the assignment of property rights.

A further useful extension would be to treat traﬁsactions costs
in a more explicit manner. The communications graph approach used
here can be interpreted in terms of transacticns costs that ar
either zero (if ij € g) or so large as to preclude éll trade
(if ij € g). Introduction of transactions costs that vary between
links and with the volume of trade flowing through a link should
provide even richer possibilities for analysis of the efficiency
of various forms of market organization. Again, we expect that
versions of our results could be obtained in such a model.

Finally, the examples in the preceding section with a dis-
advantageous middleman are reminiscient of the examples of dis-
advantageous monopolies (see, e.g., [l]), although the phencmena
do differ somewhat. Exploring the nature of the relationship
between these two classes of examples and, more generally, the
monotonicity properties of the core would seem to be a difficult

cpen problem.
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Footnotes

Let N = {1,2,...,n}. A graph on the set of nodes N is a col-
lection of ‘links Ei where 1 and j are distinct elements of N
and ij = ii. A gr;ph is complete if it contains all the
possible links., A path from node i to node j is a collection
of nodes il,iz,...,ik-with i1 = i, ik = j and with ir'ir+l
being a link in the graph for r=1,2,...,k-1. A graph is
connected if there is a path from any one node to any other
node. A graph is a tree if, given any two nodes i and j,

there is a unique path between them.



Figure 1 -

(a) (b)

Figure 2




Figure 3

S




(1]

(2]

[3]

(4]

{51

(6]

{71

(10}

- References

R. Aumann, ''Disadvantageous Monopolies' Journal of Economic
Theory, 6 (1973), 1l-11

L. Billera and R. Bixby, ''Market Representations of n-Person
Games,'" Bulletin of the American Mathematical Society, 80
(1973).

R. Coase, "The Problem of Social Cost,' Journal of Law and
Economics, 3 (1960).

W. Hildenbrand, '"The Core of an Economy with a Measure Space
of Economic Agents,'" Review of Economic Studies, 35 (1968).

L. Hurwicz, "Optimality and Informational Efficiency in
Resource Allocation Processes,' in Mathematical Methods in
the Social Sciences, ed. K. Arrow, S. Karlin and P. Suppes,
Stanford, Stanford University Press, 1960.

R. Myerson, "Graphs and Cooperation in Games,' Center for
Mathematical Studies in Economics and Management Science,
Discussion Paper 246, Northwestern University, 1977, forth-
coming in Mathematics of Operations Research.

H. Scarf, "The Core of an n-Person Game,"

(1967).

Econometrica, 35

D. Schmeidler, "A Remark on Microeconomic Models of an
Economy and a Game Theoretic Interpretation of Walras Zquili-
tria," Mimeograph, University of Minnesota, Minneapolis (1976).

M. Shubik, "Commodity Money, Oligopoly, Credit and Bankruptcy
in a General Equilibrium Model," Western Economic Journal, 10
(1972).

R. Wilson, '"A Competitive Model of Exchange,'" Institute for
Mathematical Studies in the Social Sciences, Technical Report
221, Stanford University, 1976,




