~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Agbadudu, Amorosu; Balachandran, Bala V.

Working Paper
Multiple Working Bases for Generalized and Variable
Upper Bounding Linear Programs

Discussion Paper, No. 290

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Agbadudu, Amorosu; Balachandran, Bala V. (1977) : Multiple Working Bases
for Generalized and Variable Upper Bounding Linear Programs, Discussion Paper, No. 290,
Northwestern University, Kellogg School of Management, Center for Mathematical Studies in
Economics and Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/220650

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/220650
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 250

MULTIPLE WORKING BASES FOR GENERALIZED
AND VARIABLE UPPER BOUNDING LINEAR PROGRAMS

by
Amorosu B. Agbadudu
and

Bala V. Balachandran

July 1977

MULTIPLE WORKING BASES FOR GENERALIZED
AND VARIABLE UPPER BOUNDING LINEAR PROGRAMS
by
Amorosu B. Agbadudu
and

Bala. V. Balachandran

ABSTRACT

When a linear programming model is applied to a large system it usually
leads to sub-programs with special structures. Such models that are
formulated frequently in production problems are linear programs with
particular structures where both generalized upper bound (GUB) constraints
and/or variable upper bound (VUB) constraints are present in the constraint
matrix.

A variant of the revised simplex method is given for these types of
linear programs with mq + m, + my constraints where m the number of
regular LP constraints, m, and my of which are GUB constraints and
VUB constraints respectively. The algorithm described uses two working

bases of m; TOws and m, Tows for pivoting, pricing and for inversion.

1. Introduction

Various applications requiring a linear programming (LP) model
often lend themselves to be formulated as a large system having special
structures in their constraints. In particular, if the application is related
to plant location, capital budgeting, assembly line balancing and other
related production problems, the linear program model has special forms of
constraints referred to as generalized upper bounding (GUB) constraints
and variable uppef bounding (VUB) constraints. An LP is defined to have

a GUB constraint [2] 1if that constraint is of the form

z X, = 1 for j = 1,2,...,m2

where Sj is an index set., (The cardinality and other details of set Sj

are given in page 2.)

Furthermore, if an LP has the constraint of the form

Xj <%

we say that the LP has a VUB constraint. In this case xj has a variable
upper bound of Xy e The variables Xj and %, ~may appear in any number of

such constraints. Our definition of VUB constraints thus differ from that of

Schrage {[4] where only the variable X (and not xj) might appear in any
number VUB constraints. Thus, due to our enlarged definition to that by
Schrage [4), our version of VUB constraints can accomodate a linear programming
model for problems like assembly line balancing, network and job scheduling.

These problems contain precedence relations which are significantly large in

number where any specific variable may be upper bounded by several variables.

-2-
In this paper a methodology for solving an LP which contains both
Specifically we are concerned with

GUB and VUB constraints is proposed.

linear programming problems of the following form:

(I):

(x

$GUB @

Maximize Z = ¢'x
subject to
. S
31 o 9 - Sr sz S0
L %, L. Vo xl + 8 LY x Ve
my W1X1+W2X2 ...+Wi X, +Wi X ceeW, X+, T +...ann =p
rous 171 2 72 r°r 1m2 m,
m X, x, +.. =1)
2 1" 72 - il
TOWS
X, +o.o0tx, =1
1 *2
+o.4x, =1
i
)
my { Xj <
rows

where x and ¢ are n-dimensional vectors with components

~-dimensional

and p are my

(cl,cz,...,cn) respectively; wr(r =1,2,...,n)

VUB (3

(XI’XZ""’Xn) and

-);mz;

vectors, Also we have that m, < 0, and the variables Xj and X, ~can appear
in either (1) or (2) or both. Note that \Sr\ = -1 for r=1,2,..
and io = 0. Further let S be the set of all such sets so that

= {Srlr = 1,2,...,m2} and Si N Sj =0, i #j. Let S0 be the complement

the index set of all wvariables.

of 8, Let the indices of wvariables in So be

TS o 38

m,) +1,

-3-
There are many applications of linear programming which naturally
have the form (I) or can be easily transformed to form (I). Many of these

examples are found in Agkadndu [1].

2. Multiple Working Bases

The GUB problem contains the structure of (1) and (2) only. A
method of solving a LP with these structures had been developed by Dantzig
and Van Slyke [2]. Recently Schrage [4] considered the LP with VUB
constraints and provided = an algorithm dealing with a problem having structure
(1) and modified form of (3). No one to our knowledge has considered the more
general case of both VUB and GUB constraints put together.

In this paper we provide a procedure to solve the above problem (Form (I))
with structures (1), (2) and (3) simultaneously, in the framework of simplex
algorithm, so that the two methods mentioned above may be considered as special
cases. Basically we maintain two working bases which we shall refer to as
"inner working basis'" R and 'outer working basis', H. An advantage of using
two working bases as against using one is that there can be substantial saving
when either the GUB or VUB constraints are significantly larger in number
compared to the usual constraints. This is because we invert two smaller
submatrices independently instead of a single large matrix whose dimension

is the sum of dimensions of the smaller submatrices.

b

Matrix structure of the problem:

Let us denote by A the complete matrix of coefficients for the LP.

A 1is partitioned as

W
A = U 4)
v
where W has m; TOWS corresponding to the usual constraints,
U has m, rows corresponding to the GUB constraints,
V has my rows corresponding to the VUB constraints.
Theorem I: Assume that a feasible basis B exists for this LP. Then one
can always permute only the columns of this matrix so that an identity sub-
matrix appears both in the GUB rows and VUB rows. That is, we can write
the basis matrix B as:
W Q Q
B = G Iu U . {5)
G v I
= v

Where the identity submatrices T, and Iv have as many rows as there are GUB
constraints and VUB constraints respectively. The other submatrices are as
follows:

W 1is an my; X My matrix of coefficients of variables that are basis in

the usual constraints Wx = p.

-5-

G is an m, X my matrix of zero's and one's corresponding to the
variables that are basic in m; Trows but appear in GUB rows.

G is an mgxm, matrix of zero's, one's and one's corresponding to
the variables that are basic in my rows but appear in VUB rows.

Q is an myxm, matrix of coefficients of variables that are basic in
GUB rows but appear in the first m; TOWS.

Q is an myXmg matrix of coefficients of variables that are basic in
VUB rows but appear in m; TOWS.

U is an myv My matrix of zero's and one's corresponding to the variables
that are basic in VUB rows but appear in GUB rows.

V is an m3§<m2 matrix of zero's, one's and one's that are basic in

GUB rows but also present in VUB rows.

Proof: We note that for every GUB constraint one of the variables must be

in the basis for the solution to be feasible. By GUB condition, this wvariable
does not have a coefficient in any other GUB row. Therefore the columns

can be arranged so that this single nonzero zppears on the diagonal of the
submatrix within B; hence we have Iu. For any practical problem for which
the RHS constant term in a VUB constraint is zero, we can without loss of
generality assume the RHS 1is small positive number ¢. (That is if we assume
no degeneracy.) Thus, for every VUB constraint one of the variables on the
LHS with positive sign must also be in basis for the solution to be feasible.
Since that variable must be basic only in that row, the columns can be permuted
o, so that this single nonzero appears on the diagonal of the submatrix, and

hence Iv'

Corollary: Suppose the LP were to have structures (2) and (3) only. If

M 1is the feasible basis for this LP, then one can also arrange only the columns

-6-
of this matrix so that identity submatrices appear in the diagonal. That is,

we permute M as:

M = 5 (6)

M is order 1L where L = m, + ms.

3. The Working Bases

Define a nonsingular matrix T = (7)

ol
W

such that MI = R is an upper block triangular matrix:

I I A A T

By transforming M into the form whereby the lower left submatrix of the

=
H|
P

transformation is zero, we are able to eliminate from the GUB rows the
variables which are basic in the VUB rows. The matrix R will be called

inner working basis. From (8) we see that
R=([1 - UVl 9)

Rewriting B matrix as

Ky

W Q
B = P) (10)
G M
where
% % G
Q =10Q,Ql; G = (11
G

and M is as defined in (6). Also define a monsingular matrix

Im 0
- 1
T = (12)
D I
with
S B
D=-M"¢C (13)

*

and I, an identity matrix of order m, + m,. Let T be defined in such a
% *

way that BT = H 1is an upper block triangular matrix,

* wls

B T H

*

WooQ oL 0 E Q
G M D I 0 M

By this operation we transform B into the form whereby the lower left

%

submatrix of the transformation is zero. And thus we are able to eliminate

simultaneously from both the GUB rows and VUB rows the variables which are

basic in those two sets of rows.
The matrix H is central to the procedure and will be called the outer
N
working basis. As it can be seen below, H 1is of order m, 5 the number of

rows corresponding to the main constraints. From (13) and (14) we see

that

1%

H=(W-qQu g (15)

~8-

Theorem 2: The working bases H and R are nonsingular,

Proof: We shall prove this for H. (The proof for R follows the similar

pattern.) Suppose the columns of H are dependent then so are the first my

ale

columns of BT", since they are formed by adding zeros to the columns of H.

Thus BT 1is singular. Hence det(BT%) = Q.

(16)

But det(BT) = det(B) det(T). Since det(T)= 1 it follows that det(BT)= O -

det(B) = 0. But B is a basis matrix, hence nonsingular, so we have contradiction.

I U
u
Recall that M = []

\Y 1
v
R -rly
Hence M“1 = ’
-1 -1
- VR I + VR U
\Y
Where R-1 = (IU - UV)-1
* -1 _ -1 -1
Therefore QM =[@Q-QV)R Q - (Q-QV)R U]
R"1«;-Ug)
And m le* = ;
-VR'l(G-Ug) + G
* -1 % -1
So that QMG =QG+ (Q - QV)R (G - UG)
Hence H=[Ww-Q - Q - QV)R_l(G - UG)]

and it is mlszml matrix.

Our approach to the solution of the problems of form (I)

Q.E.D.

7

(18)

(19)

(20)

€2 9]

(22)

is to adapt

the revised primal simplex method with special attention to the multiple basess

-9-
The simplex algorithm [5] involves the following steps at each iteration:
-1

(a) Find the simplex multipliers = CBB

(b) Price out the nonbasic columns aj,

and choose a column aj with most negative to enter the basis if
the current solution is not optimal.

(¢c) Transform the entering column in terms of the current basis

a, = Bnla,.
| |

(d) Determine the column to leave the basis,

min XBi _ XBr
a, >0 a, .
ij ij Tj

where aij is component i of a..

-1
(e) Pivot to update B and the current solution to account for the

basis change.

Steps (a) and (c¢c) involve multiplication by the basis matrix B-l.

Even though B has special structure, B is essentially dense with non-
. -1 . .
zero elements. ©So if one wants to maintain B for large problems it will

require extensively storage and computation. Instead we express B in

terms of other smaller matrices,

-1
Adaptation of Simplex Multipliers o = C_,B = in the Algorithm.

i

Let us partition g as (”}”L) where ﬁl is the first m; vector
of simplex multipliers for the first m; Tows (corresponding to the usual
23 .
constraints), ﬁL = (g) 1is the last m, and m, vectors of simplex mul-

tipliers (corresponding to GUB rows and VUB rows respectively). Further

-10-
.o 1L
partition the price coefficients of the basis wvariables, CB’ as (€C°CH),
where c1 is the price vector of coefficients for the basic variables in
2.3
the first my constraints and CL = (C°C”) are the price vectors (correspond-
ing to GUB and VUB rows respectively). To find the simplex multipliers,

solve the equation:
nB =¢C (23)

Multiplying both sides by T we obtain

ats

ﬂ'BT = CBT ’

ata
~

but BT by definition is H

‘qH = CBT*
1.8 Q 1L..I 0
or lm= et - et (24)
and R VR (25)
From (8) ﬂl = (c1 - CLM'lc;“)H'1 (26)

Substituting this wvalue into (25) we have that
1 % - - 1 % -
it 1 S v Ve e 0 e (27)

Using expression (17) for M-l, we see that only the inverse of R, the inner

ata

x -1 * -
working basis is required for the terms M , Q M and G M 1. Thus to obtain

the simplex multipliers it suffices to know the inverse of the working bases only.

-11-

The evaluation of reduced costs for non-basic variables is made by pre-
-1
multiplying a non-basic column by CBB or QnynL) as given by expressions
(26) and (27). Because the last L = “Q+.m3 elements of the non-basic

column are e? and Vj, the calculation of CBB-laj - Cj (that 1is,

Z. - C. reduces to
] J)

where

3 - - -
- =1ct - ce - ®r@ - ve) + cCvre - ug)1Et

]

21 -y - 4l@ - qnirT?

3 1 2
mn =C -7 Q-x0U

i.e., by using equations (19), (20), (21).

Analysis of Incoming Vector aj W

Let us partition the vector aj as aj = - . Here Wj is the

first my component of aj (which is a part of aj corresponding to the

ol

first my rows) and e; is the last L components of aj; it is that part

of aj that corresponds to the last m, + m, rows. From step (c) we see

that

% *
Since T is nonsingular T inverse exists. So if we premultiply both

we get T“_la. = T“-lB-la. = Hk_ a,
J J J

sides of the above expression by T

(28)

(29)

-12-

(since BT = H) that is,

- -1 % -
1 0 W H 1 H 1Q M 1 .
J J
A“i»‘ _1 ale
-D I e, 0 M e
i
or
- 1 -1 1 * -1 * -1 *
w = W = -
H H QM e H (Wj QM ei)
and
1 ~% -1 =*

-1 & %
M Gw. +te, =M e,
j i i

>

Substituting the value Wj of (31) into (32) we have

S S B -1.-1 * -1 %
e, = M e, - M "GH (wﬁ -QM ei)
Therefore
H(w, -~ QM Ter)
~ -1 j i
aj =B aj =
-1 = -1 -1 % -1 %
M e, - M GH (wj -QM e
Where
G
e.
i
e, =
i
V{
J

G . .
is partitioned in such a way that the first m, components e; 1s a unit

vector of order m, the number of GUB rows, and i is the index of

(30)

31

(32)

(33)

(34)

(35)

-13-
the set Si(i = 1,2,...,m2) which contains the incoming variable. The
last my components Vj is the column of T that contains Xj'
Now consider the first m; rows of B-laj in (34). We note that

from equation (19)

Q*M'1 ={@Q - QV)R'lg - @Q - QV)R-lU]. Hence

. o1 % oS

Qe = 1@ -QR Q- @-anrTT] | *
v,
J

Q - gv)R'le(i; + gvj.’ - (Q - QV)R'IUV'J.

The nonzero elements of Vj are the rows of V where Xj appear.

But the corresponding columns of Q and U are zero, since x, 1is the

(36)

entering variable. Therefore the products QVj and UVj are all zero. Hence,

* -1 % -1¢
QM e; = (Q - QNR e

Also from equation (20)

-1 % R - Ug)
MG =

- VR'l(G-Ug) +G

We also have from equations (17) and (35), that

R-1 - R_lU e? R-leG
-1 % i i
M e, = =
1
- vrL I +vR Ly Vv v, - vr Leb
v j i

37

(38)

(39)

“14-

Hence using equations (38) and (39) we have that

-1 % -1 % -1 % -1 G
M e, - M G H ij -QM ei)

R LS R - vg)

+ -1 -1 6

= - [u @y - @ - QMR e,]

v. - & LS -l - ug)

LY j i =

”R'le(i; -r Y - Ug)H'l[wj - @Q - QV)R-lei] (40)

| - VR'le(i; + (V&L - ug) - g]H'l(wJ. - @Q - QV)R'leci; + VJ,
-1 _ -1, -16

R'le(i; - Rl - Ug)H'l(‘wj - Q- (_Q_V)R'le(i;

Y

| - VR_le(i; + [vR NG - UG) - Q]H-l(wj - Q- QV)R-le(i; vy

As we can see from the above expression, in determining aj all that is

needed here is to know the inverses of the working bases.

The Adaptation Of The Right Hand Side (Current Value of b).

Let us now determine the right hand side of our equation at each iteration.

Let b be the value of this r.h.s. Further b can be partitioned as

K

o
|

-15-
where p corresponds to the first my rows, and 17 is m, + m, column

vector with its first m,) components having values 1 and the last mq

components that corresponds to VUB rows have value zero. That is,

e
1 = @2)

where e 1is vector of one's (order m2) and 0 1is vector of zeros (order m3).

The current value of b denoted by b 1is given by

b =38 b (43)

Just as in the case of the last section it can be shown that

-1 -1 * -1

H H QM o
g1y =
-] % - - =] % o1 % = *
Y i LVl A val Ve o el 1
or
-1 % 1%
“H "(p-QM 1)
a1y = (44)
-1 % -1 % - * =1 %
v o wlfm e -

Since Q*M'l =I@ - gv)R'l Q- @ - QV)R'lu], using Equation (42)

* -1 % -
MY = @-qnrle (45)
Similarly
"1
-1.%
M1l = (46)
-1

-16-

1

Thus the first m; components of B b is H-l(P - (Q - QV)R_le) and the

last m24-m3 components of B-lb become

R'le - 71 - Ug)H'l(p - @Q - QV)R'le)

1

- VR e+ [VR'l(G - Ug)H'l(p - @Q - gv)R'le)

Hence the current value of b, is given by the expression b = B—lb where

M (p - @ - Qnr e
37l = |r7le - Rl - ueu M - @ - qurte @7)
R le + VR - ug) + g]H'l(p - gV)R-le_

Thus like the previous cases, what we need are the inverses of the working

bases.

4, Updating Basis and Pivoting Arrangement.

Although pricing out of columns to select the entering column and choosing
the column to leave the basis are done as in the ordinary revised simplex method,

the updating requirements are somewhat different from those of the standard

simplex algorithm. This is because not the entire B is needed; rather
only the inverse of the working bases H and/or R (sometimes one or none)
are needed.

In all cases if we represent the slack variables associated with VUB

constraints as basic, and artificial variables associated with GUB constraints

-17-

as basic, and choosing the basic variables for the first m, constraints

in the usual way, then submatrices Q, U, G and V will be null matrices to
start with (see equation (5)). The updating procedure here is to keep these
matrices null throughout the entire iterative process. With this arrangement,

~

the first my + m, Tows of aj is given by

-1 -1 T
H (wj - QR™e)
a, = B-la =
j j
R le. - R'1GH'1(W. - QR'le.
" i ki 1
and
" -1 -1)
H (p ~-QR "e)
b=31 -
R"Te - R eu (e - ar7le) |

The corresponding entries for m, rows will be discussed later on.
Now consider the basic variable that is being driven to zero. The position
of this variable can be in one of the main rows, or in one of the GUB rows, or

in one VUB rows, Consider the following cases:

(1) The departing variable is basic in one of the main rows

(2) The departing variable is basic in one of the GUB rows and
(a) the entering variable is from the same row, or
(b) otherwise.

(3) The departing variable is basic in one of VUB rows, and
(a) the entering variable is from the same row, or
(b) otherwise.

We note that if we introduce the slack variable, y, ¥e can write the VUB

i . < as
constraint xJ Xk

-18-
row V: Xj + Yo X < 0 (48)

We can further impose here that always xj or y, be basic in row V. With
this assumption, whenever x, is basic in any VUB rows and X basic in

either GUB or Main rows, Xj can be substituted for from the expression:

xj =X Y,

In this case, the coefficient of Xy W, 1is replaced by v+,

and the coefficient of y , 0 1is replaced by - v and so on. (Similar replace-

ments with U's can be made for the last m, rows, e.g. Uk+IJ. for Uk and
J

- Uj for 0 respectively.)

Remark. When a basic variable leaves either a GUB row or a VUB row, it is
possible for the entering variable to have a zero coefficient in that row. 1In
this case we bring in a basic variable from only a main row, and make that
basic variable from the main row in the VUB or GUB row considered. Such

variable we shall hereafter refer to as a ''suitable variable.”

I

Let d = departing column number associated with departing variable x

d

e = entering column number associated with entering variable X,

P = row in which the departing columm (or variable) is basic

t = column of a "suitable wvariable" X, that is basic in a main row

r = row in which X, is basic

g = row in which Xy may be basic.

(Notice that g can be found between m, through m, rows only.)

1

-19-

Case (1). First compute colum e = e - QR-lei. Then replace columm d
in H, G by columm e. Pivot on column d with row p as pivoting row to
give a new inverse of H. R 1is unaffected in this operation which is confined

to first my Trows. Here ei is same as e?.
i

Case (2). (a) Simply replace column d in Q and R by column e.
Pivot on column d in matrix R with row p as pivot row. This gives a
new R-l. H is unaffected in this operation which is confined with GUB rows
only.

(b) Replace column d in Q and R by columm t. Pivot

on column d on matrix R wusing row p as pivot row to obtain a new R
Compute ; = e - QR-lei; then replace column t of H and G by column ;.
Pivot column t of matrix H wusing row r as pivoting row to obtain a new

-1 .
H ~. Here we have two separate pivots on two different bases.

Case (3) (a); (i). =x_ é GUB set and it is not basic. Simply replace
column d in Iv by column e. No pivot is done here.
(ii). Xy ¢ GUB set but it is basic. Replace column d of

1, by column e and update as follows:

W = e + L and Uk = Uk + Ue
Wy = =- Wé and Ud = - Ue
w =20 and U =0

e e

] . . th , .
H is pivoted on column k wusing q— row as pivot row to give a new H

inverse., R 1is not affected.

-20-

(iii). X, € GUB set. Replace column d of Iv by column e,
and update as in case (3a) (ii). However H 1is not affected here, but R
is affected if Xy is basic in a GUB row. 1In that case a pivot on column k

th . . . :
using ¢q— row as a pivot row will give a new R inverse,

3(b), (1). Xy ¢ GUB and it is not basic. Replace column d by
column t 1in Iv' Compute ; = e - QR-lei. Replace column t in H and G
by columm ;. Using rEh row as pivot row, pivot on colummn t of H to
get a new inverse of H.

(ii). Xy ¢ GUB but it is basic. Do the same replacement as in

(3b), (i) and update as follows:

W, =W_ + =

Kk k Wj and Uk Uk + UJ
Wy = wt and Ud = Ut
w = =

‘ 0 and Ut 0

(Also compute ; = e - QR-lei.) Two pivots are needed here. One in column ¢t

using rEE row and the second in column K wusing th row as pivot row.
(1ii). =, e GUB. Replace column d by column t in L and

replace column t by column e in matrices Q and R. R does not change

from previous iteration. Update as in case 3(b),(ii). 1If Xy is basic in

one of the GUB rows then one is needed for R too, using columm k and

row (.

The above updating process thus replaces numerous matrix multiplications by

matrix additions. This savings in operations and reduction in size of the

basis is found to be computationally very significant ([1].

-21=

Transformation of the Entering Column: - VUB Rows.

Three cases are noted here:

. . , -1 B
() x,. 1s not basic. Then B aj Vj
(b) Xy is basic in row r (main or GUB row).
g la, = w .+V, (or U ,+V, if r 1is in a GUB row).
J rj J rj J

(c) Xy is basic in row r
xj is basic in row t

a, =w , -w_, or U , - i is 1 .
B tj (rj UtJ if r is in a GUB row)

The corresponding current value of the right-hand side,

A

b = B-lb are given by

(@ B b=0
-1 A
(d) B b =w_,
S
(e) Vo T Yo

respectively, where right-hand side is column zero.

22

5. Numerical Results

1/

Computer code for the algorithm was written in APL.~ Twenty
randomly generated problems of the form I were solved. Computations per
iteration 2/ (following the usual operation count practice, e.g. Hadley [31),
number of iteration per problem as well as storage requirement of these problems
are shown. These are compared against the result obtained by solving the same
problem by the standard revised simplex method. As expected, these show that
our algorithm is actually more efficient for problems of form I. The results

are presented in the table below.

APLUM System =-- running on the CDC 6400, Computer Centre, Northwestern
University.

For detailed computation of number of operation per iteration see [1].

-23-

€CS°1

£98°0

88L"T

656°1

(spuodas
0d0) °WilL
Butandwo)

a8ex9Ay

098

€96

GL0¢

6611

uotle
-19317 aad
uot3eaadp
Jo xaquny

€01

7°81

€61

waTqoxg aod
uotleiail Jo
1aquny °3ei9Ay

qge

GeT

YA

19¢

squaw
-aa1nbay
28ea01g
WNWTUTR

G¢

61

¥4

61

15

6¢

15

6¢

woTqoig 12d welqoid iod

s3uTeIlsuo)
Jo Iaquny

saTqeTieA
Jo aaquny

01 [4
ury3 110371V
2l
01 1
01 [4
xo1dwTg
pesTADY
o1 1
dnois 9u3
uf weTqoid

Jo JoquinN dnoan uy1TI031Y

-2lim

REFERENCES
[1] AGBADUDU, A. B., "Large Scale Systems with Generalized Upper Bounding,
Variable Upper Bounding and Generalized Variable Upper Bounding Constraints."
Unpublished Ph.D. dissertation submitted to the Northwestern Graduate School,
June 1977.
[2] DANTZIG, G. B. and SLYKE, R. M., "Generalized Upper Bound Techniques,"

Journal of Computer and System Sciences, 1, 1967.

[3] HADLEY, G., Linear Programming, Addison-Wesley, Reading, Ma., 1962.

[4] SCHRAGE, L., "Implicit Representation of Variable Upper Bounds in Linear

Programming," Mathematical Programming Study 4, 1975.

[5] SIMONNARD, M., Linear Programming, Prentice-Hall Inc., Englewood Cliffs,

New Jersey, 1966.

