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1. Introduction

Let C denote the set of all compact convex subsets of the
n-dimensional Euclidean space, R". ¢ is a convex cone (A,BeC imply
A+B = {at+b : a€A, bEB}€C and rA = {ra : a€A}eC for every r > 0). The
main purpose of this paper is to characterize all the uniformly con-
tinuous (relative to the Hausdorff metric on C) real valued linear
functions (F(A+B) = F(A) + F(B) and F(rA) = rF(A) for r > 0) on G; In
section 2 we give examples to show that these functions are common in
Economics and Game-Theory. Section 3 is devoted to the proof of an
extended version of Theorem 1 below. Section 4 exhibits a method of
recovering the measures associated with our characterization and
presents an open problem.

For GCEC and p€R” let VC(p) denote the support of C in the
direction p, i.e. Vc(p) = sup c*p. Letr S denote the boundary of the
unit ball in R". ec
Theorem 1: F is a uniformly continuous, real valued linear function
on C if and only if there exist non-negative real numbers a and b and

probability measures | and 7 on S such that for every CeC

F(C) = aE Vg - bEnVC

where EM denotes the expected value relative to the measure [.



2. Examples

References to show the frequency of occurrence of linear func-
tionals in Economics are too numerous to list (e.g. Debreu [1959] and
Gale [1960]). We give the following examples in order to show four

specific cases where the function F of Section 1 is natural,

Example 1: Decomposition of Production

We think of each of the coordinates of a point in R® as repre-
senting output level of a certain good. Thus a point'xERp represents
output xl of good 1, x2 of good 2 and so on. A set C€C represents the
feasible output levels for a producer. Given such a set C, let F(C)
be the profit (or cost) associated with the producer's choice in C.

If a set A represents the feasible production levels in one location
and B representes the feasible production levels in another location
then A+ B represents the feasible production levels from the two loca-

tions. F(A+B) = F(A) + F(B) means that as far as profit is concerned

the problem is decomposable and the decision can be made jointly or
separately. Similar considerations will justify the requirement that
F(kC) = kF(C) for every positive integer k, F(rC) = rF(C) for every
positive rational number r, and continuity argument will result in
F(tC) = tF(C) for every non-negative real number t. Of course the
quantity F(C) could represent many other concepts for which decomposition
is desired.

Notice that EQVC is the expected worth of the feasible production

set C when prices have the distribution n. Thus, by Theorem 1, it
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follows that every uniformly continuous function which is decomposable
can be viewed as the difference of the expected worth of the set C
according to two different fixed probability distributions on potential

prices.

Example 2: The Utility of Participating in a Cooperative Game

Linear, real valued functions arise in cooperative game theory
when we consider the von-Neumann Morgenstern utility that an individual
has for the options of participating in various cooperative games.

For simplicity we illustrate this point on a class of very simple

games of this type (see Aumann-Peleg [1960] for the general case and
Nash [1950] for the special case that we consider here). In addi-

tion linear functions of convex sets arise naturally when we consider
possible extensions of the Shapley Value (Shapley [1953]) to the family
of cooperative games without sidepayments (Kalai-Myerson [1977]).

We consider two fixed individuals with fixed von-Neumann
Morgenstern utility functions. A two-person game of these two
individuals is represented by a pair (a,C)Esz C. a= (al,az)
represents the V-M utility levels resulting to the two of them
when they do not cooperate. C represents the utility levels avail-
able to them when they do cooperate. Thus c = (cl,cz)EC if and
only if there is a joint strategy yielding utility 1evels_c% and
c2 to the two players respectively. We are interested in the
V-M utility that player 1 may have for participating in the
various games that he may encounter with 2. (See Roth [1976]

for a treatment of the sidepayments case as a generalization
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of the Shapley Value.) Consider three games, (a,A) (b,B) and
the game resulting from the following lottery. With probability
o« they will play (a,A) and with probability 1l-« (b,B). If we
consider the ex-anté feasible V-M utility level associated with.

the third game (c,C) we obtain

(c,C) = (¢a+ (L-2)b, xA+ (1-a)B).v
Thus it follows from the V-M theory that player 1l's utility for
the games must satisfy

u(eva+(l-a)b, A+ (1-2)B) = ou (a,A) + (1-2)u(b,B).

By considering all the games with a fixed non-cooperation point,
or by choosing a non-cooperation point that varies linearly with
the choice of the feasible set we obtain that u must induce a linear,

real valued function on C.

Example 3: Decentralization of Social Choice Decisions

We let a set C denote the feasible production levels of
n-public goods. F(C) represents society's utility from the choice
made out of C. The linearity of F means that if C is decomposed
into sets that add up to C then making the choice on every one of
the component sets will not effect society's utility of the

final outcome.
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Example 4: (Utilitarian Social Welfare Functions

We consider a society of n individuals each having a von-
Neumann Morgenstern utility function ui(l <i<n). A set ccr™
represents (as in Example 2) feasible utility levels of the n in-
dividuals in a certain éituation. Thus if society's options in a certain
situation are given by a set A then C = {(ul(a),uz(a),o..,un(a)):aéA}.
C must be convex if we assume that the society has the option to ran-
domize over alternatives in A. We let F(C) denote the V-M utility of
the society when it makes the choice from C. The argument given in
Example 2 holds also in this case and implies that F must be linear on

C.

thicerthat if society's utility of a choice set C is given by
the function VC(p) (= igg cep) for some p€Rn then society has a utili-
tarian social welfare function with the interpersonal weights given by
p = (pl,pz,...,pn). (See Harsanyi [1955] for an aximatization of this
Social Welfare Function.) If society has a utility function of the
c where 1 is a probability distribution on the boundary
of the unit ball in R" then it is basically a utilitarian society which

form u(C) = E“V

has a probability distribution p over the interpersonal weights. Thus
Theorem 1 tells us that every uniformly continuous V-M utility function
for the society can be viewed as the difference of two utilitarian
functions with two different probability distributions over the inter-

personal weights.



3. Main Results

Let X denote a convex cone of closed convex Sets in R with
a common recession cone T # R". Thus we assume that X satisfies
the following conditions.

1. Every element of X is closed and convex.

2. A,B€X imply that A+BEX (+ denotes set addition)

3. A€X and t > 0 imply that tA€K.

4. There exists a closed convex cone in Rn, T (# Rn)jsuch
that for every A€X the recession cone of A is T.
Recall that the recession cone is the set of directions
to which A is unbounded, i.e.

T = {v€R™:A+{v]cA} (see Rockafellar [1970]).

Notice that when T = {0} then X = C.

The cases where T = -Ri are very common in Game-Theory and Economics
(free disposal). We let W denote the polar cone of T (=={w€Rn:

w'r < 0 for every r€T}) and for every A€K we let VA denote the
support function of A then the effective domain of VA is W. VA

is continuous, convex, and homogeneous of deg;ee 1 on W. And there
is a 1-1 correspondence between convex sets with T as a recession
cone and functions on W which satisfy these conditions. We

let W denote the intersection of W with the boundary of the unit

ball in R®, W= {vew: ||v || =1} where || || denotes the Fuclidean

norm,
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For A,BEX the Hausdorff distance between A and B is defined as
usual to be the supremum of radei of Euclidean balls which are
centered around a point of one of the two sets A, B, without inter-
secting the other set. We discuss continuity of functions on X
relative to this Hausdorff metric.

A real valued function F on X is linear if for every A,BeX

and every r > 0, F(A+B) = F(A) + F(B) and F(rA) = rF(A).

Theorem 2: F is a real valued uniformly continuous linear function
on X if and only if there is some signed regular Borel measure M

on W such that for every CeX

F(C) = [ v, @)aM®).
W

Let X be a normed linear space over.the real numbers, let Y denote

a convex cone in X, and let f be a real valued linear function on

Y. We define || fHY,==sup {lfﬁY)'ﬁfz)l : y,z€Y} and we say that f
y-zi

is bounded on Y if ILEHY < =,
Lemma l: A real valued bounded linear function f defined on a
convex cone Y can be extended to a bounded linear function

f on the entire spacé X with llf1L= ||f|&.

Proof of Lemma 1: We let Z = Y-Y then Z is a subspace of X.

We extend f to £ defined on Z by

E(yz-yz) = £(y5) - £(v,).

By the linearity of f it follows that f is well defined, linear,
and || f||Z = || fHYH. The Hahn-Banach Theorem completes the proof

of the lemma. e
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Proof of Theorem 2: Ilet W& denote the set of all real valued

functions defined on W which are the restrictions to W of some

support function V, with effective domain W. Every element in

A
W can be associated uniquely with some VA for some unique convex
set AX. We let VA denote the restriction of v, to W. Thus we can

defnine F~ on W by F“CVA) = F(A). So F is a well defined, linear, real

ota

valued function on W . Also F is uniformly continuous (with the sup
norm) because F is (see Artstein [1970] or KRalai [1975]). To show

oL —t .
that F 1is bounded on W we assume to the contrary that there exists

PLs

a sequence of functions vA(i) and vB(i) on W such that

lFA (VA(i))‘FA (VB(l)) ]

RA@),B{)) = — — + » as 1 » «», By the uniform
/YO YeOL

continuity of F there exists a ¢ > 0 such that if Il Vv, <

@ Vs
then IIF*(VA(i))-F"(VB(i))Ilf 1. 1If we consider the sequence

(A%i)’B%i)) < % for all i but also R(A%i)’B%i)) » © as i »+ %, g contra-

—%

diction. Thus F* is a real valued, linear, bounded function on W .

Since W* is a convex cone in the space CO(W) consisting of all con-
tinuous functions on W we can extend,by Lemma 1,AF* to be a linear

bounded real valued function on CO(W). Now Riesz Representation

Theorem completes the proof of the theorem.

Corollary: Theorem 1 follows immediately from Theorem 2 by the
Hahn Decomposition Theorem for signed measures:. Notice also that
if M is determined uniquely for a given F then Hahn's theorem
implies that a,b,u and n of Theorem 1 are determined uniquely after

the obvious normalization.



4, Uniqueness, Recovering the Measure, and an Open Question

We give an example in R2 to show how to recover the measure
M underlying a given uniformly continuous linear F defined on C.
We believe that this method can be applied to the general case.
In particular this would show that the measure M described by

Theorem 2 is unique.

A
A
+6
A b | 7\3 R
-6
Bj 3

Figura 4

We let S be the interval described in Figure 1. S. is the convex-
hull of S and the points Aj and Bj‘ Tj is the convex-hull of Aj’

B; and (0,0). We claim that M(S) = lim [F(8,)-F(T;)]. To justify this

joe

claim,consider the support functions of S. and Tj
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V.. (v) = max (0,]A.]cos(y+e.), |A.]cos(Y-2.)), the dotted line in
T; 3 j 3 j
Figure

N

Vg (Y) = max (1,|Aj|cos(y+aj), IAjlcos(Y-aj)), the solid line in
h|
Figure 2.

Since - aj + % + - 8 and &j - % + 08 as j » « it follows that

IVSJ (v) - VTj (v) dM(y) - f,l dM(y) = M(S) as j - =.
S

Let F = (Fl’FZ""’Fn) consist of n uniformly continuous linear

real valued functions on X. Let M,.,M

1° 2,...,M.n be the corresponding
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measures., A question that ariées naturally from the examplas given
in Section 2 is whether F(C)&C for every Ce€X. This would enable us
to consider the actual choice that the decision maker makes out of
the alternative in C. Necessary and sufficient conditions on the
Mi's that will induce this feasibility property would be of great
interest. The condition that F(C) be on the boundary of C for every
Ce€X (or Pareto Optimality) is also desirable but unfortunately it is

inconsistent with continuity (see Kalai-Myerson [1977]).
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