~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Balachandran, V.; Stohr, Edward A.

Working Paper
Optimal Pricing of Computer Resources in a Competitive
Environment

Discussion Paper, No. 268

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Balachandran, V.; Stohr, Edward A. (1978) : Optimal Pricing of Computer
Resources in a Competitive Environment, Discussion Paper, No. 268, Northwestern University,

Kellogg School of Management, Center for Mathematical Studies in Economics and Management
Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/220628

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/220628
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

DISCUSSION PAPER NO. 268

OPTIMAL PRICING OF COMPUTER RESOURCES
IN A COMPETITIVE ENVIRONMENT

by
V. Balachandran
and

Edward A. Stohr

Graduate School of Management

Northwestern University
Evanston, Illinois 60201

September, 1978

ABSTRACT

In this paper, we develop a model for the determination of optimal prices
for computer centers which compete against each other in a market characterized
by groups of users with different computing needs. Two cases are considered.
The first model views all computer centers acting as a block against a set of
users who wish to maximize their revenue. The second model considers one system
whiéh optionally determines its prices against its competitors where all have a
common market of users, The system resources for which prices are determined
are processing tiﬁe and space in main memory, space on auxiliary storage devices
such as drum, disc, and tape and usage of input~output devices such as printers,
card readers, and tape drives, The pricing problem is formuléted as a max-min
program, This non-linear progrémming problem is shown to be equivalent to a
pair of mutually dual linear programs. The optimal prices and corresponding
allocation of Erograms and data sets to devices can therefore be obtained in a

computationally efficient manner,

1. Introduction

The markets for computer services vary from completely monopolistic
(corporate data centers, and government and educational computing centers
which have a captive clientele) to highly competitive (service bureaus and
time-sharing vendors). In the monopolistic case either imposed priority sys-
tems or pricing (chargeback) systems together with user budgets may be used to
guide users towards an efficient use of the available computing resources (see
Kriebel, Raviv and Zia [8], Cotton [4], Nunamaker and Whinston [10], Smidt
{11}, {12 1)..- The objective may be either to maximize some measure of user
utility or to further the aims of the organization of which the computer
center is a part. On the other hand, in the competitive case the problem
is to determine an optimal pricing scheme for a computer cénter which
competes against other computing centers in a market characterized by
groﬁps of users with different computing needs (e.g., scientific vs. com-
mercial), Since the capacities and characteristics of the computing mach-
inery owned by the computing centers are different, each center has the op-
portunity to specialize its prices and services to satisfy the needs of
particular user groups.

This paper provides an operational method for sensitivity analysis of
different pricing policies for (i) all computing centers acting together
against a common market of computer users ('combined case') and (ii) for a
single computer center in short-run competition with other existing computer
centers ('single center case'). No attempt is made to analyze a global econ~-
omic equilibrium, in the long run.

The prices which are to be determined afe those for processing time
and space in main memory, space on auxiliary storage devices such as drum,

disc, mass-storage and tape and usage of input-output devices such as printers,

card readers and tape drives. In terms of access time to storage devices the
kind of service a user can expect from a computer system will depend to a

large extent on the devices on which his programs and data files are stored.

However, overall turnaround times for batch jobs and response times for on-
line jobs depend on the degree of overcrowding of the system since long
queues can develop under peak~load conditions. To allocate system resources
to competing jobs over time,various 'priority-pricing' and 'flexible pricing’
schemes have been proposed (Smidt tll], Kleinrock [7], Ghanem [5], Nielsen
[9]5. One solution is to designate different rates (e.g. dollars per second)
for different priority classes and to allow users to specify a priority class
for each job before it is run. Jobs in the most expensive pfiority class are
given preferential service. Under certain assumptions, the optimal rates can
be derived by queueing theory and the analysis is usually in the context of a
monopolistic system (Ghanem [5], Kleinrock [7]). Our approach to the time
scheduling problem is to compute separate rates for computer time for peak
and off-peak hours. 1In addition we simultaneously determine charges for the
use of other system resources such as storage space and input-output time.
The model to be presented represenés an extension of the methodology of
Babad, Balachandran and Stohr [2], which was concerned with the minimum cost

allocation of data sets to storage devices in the face of known prices. 1In

contrast our objective in this paper is to provide a method for computing
prices for computer system resources, We assume that there are a number of
competing computer centers and that each user can place his programs and data
files on any device of any system, The processing and storage demands of the
users are assumed to be known and fixed and the set up and conversion costs

to implement the users work on different systems are assumed to be approxi-

-3 -
mately equal. Since the demand for computing serviées is derived from the
particular applications involved it might be expected to be rather inelastic
for existing computer applications. However this might not be true for new
or prospective applications. In this case, the model can be run in an itera-
tive fashion to obtain a solution if the nature of the relevant demand curves
can be estimated.

The competitive enviromment that we assume is discussed in section 2.
The optimization problem that potential users face in determining an optimal
allocation of programs and data-sets to the devices of the various computing
systems is described in section 3., 1In section 4 the optimization problem
faced by the computing centers in the combined case is formulated as a
max—miﬁ programming problem and the method of solution indicated. It is
shown that the non~linear max-min problem can be reduced to a pair of mutually
dual linear programs having a special structure in the constraint matrix. For
the single center case, #his model reduction results in a computationally
efficient solution procedure. Finally, in section 5 we describe various

other interpretations and applications of the model, with illustrations.

2, The Competitive Environment

To save notation we denote the cardinality of a set by the symbol for
the set when there is no possibility for confusion. Consider an index set
L ={1,2,...,L} of competing computer centers ('systems'). Users of com-
puter resources are able to store their data sets (programs and data files)
and run their programs on any one (or more) of these systems. Each computer
center €L has a central processing unit (CPU) in which the programs are run and
a set JL = {1,2,...;jL,...,J£} of types of auxiliary storage devices such as
drums, discs, magnetic tapes, datacells and card files on which the users

can store their programs and data files. Again J£ would probably be small--

-4 -
in the range from 1 to 3 for most systems. The storage units have different
phyéical characteristics in terms of storage capacity, access times to data
and data transfer rates to central memory . The CPU's of the different sys-
tems also differ with respect to capacity and processing power. In addition
to the CPU, users may use a number of other resources such as telephone
ports for on-line terminals and input-output peripherals such as line-printers,
card-readers and card-punches.

In the short run, the computer centers compete for the users on a price
basis. The users are charged for the storage of their data sets on the vari-
ous‘devices, for the input and output of this data to the CPU and for the
various system resources used when jobs are processed. For illustrative pro-
cesses we present a specific example of a possible set of.pricing parameters.
We will provide a more general notation later. Let the prices charged by

computer center £ be as follows:

average dollar cost to access the first unit

ajz =
(e.g. byte, word or page) of data on device j.

bjz = average dollar cost per data unit to transfer
data from device j to the CPU.

Cip = dollar cost per time period (week or month) to
store one unit of data on device j.

dz = cost parameter related to program compute time
(fixed cost per second; see (1)).

e, = cost parameter related to program compute time

and size of program (variable cost per second; see (1)).

The processing charge on system 4 to run a program which takes t, seconds
of computer time and is m data units in length is assumed to be given by

the following formula:1

1This formula is used by Vogelback Computing Center, Northwestern University

(see Appendix C).

(1) dyt, +e it m

By 'compute time' in a multiprogramming or virtual storage environment we

mean the time during which the program is actually executing rather than

the (longer) time period for which the program (or parts of it) are resident
in central memory. This measure has the advantage that it relates directly

to the user's proéessing demands. The paramefer e, allows for the differences

£

in resources used by programs of different lengths. Other formulae for CPU

utilization. can be used in our model providing the price parameters appear
linearly in the data. In addition, the model allows different computing

centers to have different pricing formulae.

The demands on the systems are considered to be partitioned into
K classes, forming an index set K = {1,2,...,k,...,K]. Typical usage

classifications might be time-sharing versus batch or data processing versus

scientific. Alternatively, each usage class can be identified with a parti-
cular group of users classified according to industry or on the basis of the

]

type of application programs they run. Usage class k has IR = {1,2,...,1
P

k

k,...,I

Ii} are programs.

k

data sets; a subset of these data sets I, = {1,2,...,i

k,..-,

3

p
Note that Ikgg Ik. Programs have to be stored on the auxiliary storage de-

vices and the costs to access and store programs are the same as those for
data files., For ik € Ii we let Uk(ik) denote the set of data-sets required

to run program ik. This set includes program i, itself, together with the

k
data files it references. To reduce data requirements more detailed informa-

tion can be replaced by averages. To accomplish this we associate a multi-

plier, Nk’ with each usage class. The data sets and programs used in the analy-

sis can then be viewed as 'benchmarks'.

We suppose that data set ik € Ik’ is accessed fik times per time period
and that the length of data set ik is m. data units. Depending on the appli-
cation all or part of a data set may be accessed (transferred from the peri-=

. a
pheral device to central memory). We let m, < m. denote the average number
of data units of data-set i of class k which are transferred to the CPU.1
Continuing with the notation of the hypothetical example, if this data set

is stored on device j of system £ the total access and storage costs for the

time period are given by:

a
2 -
(2a) (ajz + bjzmik)f

a
- a £ £
ik PPl T 25fie TPy Midtie o CieMin

For a program data-set, ik € IE, we let tikz denote the average CPU time to

run the program on system £. From (1), since the program is run fik times,

the total processing cost on system £ for the time period will be:

(25 dptiatin ¥ & i ™intin

Thus if system £ chooses the prices a data set and program

547547502927
statistics indicated by (2a) and (2b) are required for costing purposes.

We now state the more general form of the pricing formulae which will
be used in the remainder of this paper. ©Note that the -price parametefs in
(2a) relate to the use of storage devices and data sets while those in (2b)
relate to the resources used when programs are run.. We will maintain this dis-
tinction but allow for more general pricing formulae and also for the fact that
the different computing centers may use different sets of pricing parameters.
Let Rjz ={1’2""’rj£""’Rj£} be the index set of pricing parameters relating

to data sets on device j EJz which is used by computing center £ and let prjz be

.
the value of the r. t such parameter. Similarly, let S

= 2,...
7 , = (1,2,

y ..,Sz} be

’Sﬁ’.

1'l‘his average is across all applications. 1f the requisite information is
available, the model can easily be altered to include data concerning the

average requirements of each program for data from each file it accesses.

-7 -
the index set of pricing parameters relating to the running of programs which

is used by data center 4 and let Aoy be the value of the sthsuch parameter.

2

For each data set i ¢ Ik a total of Rjz statistics must be provided for pric-

ing parposes on system . Let hrjzik denote the value of the statistic to be
multiplied by Prjz . Similarly, for each program i € Ii a total of SZ statistics
must be provided for pricing on system {. Let gszi.k denote the value of the

statistic to be multiplied by qsz. For example, if computing center £ prices

according to (2a) and (2b) we have: Pljz = ajz, szz = bjL’ P3j£ CHZ ,

= = = = a = =
Ay =& =8 and hygran = Fhe Porgpine T Midfin Parggin = Syp0 B1pik
tikz fik’ gZL ik = tikzmikfik' Values of the Prjz and Ay parameters

for three different computing centers in the Chicago area are shown in Ap-
pendix A.

The model developed in this paper for the determination of the optimal
prices Prjz,qsz has a number of different interpretations and applications
which will be discussed later, As described below the overall optimization

problem is very complex and we make no claim to solve it completely. We

offer only a partial analysis which, provides much useful informatiocn con-

cerning optimal user behavior against any set of prices chosen by the comput-
ing center. This information includes the optimal disposition of user data
sets and programs on the various storage devices available in the short-run on

all devices of all systems.

3. The User Problem

In this section we assume that the usage classes, k € K, identify dif-
ferent groups of users who 'own' the corresponding data sets and programs.
Further, we assume that a user in class k may be able to derive revenue from
data-set ik € Ik’ and that this revenue may depend on the particular device

and system on which it is stored (in other words on the time to retrieve the

data-set and the processing power of the associated CPU). This may be the
case for example if user k sells the use of his programs or data files to a
third party. We let vijkz

user in class k if data set ik € Ik is stored on device jz €J

denote the revenue per time period obtained by a

IR If only pro-

grams are considered revenue-producing we set ¥ = 0 for ik ¢ Ii. An

jki

important special case occurs when all the vijkzls are zero. The user's
objective will then be to cost minimize rather than profit maximize. 1In this
case the informational requirements of the model are greatly reduced.

It is assumed that the users have perfect knowledge of the device charac-
teristics and.prices offered by the computing centers. They attempt to allocate

their data sets to devices in an optimal way. The decision variables for user

k are:

1 if data set ik € Ik is stored on device jl of system £
ijke

0 otherwise

P

1 if program I € Ik

is stored on device jz of system [

y.
1k 0 otherwise

Define the vectors:1

. . . p

and

(4) o

(s TERH T€), (9, s€8),4¢€1)

Vectors are defined as row vectors for convenience but are column vectors in
mathematical expressions. The order in which the elements appear is the same
as in FORTRAN 'Implied DO' statements with the indexes on the left of the list
varying most rapidly thus if J, = {1,2}, J, ={1}, R11==R21=={1,2}, Ry, =11,

L={1,2], 8 = {1,2], 8, = {1,2,3), then a=(py11:P))1P151Pp217911° %17 P11

p212,q12,q22,q32)', where x’ denotes the transpose of x.

Given the vector q, of pricing decisions by the L computing centers, user

k's decision problem (parametrically) is to choose the allocation, Ek’ which

maximizes profits:

(5) W, (@) = max = = = V.. X, .
k . . ijke ijke
§ LEEL J&J, i€l
- 2 bN z Z p_.,h ... X, .
seL jEJL iEIk réRz rjb rjhlik ijke

- % = ¥ q ,8 ,..1Y. .
1€L iEIE (Sész s r£19 1k,£:l

wheré the first term represents the gross profits resulting from the alloca-
tion of data sets, tﬁe second the costs associated with data sets, and the
third the costs of running the programs.

The constraints are as follows. A requirement that each data set be

assigned to exactly one device:

(6a) by Z x,.,.,=1 3 ¥ 1ic¢€I and
LeL j,€7, 13kl kTk

(6b) xijk£ =0or 1

If a program, ik € Ik is run on system £, then all-the data sets associated

with that program must be placed on system £:

(7) s b3
u*cUk(l) 3,€,

’ = : At p
where Uk(i) is the set of data sets used by program i of usage class k

and IUk(i)] denotes the number of data sets in Uk(i)'

A requirement that each program be assigned to exactly one system:

p
(8a) oy, =1;V i €1 and
per ke k= k

(8b) yikz =0 or 1l

- 10 -
For practical reasons there may be a limit, Mjkz < sz,

available to a class k user on device j of system L. A value,

on the space

<
Yy = Myeo
might be imposed by the management of system £ or it might represent the maxi-
mum amount of space on the device which is desired by the user. Alternatively
MjkL might be determined by existing contracts for space on device j made

between other users and system L. To accomodate this we can add the constraint:

< ; j
9 . 21 mikxijkz < Mjkz 3 V JZEJ » 4 € L.
k™"k
Similarly there may be limits, Tkﬁ < Tz on the time available for proces-

. th
sing user k's programs on the £ system:

(10) z
i €I

p L eL.
k™7k

LoV ikg S T 3
In many cases the constraints (9) and (10) will never be binding and may be
omitted. This occurs for example with magnetic tape storage which has essen-
tially unlimiéed capacity and to a certain extent on other devices if they are
not operating near full capacity.

The assignment of data sets to different types of device (e.g. disc versus
tape) can be controlled either through the Vijkﬂ parameters or through explicit
constraints. The latter procedure will be necessary if the user problem is

viewed as a cost minimization problem (all v,, ~'s are zero).

ijke

For later reference we note that the class k user's problem can be stated

in matrix form:

s /]
(11) (M = min (A5,
k
subject to
(12) Dkgk > € 3 xijkz =0 or 1, Yirg = 0 or 1l;
1
where xijkﬁ’ yikz are elements of §k as defined by (3), M = (lza), the form
of the matrix A, is given in Appendix B, and the matrix D, and vector ¢, embody

k k k

the constants of constraints (6) through (10).

- 11 -

The user problem (5) through (10) has I .J+1P-1L variables and I, +10-L+1F

k k k "k k
T+ J+L constraints, where J = Z ‘le. Thus if there are (say) 2 systems with
L€L
Jl = 2, J2 = 3; user group k has 10 'typical' data sets (Ik =10), 5 of which
are prégrams (Ii = 5) then the user problem has 60 variables and 32 con-

straints. Since this is a large integer program it will often be computationally
convenient in practice to drop the requirement that the X5 kg and Yikg are
zero-one variables by dropping (6b) and (8b). The constraints (6a) and (8a)
automatically ensure the upper bounds:

0< <1;V i €1 €J,,k€EK, 4 EL

*ijke =~ 2 P S R
i . p
<1;V i €L,k €K 4 el

]
0% ik

Note, that from the systems point of view the decision variables now have a

valid interpretation in terms of probabilities. Thus Xijkﬁ can be interpreted
th

as the probability that one of the N, users in class k will place a jk

k

data-set on device j of system 4.

4, The System Problem - Different Cases

In this section, we first formulate the problem faced by a single computing
center in attempting to maximize its revenues in the face of competition from other
competing computer centers. Much insight for this computationally difficult prob-
lem can be obtained by solving two related problems. Thus, we discuss two polar
cases which can easily be solved and which will provide information concern-
ing the optimal pricing policy. |

For a given allocation g = (gl’§2,"'°’§K) of user data sets to systems and
devices the revenue obtained by system £=1 (considered to be 'our' system) in

a competitive market is:

- 12 -

1
(13) VE) =2 N by £ (2 p_..h .. 0% .
: k . . rjl rjlik’ ijkl
. k€K J1€J1 lkélk rGRJ.1
oz O)Y
ne1P 5€5
k€% : |
=3 No A(l)} where g = ((P JeR.), q SeS.) and
K(1) “x (1) rjii’?S51 9510 7
kekK
Ai})consists of the rows of Ak associated with the price parameters g(l),

We assume that the management of system 1 can estimate the processing and storage
requirements of the users and knows the technologies and pricing policies of the
competing computer centers. This information is publicly available. Both the
technoiogies and the prices of the competitors are assumed to be fixed in the
short run,

The system 1 problem in the competitive case is to choose the non-negative
price parameters (Prjl'qsl) to maximize (13) subject to the requirement that the

users will profit maximize (or cost minimize if the 7 's are zero); i.e.,

jke

that the allocations, Ek’ are optimal for the respective user problems.
Various other policy constraints might also be imposed. For example, it

might be desirable to place lower and upper bounds on the allowable prices:

where Prjl, LISE ; represent the appropriate bounds. As another example,

rjl’ 951
the management of computer center 1 may make their system attractive to certain
users by adding constraints for relevant values of i and k to ensure that the

. . . .th .)
profit associated with the i program of user k is greatest when that program is
run at computer center 1; this is illustrated in the example in Appendix C.

Let the pricing decisions of the competing computer centers be represented

by: ﬁrjz’ r ¢ Rjz’ je€ {a, 4 # 1 and ﬁsz, s € Sﬁ, L # 1. These are assumed to be

known constants. However, for convenience in proving certain results we will
treat the pricing parameters of the competing computer centers as decision

variables and include the constraints:

(15) P = T reR_,jeJ,[,#lanquz="

rjf/ prjf/’ Jl, z qsz; s 6 S

R # 1.

- 13 -

Let the 'decision' variables for the system be T = (1,q) where o is given by (4).
Thus from (11), (12) and (13), we see that computer center 1l's problem can be

written in the form:

1 max

o, (1)

(16) Vo= [z Na €]
C(1) ke K K (1
subject to
(17) TBLy
and]
s 7
gk
subject to: , for k € K
Dpép Z ey
xijkﬁ =0 or 1,.V i € Ik’ Jz €J,, k€K, £ €L;
= . |%
yikL =0 or 1,V i € Ik’ k€K, L €L J

where the matrix B and vector y incorporate the constraints (14) through (15)

where appropriate together with the definitional requirement:
(19) ﬂl =1

let k= = I |R,| and s= Z|s
€L jeJ, LEL

(19) are present, B is a (1+R+S) X (2+R+S) matrix consisting of the identity

z]. If only the constraints (14), (15) and
matrix and one additional column which converts the equality constraints to
inequalities,

In addition to the computational feasibility and cost of the problem (16)
through (19) which may (as mentioned earlier) necessitate our switching from an
integer to a linear programming formulation, there may be difficulties caused
by the competition for space and time on the various auxiliary storage devices

and CPU's. To solve (16) through (19) exactly we would need to precisely specify

- 14 -

what happens when the demand for a given resource exceeds its capacity; i.e.,
which data-sets of which users are denied access to the overcrowded device.

This seems to be an impossible task with the available integer programming codes,
and we therefore change the problem statement slightly in order to ob-

tain a practical and useful model. Note however that the user problem ((11)) and
(12)) is valid for properly estimated values of Mjk£ and Tkz and can be used as

it stands.

To avoid the difficult modeling problem associated with the competition among
different users for space and time on storage devices and cpu's, we create an
artificial 'combined user', by combining all users of all classes together. This
is equivalent to considering only a set of K benchmark programs owned by a single
user.

We now consider two cases:

A. The 'Combined Case': all systems are viewed to act jointly to maximize

their combined revenues by choosing an optimal price vector, .
B. The 'Single System Case': system § = 1 chooses an optimal price vector
a(l) to maximize its revenues while the prices of the competing com-
puting centers remain fixed.

A, The Combined Case

For given prices, g, the 'combined user' problem is:

(20a) W) = max > N ‘: % z = \ZEIEIE
5 . . JjkL71iikd
§1’§2’-":§K kEI\ LEL JEJ;@ lEIk
- Z Z Z (p_.,h . .)x..
. . _ ril rijgik” "ijke
LEL JEJz 1€Ik re%z

-z = _ (= qg.)y.]
LeL iEIi SESE sf®slhik’ 7 ikl

- 15 -

subject to:
(20b) kgK Nk izlk mikxijkl < sz > V j € JZ, L eEL
(20¢) kéK Nk iili tikzyikz < Tz , L €L
(20d) b E Ky luk(i)lyiu =0 , YV icg IE, LEL, k€K

uEUk(i) jer

(20e) 5 5 o« <y _
1 3 = > I 3 k
seL s, ijke : i€, k€K
(20f) sy <1 v ie P
. = > I, k K
LeL ike € k €

Equality holds in (20 e) and(20 f) if the prices offered by the computing
centers are attractive enough to justify the storage of datasets and running of
programs iﬁ one of the centers, 4 € L. Strict inequality implies that the user
considers other alternatives outside of the L systems,

Let A = (A1 A2...AK), where Fhe Ak are defined as in (11). Then in matrix
notation the 'combined user' problem is:
(21) WM =minT' A€

g

subject to

(22) KE>€ ,820
PR _ P _ P . P P
where, defining I = £| I |and I = 5 1], Dis a(@ + L+ I +I+1° + 1)
k k
kek keK

X (17 + Ii)) matrix
representing the constraints in (20) and including an additional row which allows
the equality constraints to be converted to inequalities. Similarly, the vector
¢ represents the right-hand.sides of these constraints, ©Note that the elements of
€ which correspond to the capacity constraints (20b) and 20c) should contain the
values, M, and ?ﬂ’ of the actual space and time capacities.

We see from (21) and (22) that the combined user attémpts to allocate op-

timally based on the prices announced by the computing centers. The combined

systems will attempt to maximize their total revenues by choosing a price vector

- 16 -

n= (1 I o) (where g is given by (4)) to minimize total user profits. Since
policy or other considerations may dictate bounds on the prices for all systems

we extend constraint (14) as follows:

! P..., R. ,] H
(147) Brgp S Prgp S Prypr TERy, JE€J, L €L

9y, < 95, S 950 5€ 5,52 €L
where Erjz’ gsz, E;jz’ a;z are the appropriate lower and upper bounds.
The problem for the combined case can now be written in the form:
(23) V-max min n'AE
subject to:
DE> e ; §>0
MB<a 5 N>0
where the matrix B and vector ¢ contain the constants of constfaints (149
(and any other constraints on the prices which may be appropriate).

One can see that (23) has a feasible solution (viz: can be

*y jke? yik,e,
zero) and that by virtue of (14') the optimal solution is bounded.
Theorem. The properties just cited guarantee a solution to the following

mutually dual linear programs:

(24) max Ve 25 i !
N (25) MeYR
subject to: subject to:
~-TA+vwD <O -AE + B1> 0
"B <y DE > ¢
'ﬂ,v?“_O E,HZO

Furthermore let (ﬂ*;v*) and (E*,u*) be the optimal solutions for (24) and (25)

respectively. Then (T*,E*) is a saddle-point of ﬂ'Ag subject to T'B <vy,T>0

and DE > ¢, € > 0. Also: .v*'e = y'p* = ﬂ*'Ag*,

Proof: See Kawaguchi and Maruyama, [6], theorems 1 and 2.
In order to solve the combined problem for optimal P

4
either solve (24) or find the optimal dual solution (T*,v*) to (25)., The latter

and we can
qsz’

- 17 -
procedure will be better computationally since (25) has fewer constraints than
(24). Note that v* contains the shadow prices on the capacity constraints for
all the CPU's and auxiliary storage devices., This information can be very useful
in that it indicates the most desirable directions for future capacity expansion.
Furthermore, if the rates of increase for the Nk (sizes of usage classes) are
known, the optimal time sequence of changes in capacity can be estimated.

We note that the constraints in (24) and (25) are predominantly unimodular
in character so that most of the Xijk£'5 and yikﬁ's will be O or 1 in the opti-
mal solution to the linear program. An efficient heuristic similar to the one
in [2] could be developed to obtain, an all (0,1) solution from the linear
relaxation solution, if necessary.

The problem (25) has 1 + R + S + J + L + IPL + I + IP constraints and

1%

I1J+1I'L +2 + R + S variables. " Suppose as earlier that L = 2, J, = 2, 3J

1

C . p
and that K = 5, with average I, = 10 and I, = 5. 1If the systems have pricing

parameter set sizes R, = 2, S. = 5, R, =3, S, =5, then (25) has 149 constraints

1 1 2 2

and 317 variables which is computationally feasible. We can make further com-

putational savings by using the specialized algorithm of Agbadudu [11, or other

commercial codes to handle the generalized upper bound constraints (20e) and

(20f). Finally, the constraints in (25) when grouped according to the value of

k have a block-diagonal structure which lends itself to solution by decomposition.
An illustrative problem is solved in Appendix C for the case where the users

cost minimize (vi. = 0).

jkg

B. Single System Case

We now return to the problem (16), (17), (18) posed at the beginning of
this section with the modification that the user problems (18) are replaced
by the combined user problem (20). In addition, the constraints (20 e) and
(20 f) are taken to be strict equalities rather than inequalities. The system 1

problem in the 'single center' case can then be written as:

- 18 -

‘ - - _ 1 @H)
subject to:

(26) Ner

where I' is the set of T satisfying (14) and (15)

(27) W(E) = min {W(,) =N"AE > 0
EE€Z
where Z is the set of £ satisfying (22)., Note that:a(l) is a sub
vector of T.
Theorem 2: If £(M) is a concave function of TonT, T is a convex set and
W(M, €) is concave in T on T for every £ € Z where Z is a convex set, then the

mathematical program given by (16", (26) and (27) is a convex program.

Proof: Note that f£(7) being linear in 1 is a concave function in T;
also W(M,&) due to linearity in 7T to concave in 1 or I' for every £ € Z.

The proof now follows from Bracken and McGill {3].

Since the above program is convex, there exists a set of optimal prices g

(1)
satisfying (16'), (26) and (27). Bracken and McGill, [3J provide a computational
procedure for the general convex programming case using the 'sequential un-
constrained minimization technique'. However, unlike their problem, our objec-
tive function is bi-linear in T and £ which allows us to solve for optimal
prices using the following algorithm which is similar to the convex simplex
method of Zangwill, [13].

An initial starting point is chosen such that the system 1 price parameters
are low enough compared to the parameters in (15) to make it optimal for each

user program and dataset to be placed on system 1.

Step 1:

- 19 -

Problem (24) is solved, As a result, the scolution will have the fol-

lowing properties:

1.

Step 2:

Step 3:

Assignment of programs and data sets:
a. If capacity constraints for system 1 are present and binding,

some data sets and programs will be assigned by the LP to the other

systems in such a way that the combined revenues for all systems
are maximized and at the same time the total profitability for the
combined users is maximized.

b. If capacity constraints for system 1 are not present or if they are
present and not binding, then all user programs and data sets will
be assigned by the LP to system 1.

Dual variables for system 1 price constraints.

Some or all of these dual variables may be positive indicating that the

combined revenues for the systems can be increased by relaxing the

constraints corresponding to the positive dual variables.

Choose the system 1 price (right-hand-side value) with the highest
corresponding dual variable and parametrically increase its value
until a change in the basis occurs. 1If for infeasibility reasons,
the right-hand-side value can not be increased, choose the next
highest dual variable. If none exists, stop.

Perform the corresponding pivot. If there are no positive dual
variables associated with the system 1 price constraints in the

current basis, stop. Otherwise repeat step 2.

This procedure will ensure that system 1's share of the total system

revenues as computed by problem (24) is maximized. This is because the iterative

procedure only changes system 1 prices while those for the competing systems are

held constant by (15). The procedure will have a finite number of iterations

since if the system 1 prices are increased indefinitely, all user data sets

will be

driven to the other systems,

5. Alternative Applications of the Model

In section 3 we identified the usage classes k € K with various groups
of owners of data sets and programs and formulated a model which will allow
the kth user group to make optimal decisions concerﬁing the allocation of
their computing requirements to different systems and devices. 1In section 4
we showed how system 1 can determine an optimal short-run pricing policy
under the assumption that other competing computer centers do not change their
pricing policies. Since the programs and data of all users were combined it
was no longer strictly necessary to maintain the identification between usage
classes and user groups.

We now enumerate some additional applications for the model developed in
Section 4:

1. It is not necessary to simultaneously specify the complete uni-
verse of processing demands. The model can be used to analyze
prices which would optimize revenues generated from (say) one
or two of many possible usage classes--in particular for omne or

more sets of benchmark programs.

2. As shown by the example in Appendix C, the mini-max model can
be used to analyze changes in pricing policy for a given com-
puting center. One common situation where such an analysis is

necessary arises when a new computer system is installed or when

an old configuration is upgraded. In this case two computing
centers can be assumed with #4=1 representing the system under
the new pricing policy or hardware configuration and =2 repre-

senting the same system with the old pricing policy or hard-

- 21 -

ware configuration. The necessary program and data set statis-
tics for each usage class can be collected from past data for

the system.

Finally, the model can be extended to include the case where

" computer center 1 wishes to charge CPU usage (and/or usage

of other resources) at a differential rate depending on the
time of day. Our approach to this peak-load problem is to
'slice' each day into different time periods and to assign

a part of the CPU time constraint (10) to each time slice.
This will necessitate introducing artificial CPU's associated
with different time slices for each center (an additional sub-

script for the variable yikﬁ)'

- Al -

APPENDIX A

Pricing Parameters for Three Computing Centers

(A1l values are in dollars)

SYSTEM 1 SYSTEM 2
Data Storage Costs, Prz
(per month)
Disc Storage 1,00 per 1.21 per
1000 characters 1000 characters
Tape Rental 12.00 6.00
Program/Job Related Costs gy
2
CPU 4+ I0 Charges .055 per .35 per unit
CPU second
Terminal Connect Time 13.00 per hour 9.00 per hour
+ .25 per
1000 characters
Terminal Session Charge 1.00 0
Line Printing .05 per page .06 per page
+ .08 per
1000 characters
Card Reading .005 per card . 005
Card Punching .02 per card .02
Magnetic Tape Mount .25 0

VOGELBACK1

1.80 per
1000 characters

See footnote 3

.04

.005
.02

.25

1. Vogelback Cemputing Center, Northwestern University

2. The number of resource units used by a job is based on the number of CPU seconds

and I0 processor seconds used,
3. The form of the formula used to compute the processing cost for a job

back's CDC 6600 computer is given in Appendix C.

on Vogel-

- Bl -

APPENDIX B

Structure of the Matrix Ay in (11)

AV
2 =1 L =2
NVVYVY
Sk
n Gije)) | Ok igk2) | Fix2)
v W
T R T152 O Vi) 0
NV
(Prjl) (hrjlik) 0 0 0
WA/
- Vv
STy 0 (thpj243) 0
AYAAY
(45) 0 0 (85211
1 2L VVN
2 3 1 2 s

APPENDIX C

Illustrative Example

In September, 1977 the Vogelback Computing Center at Northwestern University
replaced their CDC 6400 computer by a more powerful CDC6600 model with approxi-~
mately twice the memory and processing speed. At that time, the pricing formula

for running programs on the CDC6400 computer had the form:

= p P .2 P
Job Cost = qlz . tikz + qu . mik tikz + qBL . tikz + qaz . mik tikz-l-qSJZ miktikz

where ti = cpu seconds, tP = peripheral processor seconds. The actual

kg ikyg
prices for the CDC6400 were:

3 2.0 .6

75 90 = Taow G2 = 1% Y0 = Tuorr 952 T hor2

412

where the constant 140k represents 140,000 octal.

To analyze this decision in retrospect, we assume (as is actually the case)
that management wished to make the cost of running jobs on the CDC6600 cheaper
than on the CDC6400. Since changes in storage costs are not involved, these
are excluded from the analysis. Letting £ = 1 represent the CDC6600 system
and § = 2 represent the CDC6400 system, the pricing problem can be stated in a

form similar to (23):

(28) max min I = = (Z q.q9.,.)y.
.- P sf 'shik’ " iky
qll,qql,...,q51 € kerR 4€L lEIk, SESL
Subject to:
. p
(29) » vy, =1 » 1€17, k€K, 5y, >0
LeL ikg k ike

5 5 p

(30)821 8s1ik 8s1 S ik sil 8.0ik dgz0 1 € Ik’ k € K

. where the summation term on the right-hand-side of (30) is known and the LN

are parameters used for sensitivity analysis. If W, < 1 usage class k programs

k

of type i will be cheaper to run on the CDC6600; if ik

expensive than they were on the CDC6400. These parameters can be used to control

> 1 they will be more

the relative share of any cost reductions across both programs and usage classes,
Data was available from actual usage of the CDC6400 and CDC6600 which enabled

the estimation of the data shown in Table 1.

Table 1 User Data

Average Number of Jobs per Hour and Core Requirements (1000 octal): August 1977

- C2 ~

University Funds
(Educational Uses)

Outside Funds

Research Grants +

Center Projects
System programs &

Development

k=1 k=2 k=3
"k i1 "1 £ M2 fi3 i3
1 14.28 20 3.87 20 2,89 20
2 15.39 40 3.10 40 2,27 40
3 9.67 60 2,65 60 1.81 60
4 2.86 100 77 100 .66 100
5 1.32 120 42 120 .35 120
6 .35 140 .19 140 .19 140
7 .09 160 .04 160 .08 160
4 = 1: CDC6400 - CPU Seconds and PP Seconds: July, 1977

k =1 k =2 k=3
Iy fi11 2] 121 th) Fi31 2.,
1 3.10 12,72 4.06 16.23 16.92 121.15
2 16.144 23.09 23.70 71.11 28.91 118.52
3 29,17 47.34 43,35 86.70 40.89 96.70
4 42,21 39.13 62.99 94.49 52.86 72.66
5 55,24 48.20 82.64 99.20 64.84 80.97
6 68.28 44,01 102,28 112,51 76.82 73.09
7 81.31 32.04 121.93 85.35 88.80 55.39
L = 2: CDC6600 - CPU Seconds and PP Seconds: August 1977

k=1 k=2 k =3
o 112 tli)12 122 tgzz ti30 tli’32
1 .94 8.31 1.81 18.38 7.82 88.39
2 4,89 15.09 13.25 42,22 15.74 79.56
3 8.84 30.94 24,68 88.86 23.46 89.17
4 12.79 25.58 36.12 75.84 31.28 68.60
5 16.74 31.50 47.55 94.24 39.11 77.51
6 20.69 28.76 58.98 87.89 46.93 69.93
7 24,64 20.94 70.41 68.89 54.75 52,01

A preliminary run indicated that only q11 and q21 would be positive in an optimal

solution of (28), (29) and (30).

The additional constraints

- C3 -

q s
(B1) 4,2 9q,, 1<S<5
were therefore imposed. Let the notation w. denote that the index i varies over

=w, =w,. =1 are shown in the following table

i¢€ Ik' The results for w, 9 3

1

together with the actual prices announced by Vogelback.‘1

Optimal Announced
Solution Prices
Optimal Prices
94 11,38 11.8
9491 4.89 4.8
431 1.65 1.4
9 2,00 2.0
ds5y 0.60 0.6
% Reduction in Revenue
From User Class, k =1 35.1 37.1
From User Class, k = 2 18;1 19.2
From User Class, k = 3 15.9 16.0
Overall ' 27.5 29.1

1Newsletter, Vogelback Computing Center, July 1977

2 . .
The percentage change is measured relative to the revenue that would have

resulted from the same job mix on the CDC6400.

10.

11.

12,

13.

REFERENCES
Agbadudu, Amos, "Generalized Upper Bound and Extensions for Large Scale Systems,"
unpublished Ph.D, dissertation, Graduate School of Management, Northwestern
University.
Babad, J. M., Balachandran, V., and Stohr, E. A., '"Management of Program Storage

in Computers," Management Science, January, 1977.

Bracken, J. and J.T. McGill, "Mathematical Programs with Optimization Problems in

the Constraints", Operations Research, Vol.21, No. 1, Jan-Feb 1973, pp. 37-44.

Cotton, Ira W., '"Microeconomics in the Market for Computer Services,'" ACM

Computing Surveys, Vol, 14, No. 3, 1975.

Ghanem, S. B., "Computer Center Optimization by a Pricing-Priority Policy,"

IBM Systems Journal, Vol. 14, No, 3, 1975.

Kawaguchi, T. and Maruyama, Y., "A Note on Minimax (Maximin) Programming,"

Management Science, Vol. 22, No. 6, February 1976,

Kleinrock, L., "Optimum Bribing for Queue Position,' Operations Research,

Vol. 15, No. 2, March-April, 1967.
Kriebel, C., H., A, Raviv and H. Zia, "Air Economics Approach to Modeling
the Productivity of Information Systems', Technical Report No.
NSF APR 75-20546/76/TR2R, Carnegie~Mellon University, Pittsburgh,
Pennsylvania
Nielsen, Norman R., 'Flexible Pricing: An Approach to the Allocation of
Computer Resources,'" AFIPS, Proceedings, Fall Joint Conference, 1968.
Nunamaker, J. F. and Whinston, A., "A Planning and Cost Allocation Procedure

for Computer System Management,'" Proceedings of Third Annual SIGCOSIM

Symposium, October, 1972, pp. 11-26.
Smidt, Seymour, 'Flexible Pricing of Computer Services,'" Management Science,
Vol. 14, No. 10, June 1968,

Smidt, Seymour, '"The Use of Hard and Soft Money and Budgets and Prices to

Limit Demand for Centralized Computer Facility, "AFIPS, Proceecdings,

Zangwill, W.I., "The Convex Simplex Metﬁod”, MéﬁégéméﬁﬁAééiéﬁgé; 16, No. 1,

ASeptember 1969, pp. 1-13.

