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VALUES OF GAMES WITHOUT SIDEPAYRMENTS

by Ehud Kalai and Roger B.. Myerson

To model cooperative games without Sidepayments, AUMANN & PELEG

(1960) introduced the generalized characteristic function form.
Games in this form hawe a natural linear structure: they ean

e added and multiplied by positive sealars. This paper
presents some results about linear value funetions for such
generalized characteristic: function games. We first discuss

the importance of linearityr for walue functions, and then we
present two main theorems relating to value functions which
generalize the Shapley value and Pareto-oeptimal value functions.
Finally, in a concluding section, we discuss the implications
of these results for the deeper question of why the sidepayments

assumption is so important and useful in game theory.

1. Definitions

Let N be a nonempty finite set, representing the set of

players. Nonempty subsets of N are: called coalitions.

For any coalition S, let RS be the space of all wectors of

real numbers with eoordinates indexed on the members of S.
(Equivalently, we may think’of‘Rs as the set of all funetions
from S into the real numbers.)

The characteristic function form was originally defined for

games in which sidepayments or utility transfers between.
the players are allowed. A game in characteristic fuctionm
form, or a c-game for short, is a funetion w, with the

set of ecoalitions as its domain of definition, mapping each

coalition S into a real number v(S). The number v(S) is -
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interpreted as the wealth, in units of transferable utility,
whieh the members of coalition S would have to divide among
themselves if they were to eooperate together with each other
and with no one outside S.

The generalized characteristiec function form has been defined

for games without sidepayments. A game in generalized character-
istie functiom form, or a gec—game for short, is a functiom V,
with the set of eoalitions as its domain, mapping each

coalition S into a set V(S) < RS

which is nonempty, closed,
convex, and comprehensive. (A set:EE;RS is eomprehensgive iff
X £E and y;<x; ¥ i8S imply that y& E.) The set V(8) is
interpreted 2s the set of all utility allocations which
would be feasible for the members of 5 if they were to
cooperate with each other and with no one outside S.

The e-games have a natural linear structure as a (25N(-1)—
dimensional weector spacer
(1) (v+w)(8) = v(5) + w(S)
(2) (A-v)(S} = nr(w(S))

The linear structure for the gc-games is a bit more complicated.

If"X and Y are compact convex subsets of‘RS, then we
define their sum as
(3') X+Y = - {x+y x&e X, y(;_i’f ’
and it can be shown that X+Y is also compact and convex.
However, if X and Y are merely closed and convex, then the
right side of (3') may not be a closed set. So if X and Y
are closed convex subsets of‘RS, then we define their sum as
(3) X+Y = gi(i:ﬁy{' xEX, yt’%"f:?)
where gi(.) denotes the closure operator..

30 the sum of elosed eonvex sets is c¢losed 2nd convex as well.



For any two ge—-games V and W, we define V+W so that
(4) (V+W)(S) = V(8) + W(s).
Observe that V(S)+%W(S) must be a nonempty, closed, convex, and

S, because V(S) and W(S) are,

comprehensive subset of R
and  therefore V+W is a gc-game.

Given any positiwve real number ) and any ge-game V, we
define A-V to be the gec—-game such that
(5)  (NVX(S) = Shx| xev(s)f
(using the usumal sealar multiplication in the vector space RS).
We will not define scalar multiplieation for gec~games and
nonpositive scalars.

A eonvex cone of ge-games is a set D swch that

(6a) VeED and WED imply V+W& D, and
(6b) VED and »>0 imply »-V €D.
The set of 2ll ge-gemes is itself a convex cone.

A value function is a mapping'from‘gérgamesf(or c—games)

to yeetors-iﬁ;ﬂﬂ. . We want to find a value function F(.)
such that, for eaech i in N, Fi(V) could be reasonably interpreted
as the payoff outcome which player i should expect from the
game V. We may consider value functions which are not
defined for all ge-games, but we will always assume that
the domain of definition is some convex cone of gec-games.

A value function F is linear iff
(72) F(V+W)
(o) F()V)

F(V) + F(W), and
/\'F(V)p

for any ge-games V and W in the domain of F and any ) >0.

(Values'qflgames are added and multiplied as wvectors in.RN.)
Actually:, we will be interested in walue funections which

satisfy either of two conditions which are weaker than
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linearity: additivity and affineness. A walue function P is
additive iff
(8) P(V+W) = F(V) + F(W),
for any V and W in the domaimn of F.

A value function P is affine iff

(9) F(AV + (1-2):W) = XF(V) + (1-4)-F(W),

for any positive number A less than one, and for any V and W
in the domain of F.

Of course, any linear wvalue function is also additive and affine.

2. Significance of  the affine or additive property assumptions.

We have introduced both the affine and additive properties
because somewhat different stories can be tbld to justify
assuming one or the other for a wvalue function, and either
one will be sufficient to derive the results in Sections 3 and 4.

The affine property can be motivated in terms of
~ the response to risk as ROTH (1977) has suggested.
Let the payoffs for all players he measured in

" won Neumann-Morgenstern utility scales. Suppose that the set
of feasible allocations for each coalition depends of’whether
a certain random variable % takes the value O or 1l:

if Y = 0, which may happen with probability A, then each
coalition S has feasible set V(S); if X = 1, which may happenm
with probability 1-), then: each coalition 5 has feasible set wW(s).
Thus, if F is the value function which determines the payoff
outcomes for each game, then F(V) is the payoff alloeation for
the game which results from §f=0, and F(W) is the payoff .
allocation for the game which results from X = 1l. So, before
X is known, the expected allocation of utility is’

AR(V)Y + (1=-X)-F(W).
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However, if coalition S can make econditional allocation
plans before % is known, then the set of alloeations of
expected utility: which are feasible for S (before ¥ is known) is

EAﬁ-#(l—A)zf yeV(s), zéiW(S)E
which either equals (A'V + (1-2)-%W)(S) or is a dense subset
thereof. So AV + (1-3)-W is the game faeing the players
before X is known, and F(X-V + (1-)) W) is the expected utility
outecome for this game. To guarantee that the expected payoff
outeomes do not depend on whether the games are played before
or“after'ﬁ is determined, we must assume that

F(A2V + (-2 W) = 2F(V) + (1-2) F(W)
or that F is affine.

Additivityr is mainly of interest because it is 2 mathematic-
ally’ simpler than affineness (secalar multiplication is not
required) and because additivity was the assumption used
in the original derivation of the Shapley value (SHAPLIEY,. 1953).
We ean also justify additivity if we assume that each player's
utility is measured in units of some physical commodity: (which
is not freely transferable). If two games are béing played
at the same time, and if V(S) is the set of allocations feasible
for eoalition S in one game while W(S) is its feasible set in
the other game, then §y+z/ yEV(S), zéZW(S)g is the set of
utility allocations which are feasible for S if it plans its
actions in both games at once. But this set either equals
(V+W)(S) or is a dense subset thereof. Additivity is precisely
the property needed to guarantee that F(V+W) = F(V) + F(W),
so that the outcome alloeation does not depend om whether the

two games are analyzed separately or together.



3. Bxtensions of the Shapley value.

The Shapley value was shown (SHAPLEY,1953) to be the mos%t
natural linear value: function for c—games. In this section,
we study extensions of the Shapley value. to ge—games.

Por & function defimed on c-games to. be Fextended™ to -
- .of the
ge-games, we must first identify the c-games as g subset p gC-games.

For any c-game v, let G(wv) Be the ge—game such that
(10)  (a(v))(s) = jxeR®| & =x, = v(s)§.
- i
ies
That is, G(v) is the gc-game in which each coalition S
can offer-its members any allocation of utility which sums

to v(S) or less, so we can identify v and G(v) as representing

O

the same game situation. Let C~ be the range of G

(11) CO = E—G(fv)f v is a c-game%.

0 ssentially

Thus ¢~ is the set of all ge-games in which utility is e

transferable. Observe that CO is a convex cone of gc-games.

We will also need another map, going from ge-games 30 -

1

c-games. Let C be the following convex cone of £C-games:

(12) ct =§V{ sup ( 2 =x.) < ©0 for every coalition S}’
xev(s) i€s *

Then for any VEC]', let B(V) be the c—game such that

(13)  (n(V))(s) = sup (2 =)
XEV(_S) ies

Let: @ be the Shapley value operator on c-~g=2mes

* STN (Nf2
ie8

mn

Then a value function F for goc-gamess is said to extend the

Shapley value iff 0 is & subset of +the domain OFf F

ari@ P(G(v)) = ¢(v) for any e-game w. Our main resul® is
that the Shapley value has an essentially uniquae additive

extension, and %that is (p,(’h( e))
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THEOREM 1. Let F be a value function whose domain is D,

a convex cone of gec-games. Then F is additive and extends
1

the Shapley value if and only if DECT and F(V) = g{h(V)ﬁ for
2ll V in D.

PROOF. To check the "if" part of the theorem, it suffices
to observe that h(.) is 2 linear map on the cone Cl, and that
h(G(v)j} = v for any c~game v. Thus-@)(h(;)) is linear and
extends the Shapley walue.

We now take up the "only if* v»art of the theorem. and
assume that F is an additive extension of the Shapley value.

We show first that if V& DNCT then P(V) = (h(V)).

Let 0% be the zero c—game. (0%(S) = 0 for every eoalition S.)

Then V+G(0%x) = G(h(V)), because

(15)  V(s) + (6(0%))(s) = L (Jy+x| yv(s), xe B, :Z;S x; € 03)

=izE RS[ Z z.i.g sup (2:. yi)?}
ies y=V(S) i€ s .

= ¢(h(V))(8).

Therefore:

(16) PF(V) = F(V) + {(0%) = F(V) + F(G(0*))
= F(V + G(0%)) = F(G(a(V))) = ¢(u(V)).

It now remains to prove that DQECI. We e21]l a gec-game V

S for some S. Observe that D must contain

improper: if V(S) = R
improper games if D;ﬁcl. To seé this, suppose that VED and
sup (2 yi) = 0o then V+G(0%) is in D (because D is

yeV(S) i€s

0

s convex cone and G(0*)& C € D) and V+G(0*) is improper

(because (V+G(O*®))(S) = RS). It therefore suffices to show

that: D eannot eontain any improper games.

—~
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Let v° be the c-game such: thatr

(18) s (T) =21 if T = S,
O if ? # S.

Now, suppose V is improper and V(S) = gS,

Then V + G(us) =V + G(0*), because G(us)(T) = G(o*)(T) -

if T £ S, and V(S) + G(u®) = RS

= V(S) + G(0x).
IfV were in D, we would have

(19) V) + F(G(u°)) = P(V + G(uo)) = P(V + G(0%))

U

= F(V) + F(a(0%)),

but this is impossible since F(G(1°)) =g (u®) # @ (0%) = F(G(0%)).
So improper games cannot be in the domain of F.
This completes the proof of Theorem 1.

We used additiwvity twice in the above proof, in
equations (16) and (19). If we assume that P is affine (instead
of additive) tlen similar arguments will show that
(16')  &-F(V) = 5 F(V) + 50Q(0%) = 3-F(V) + £-F(c(0*))
F(£:V + £:G(0%)) = F(G(%-n(V))
G (3n(V)) = 3-@n(V)), and
F(V) + 5 F(6(x°)) = P(3 ¥ + 3 6(u°)) = F(3 V + & 6(0%))

] i ]

Wi

(197
=% P(V) + & P(Gg(o*))..
With revisions such as these, we ean modify the proof to
show the following theorems:
PHEOREM 1'. Let F be a value function whose &omain is D,
a convex cone of gc-games. Then F is affine and extends
the Shapley value if and onlyr if DéECl andvF(V)-=4@(h(V)) for

all V in D.



4. Pareto-optimal value functions.

Unfortunately, th(v)) may be an infeasible alloeation
for a ge—-game V. That is, even if ve:cl, we may have
-;g(h(V)’ YZV(N). In this seetion we investigate wvalue funetions
which seleet alloeations which are feasiﬁle and Pareto-optimal
for the uniwversal eoalition N.

For any gec-game V, we will denote the (weak) Pareto-ontimal
frontier for the universal eoalition N by'SV(N). For any-
two vectors x and y in RN, we write y>x iff‘yi>’xi'for
all i in N. Thus:
(20) aV(N) = :x { X'C—EV(N), and y>x implies y¥& V(N)?m

A value funetion P is Pareto-optimal iff F(V)E& 3V(N) for

every gec—game V in the domain of F.
Let A(W) be the unit simplex in R
(21) §X€-_RN;X123,O ¥ 1igN, and T x. =1
) jen !

Card

Given a wvector zg A(N), a value funetion P is utilitarian

with respeet to z iff F(V)EV(N) and

2 -zi-Fi(V) = sup ( > zi—xi) for every gc-gome V
iEeN x <V(N) ieWN

in the domain of FP. Utilitarian walue funetions are those
which are consistent with a utilitarian soeial choice rule
of maximizing a weighted average of the players! utilities.
Such soeial choice rules have been discussed by HARSANYTI (1955).
The main result of this section relates the Pareto-optimal
and wtilitarian properties.
THEOREM 2. Suppose that F is an additive valuwe function
defined on a convex cone of gc-games. Then F is Pareto-optimal
if and only if there is some vector z in AA(N) such that

F is utilitarian with respect to z.
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PROOF. The "if" part of the theorem is easy to check.
If P is utilitarian with respect to some z, then F(V) ImlS't'i?
be on the Pareto-optimal frontier &V(N), or else F(V) could

not be maximizing Z Zit Xy over x< V(N). : ; -
iel

The "only if" part of the theorem is the harder part.
Let F be a Parseto-optimal value function on a convex cone D.
For any gc-game V in D, let
(22)  P(V) =3ye®| £ yimM<sp (X yex)f.

ie N xcV(N) ie N

P(V) is always an open subset of RN:,. since its complement is
closed. To show that F is utilitarian, it suffices to show
that there is some vector z in A(N) such that z&P(V) for

every V in the cone D.

Suppose that, contrary to the theorem, L_J P(V)2A(N).
Ve D

Then the P(V) sets form an open cover of A(N), which is a
compact set. $So there exists some finite collection

K
Evl, cee , VE2 S D such that fgiP(Vk);EA(N).

J:

- k. _
Let V= 2. Vd. V&D because D is a convex cone, and
j=1

F(V) < o7(N) because F is Pareto-optimal. By the separating
hyperplane theorem (ROCKAFELLAR, 1970, B811), there
must be some zZ£ A(N) such that

> Z.-P.(V) = sup (Z z.'=x ).
jeny t % xE€V(N) ien T %

But by the way Vl, cee Vk were chosen, there must be some m

such that Z ,zi'Fi(Vm)< sup ( 2 Z.-xi);
iaelN ngm(N) ielN

without loss of generality, we may assume that this is true

for m = 1. So there exists some J_CEV]'(N) such that
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S 5.5 2 E P (V). Thus:-
.= i 7 i i 2
i&EN i= N
k .
- 7Y = z . J
(23) 2 2R (V) = 2 B R (EVI)
ieN ic N j=1
k .
=T 2 ZP (V)
j=1 i< N _
- (vd)
< 3 zZ.%. 0+ 2z PRV
jen ¥ 1 j=2 1. 1
= -— - £ .])
= 2 z. (X, + & PF.(VY))
ien * Y =2 1
< sup (.Zi zl'xi),

where the last inequality holds because X+ P F(V?) is a point
j=2

k . '
in.‘E:VJ(N) = V(N). But this string of inequalities adds up
j=1

to a contradietion of the way z was constructed. Thus k,) P(V)
V€D

cannot cnw§r=all‘bf‘£(N)._ This completes the proof of the
theorem.

If we assume that F is affihé, instead of additive, then
the proof is still essentially the same. - The: only place where

we used additivity was in line (23). By changing the definition

k .
of V to V =-%-2ZiVJ and by making corresponding adjustments in
J:

the subsequent formulas involving V, we can rewvise the proof
to cover the affine ease.

THEOREM 2'. Suppose that F is an affine walue function
defined on a convex cone of gc-games. Then ¥ is Pareto-optimal
if and only if there is some vector z in A(N) such that

F is utilitarian with respect to z.
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5. Conclusions.

Qur results in Sections 3 and 4 can hely us to understand
the roie of the sidepayments assumption in game theory.
Theorems 1 and 1' illustrate why the theory of games
with sidepayments ean be important even if most problems of
interest do not have sidepayments. The essentizl step
in the proof of Theorem 1 was the observation that the
sum of a game without sidepayments and a game with sidepayments
(a go=-game in CO) will be a game with sidepayments.
Therefore, once we find a linear solution theory (such as
the Shapley value) for games with sidepayments, the theory
will have a unique linear extension to the more generzl
case, without sidepayments. The theory for the sidepayments
case determines the general theory.
Theorems 2 and 2°* show,why the sidepayments assumption
is so eonvenient. For contrast, consider the opposite of the
sidepayments ease: consider the games for which the feasible
sets are strietly convex. Given ze A(N), there ecan be only one

vector x in a strictly convex set which maximizes Zi Xy e
igN

So if F is utilitarian with respect to z, and if V(N) is
strietly convex and V(N) = W(N), then we must have F(V}) = F(W).
Thus F(V) must: depend only on V(N), the Feasible set: of the
universal coalition, and cannot depend on the feasible sets

of any smaller coalitions. Such a value function must be-
insensitive to the power distribution among the players.

S0 Theorems 2 and 2' tell us that a Pareto-optimal linear
value fianction on' games with: strictly convex feasible sets

must be a simple utilitarian soeial choice scheme and cannot
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be sensitiwve to the game~theoretically interesting threat
structures. Sidepayments are needed to ereate flat regions
oni: the FPareto-optimzl frontier within which the threats of

the smaller coalitions can hawve some influence.
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