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ABSTRACT

Recently, Saigal has preéented an acceleration technique whereby
the fixed point algorithms based on complementary pivoting can be made
to converge quadratically. 1In this paper, we study the efficiency of this
acceleration when, along with the fixed point steps, a series of Newton
type steps are performed. We show that this efficiency is comparable to
that of Shamanskii's method and that the ''global' convergence properties

of the original fixed point algorithm are not destroyed.
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Efficient Acceleration Techniques
for Fixed Point Algorithms

R. Saigal
M. J. Todd

1. Introduction

Let R” be the n-dimensional Euclidean space, and for a vector
X = gfl’ e ey xn) in RY, let x|l = maxilxi]. Given a continuous fuppiiqn)
4 from Rn into RP, in this paper we consider the recent fixed point algaritﬁms
pioneered by Scarf [17] and extended by Merrill [9] and Eaves and Saigal [6]. These
algorithms have the capability to compute fixed points of point-to-set
mappings as well. Under a variety of conditions on f, which include the
conditions of the Brouwer's fixed point theorem [2] and the Leray-Schauder
theorem [10, 6.3.3], these algorithms are successful in computing a fixed
point. Appropriate generalizations to point-to-set mappings of the above
fixed point theprems exist, and these algorithms are effective in computing
fixed points of such mappings, see for example | 6, Theorem 4.2].

In this paper, we consider the application of the algorithm of [6],
which is called the continuous deformation method (see [14]), for computing
fixed points or, equivalently, computing zeros of a differentiable mapping
4 whose derivative, £/, is Lipschitz continuous. For such mappings, it is
shown in [13] that the continuous deformation method can be accelerated
to converge quadratically. In addition, as observed by Todd [20] and
explicitly used in [13, 21], a finite difference approximation to the
derivative £’ is readily available. The aim of this paper is to use this
matrix in Newton type steps and} hopefully, make the acceleration scheme
more "efficient" (according to the measures introduced by Ostrowski [11, 6.11]

and Brent [1]). Thus, the aim of this paper is to study a hybrid algorithm
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in which, between consecutive acceleration steps of the fixed point algo-
rithm, a series of m Newton-type steps are performed, using the readily
avajilable finite difference approximation to the derivative. The effi-
ciency of our hybrid algorithm compares favorably with that for Shaman-~
skii's method found by Brent [1, Table 1]. 1In addition, asymptotically,
the acceleration step of the fixed point algorithm can be viewed as a ver-
sion of the finite difference form of Newton's method.

In section 2, we present the Eaves-Saigal algorithm; in section 3,
we present the acceleration scheme of Saigal {13] and its extensions; in
section 4, we study its asymptotic convergence and the efficiency; and in

section 5, we study its global convergence.



2. The Fixed Point Algorithm

In this section, we describe the Eaves-Saigal algorithm [6], [14].
In this method, an initial one-to-one affine mapping r and its zero xl are
chosen. This mapping is then deformed in a piecewise linear manner to the
mapping, £. Also, starting with xl, a piecewise linear path, xt, is
traced, such that, under certain general conditions on r and £, this-path
converges to a zero of f. This algorithm shares many similarities with the
recent "'globalization schemes" for Newton's method proposed by Kellogg, Li
and Yorke [8) and Smale [18], where a similar path is traced via a solution
to a differential equation.

The usual implementation of this algoritﬁm is on the triangulation
J3 of R" x (O,l]. One creates a pilecewise-linear homotopy, L, on
R" x [0,1], such that L restricted to R" x {1} is r, and restricted to
RY x {O} is ¢. The aléorithm then traces a component of L-l(O), which con-
tains (xl,l). We now give a brief overview of this method.

The triangulation, J is a2 collection of (n + 1) - simplexes, which

3’
together with all their faces partition R® x (O,l]. The vertices of these
simplexes lie in R%x {Z’k} for some k = 0,1, . . . It follows that
QJS = {9 g ! oin J3} triangulates R™ x (0,8]. Further, any simplex of

SJ3 in Ri(o, Z-k 8] has diameter at most Z_k 5. The aforementioned defor-

mation and path tracing on J3 can now be described as follows.

1 ‘ ) . .
With r and x* as above, let ¢ : R+ ~R bea continuous increas-
+

ing function with «(0) = 0. For a vertex (v, Z'k) in J,, define

33

ky _ [ ) if alllx - ®) < &
L(v, 27) = r(v) if not
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Now, extend L linearly on each simplex o of J3, that is, if (x,t) =:Z)Ki(vi,t),
iji = 1 and ki = 0 for each i, where (vi,t) are vertices of g,
L(x,t) = Z}xi L(Vi,t). If we further set L(x,0) = 2(x), then
L: R x [0,1] ~ R" is a piecewise linear homotopy from £ to r.
The method then traces the unique component of L—l(O) which contains
(xl, 1) in the following manner. Starting with the (usually) uhique sim-
plex dbéof 33 containing (xl,l), it traces the line L;é(o) where Lo is the

restriction of the mapping L to a simplex o of J This line crosses some

3
other facet of % (assumed unique by a non-degeneraéy assumption) at some
point (x/, t’). This procedure is then continued by finding the other

simplex g’

containing (x’, t?) and tracing the line L;%(O), which passes
through (x’, t’). Under certain general conditions on the mappings r and
4 (see, for example, [6, theorem 4.2]), this piecewise linear map thus

traced converges to a zero of £. For more details of this method, see,

for example, [15], [22].
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3. The Accelerated Fixed Point Algorithm

In this section, we describe the acceleration technique of Saigal [13].

assume that the mapping, 4, is continuously differentiable with Jacobean

L20(x) = (3 zi(x)/a xj) satisfying a Lipschitz condition with constant K;
le'x) - 2! = ® [x -yl . | (3.1)

For a n x n matrix A, let HAH = max, z%laijl. We could replace (3.1)
with the assumption of HSlder continuity on R" with straightforward changes

in our results (as is shown in section 4&).

Lemma 3.1: For all x, y ¢ Rn, define e(y,x) = £(y) - L4(x) - 2'(x)(y - X).
Then [le(y,0[ = 3 % [y - [,
Proof: See [10, 3.2.12].

We now describe this acceleration technique applied to the triangula-
tion I of R" x (0,1]. Let xt ¢ Rn, e
to the Jacobean z'(xl); el should

1

Ideally, xl is close to a zero of £, AO

have the same order as the distance from x~ to a zero of f.-

1 1
Define r (x) = Ao(x - x") for all x € R”. Also choose a continuous
nondecreasing function o : Rp = R, with ¢(0) = 0 and (1) < 1. We

frequently pick w identically zero. Finally, translate the triangulation

T
1 2n - 1 2n-3 l) .
ZelJB by x -el< 2n ’ om '’ 24 to get Zele, say. The effect

is to put (xl, el) in the center of a facet of Zleé and will be impor-

tant for the acceleration techniques.

Now define L : R™X (0, 261]"Rp as follows. If (v, t) is a vertex
~k

1 i = .
of ZelJ3 with t 261 2 7, then set
1
ORI (£ NI
L(v, t) = 1

4(v) if not .

>0, and Ay be a nonsingular matrix.

We



1f « = 0, this rule reduces to

rl(v) if t = 2¢

L(v, t) =
2(v) if €< 261.

Create the piecewise linear homolopy by extending L linearly on each
14 . . . ( l 2 ) f L .n
simplex of 2 e J3, and starting with the unique zero (x , €) © i

R™ x {2 e1}, trace the piecewise linear path in L_l(O). The

algorithm thus generates a sequence of distinct facets of ZelJé with
each containing a zero of L and with the convex hull of each consecutive
pair of facets being a simplex of 2e1J§. Moving from one facet to the
next requires one function evaluation and one linear programming pivot.
Under suitable conditions on £ and AO (see section 5), the facets remain

in a bounded region. In this case, the set of cluster points of the

n
facets is the projection on R X {0} of a closed connected set of zaroes

of £.
' . n -k+1 . .
When a facet T of 2€1J3 in R"x {2 el} is generated for the first
time, we say that a new level is penetrated. If the vertices of T are
(vl, e), i=0,1,..., n, where ¢ = 2-k+l€1’ and if L(vl, e) = L(v) for

all i (for example, if o = 0), then let (X, €) be the zero of L in T.
Then we have X = 2 Kivl and % kiz(vl) =0 for = Xi = 1 and all Xi = 0.

However, the fixed point algorithm has available also the matrix

1 .o 1
B = 0 n and its inverse, and from these further informa-.
L(v) ... L(v))
. . i i-1 . . .
tion can be deduced. Since each v -v™- " is + ¢ times some unit vector,

it is easy to obtain from B and B-1 the matrices A and A-1 where
Lvh) = A(vl-§) for all i. A is a finite difference approximation to

the Jacobian of 4 at X (see i 137, T20].

Lemma 3.2 Under assumption (3.1), [|[2(®)| = %1(62 and ||A - 2'(X)|| < Kne.



Proof See [12], [13].

We summarize the information obtained from T by writing (x, A) =

FP(xl, A k).

0’ el’

Saigal [13] showed that the basic fixed-point algorithm could be
accelerated by restarting with a much finer grid size. Let €y =
GHA-IL(E)H, where 6 is a sufficiently large constant, say 3n. If

<el/2’ then the algorithm is restarted with x2 =x replacing xl,

€2
Al = A replacing A0 and €, replacing € - The accelerated algorithm pro-
ceeds in this way to generate x3, x4,... At each iteration, k is as

*

small as possible so that ¢,,. < e/2 as above. Suppose x"+ x* with

i+l
L(x*) = 0 and L'(x*) nonsingular. Then Saigal showed that for largé

enough i, (xl+l, Ai) = FP(xl, Ai-l’

erates with each level penetrated. Note that Ai is then a finite differ-

€55 1); that is, the algorithm accel-
. i+l . i
ence approximation to L'(x” ~) based on a step size of €5 and xl+l is
an approximate zero of £ based on a simplex of diameter € - Further, for
large enough i, only n+ 1 function evaluations and pivots are required to
. i+l i . . .
obtain x from x”, (It is to guarantee this property that the triangu-

i *
is translated.) Lastly, x 4% with Q-order at least 2,

i+l _

lation 2¢.J
i 3

i.e., for some constant 8, Hx X*H s BHxl-lez, i=1, 2,...
The accelerated version considered here builds on Saigal's method
by interposing Newton-like steps between successive applications of the

fixed-point algorithm. It can be described as follows:

Accelerated Fixed Point Algorithm with Parameter m = 1: (AFPAml_

Step 0 Choose yl<ERp, €, > 0 and a nonsingular matrix A,. Set i = 1.

1

€., k), where k = k(i) is as small

i i
Step 1 Let (z7, Ai) = FP(y", Ai-l’ 1

as possible so that HA;IZ(zi)H < 2-kei.
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i, 1 _ 1 i, 1 _ -1 i,1 i, 2 _ i _
Step 2 Set z =z, s = Ai L(z ) and z =z -5 . Ifm=1,

set j= 2 and go to step 3. Otherwise, for j= 2, 3,..., m:

1,3 _ Aglz(zi’j). If Hsi’jH >'Hsi’j-ln, go to step 3. Other-

1,541 = énﬁl -s™ { and increase j by onex

Set s

wise, set z

i+1 _ i,] i+l _ _i,j-1 _ i+1 i+l _
Step 3 Set y =z and x =z . Set €1 = eiHy -x H =
,eiHAglﬂ(xl+l)H, where 0 < Gi < 1. (Ihe“choice of Gi will be discussed

below.) Increase i by one and return to step 1.

Note that step 1 contains the "fixed-point algorithm' step while
step 2 contains "parallel chord" [10,7.1] or Newton-like steps. We have
incorporated protection against these latter steps increasing in size so

that e, < ei/z for all i.

+1

We first remark that AFPA1 coincides with Saigal's method with one ex-

. . X . , i+l
ception. When restarting the algorithm, we use the linear function r (x) =

+1 i+l

x1+1-A;12(x ).

Ai(x-yl+1) rather ‘than rl+1(x) = Ai(x--xl ), where Y1+1 =

(Note that in AFPAl, xl+1 = z" is the same as in Saigal's algorithm.) Since
- i4
Ailz(xl 1) must be computed in Saigal's method to determine i1 negligible
Lk ] - . i+l i+l
extra work is involved in obtaining the (usually better) point y from x
We defer the question of global convergence of the complete algorithm.
For now we suppose that each of the fixed-point steps 1 converges. Hence-

forth, assume that there is a constant p such that £(w) = 0 implies £'(w)

nonsingular with Hz'(w)'IH <.

(k)

Lemma 3.3 Let <z , A(k)> = FP(y, A, ¢, k) and assume {z(k)} remains

-1

(k) -k
(k)z(z M < 27%.

bounded. Then for some k, HA

k),

Proof Let w be a limit point of the z s. Then Lemma 2.2 implies that

L(w) = 0 and HZ'(W)-lu <. For k sufficiently large, z(k) is close to

some such limit point, and Lemmas 3.2 and 3.1 then imply that A( is

k)



nonsingular with A-l < 2u for sufficiently large k. Then HA-l Z(z(k)) <
(k) (k)
p.K(Z-k+le)2 and for sufficiently large k the condition holds.

Lemma 3.3 shows that the sequences zl, x~ and yl are well-defined if

the fixed-point algorithm steps 1 converge.

Theorem 3.4 Suppose that A is nonsingular and HA-lz(y)H/e:+

”A-I\KZFHA'Z'(Y)H+8K€>< z—ln' Then (z, A') = FP(y, A, ¢, 1) is obtained

in exactly n+1 pivots and Hz - y“ < 2_-€n

Proof Let T = ( (vo, to),..., (vn, tn)> be a facet encountered in the

fixed-point algorithm, and let F(vT) = L(vl, ti)' For some }\i = 0,
by xi = 1, we have 2 xif(vl) = 0; let x = by >\iVl. Then x-~vy = A-1<A(x-y)> =

INED» xir(vi) NED> xi(r(vi) - f(vi)>, where r(vl) = A(v® - y).

Now r(v>) - £(v7) is either zero or r(vl) - 4(v’) = -Jl(y)+<A- z'(y)>
¢ (vhoy) -, 9y, Hence, [lx -l = [IATRe@l +[aTHIfIA - 2 (Dlimax |l vF - |
+HA-1H %K(maxiﬂvi - 9| 2.

Suppose all Hvi - y“ < 4¢. Then by the condition of the theorem,
lx -9l < -2% . It follows from the construction of N [19] and the fact

that 2eJ, has been suitably translated that only n+ 1 simplices contain

3
a point (x, t) with Hx- yﬂ < Zin , and all of them have all vertices within
2¢e of y. Since no simplex with vertices more than 4¢ from y can be gener-
ated without passing through a simplex with all vertices within 4e¢ of y,

only these n+ 1 simplices are encountered. Taking T to be the final facet,

we have x = z and HZ‘YH<2_€H-

Lemma 3.5 Suppose A is nonsingular and y = x-A-lJl(x) # x. Then

la el A el < la(la- 2 coll+ Lxla ol |
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Proof With e(y, x) as in Lemma 3.1, we have
-1
L) = L@+ @G -D+ely, O = (A- 2 @A +ely, .

Hence, using Lemma 3.1,

el = A lla - 2 ollla™ e ol + Srla™ila el
-from whiéh the result follows.

Theorem 3.6 If all the fixed-point algorithms in step 1 converge, then
the sequences {z'}, {x'}, {y"} are well-defined. Now suppose {z'} is
bounded and for some A, ei = -Xei 1ogei for all i. Then for all suffi-

ciently large i, k(i) =1, 2" is obtained in n+1 pivots from yl, and all

ala
~

m parallel chord steps in step 2 are performed. Further, xl-'x*, yl-*x

i * *
and z 4+ x for some zero x of 4.

Proof Lemma 3.3 shows that the sequences are well-defined. Now

€.
€i+1'< 7% for all i, so ei-'O. Lemma 3.2 then implies that any limit

point of the sequence {zl} is a zero of 4. For sufficiently large i,
z" will be close enough to a zero of £ and Ai close enough to 2" (zh)

that HA;lﬂ < 24 ; suppose this is true for i = it

ala

Since ei-*O, Lemma 3.2 shows that for sufficiently large i = i ,
k(i) = 1. Now HAi -E'(zl)H $ Kne, and for j =1, 2,..., m+1, Hzl’J -z =
me hence using (3.1), HAi -Z‘(zl’J)H < K(mﬁ-n)ei. Now apply Lemma 3.5

inductively when i 2 i* and 2. <K(m4—n)ei+ %K£i> < 1 to show that

ala
"

HA;lz(zl’J)H is decreasing in j for sufficiently large i 2 i . Thus all

m parallel chord steps are eventually performed.

Lemma 3.5 also gives HA;lz(yi+l)H/HA;12(xi+l

i+l

= 24 (K(m+n)€i+ lxei>,

2
i+l

Hence if €ip1 = Gi“Ailz(x ol >--Kei logeiHAilz(x M, we obtain
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\\A;_lz(yi'*'l)“/ei_*_l s -2p Kk-l(m+n+%’)/log €. 0. Theorem 3.4 then implies

' * i i €i i
that for sufficiently large i =2 i°, Hz -y H < 5 and z~ is obtained in

n+1 pivots from yl.

Now since Hzl - ylll < TZ-rlI and Hyl+l - le < me, we get Hyl+l - ylH <

* €5
(m+1)e, for sufficiently large i 2 i . With e,,. < —= , we find
i i+l 2

Hyj -yl < 2@+ l)e, for all 3> i. Hence {yl}__ is a Cauchy sequence with

limit x°. Since Hzi - yiH < ;_rl{ and ”xi - yiH < €, for sufficiently large

1

, % i %* i * *
i21i, x"*x and z ' +x also. Hence x 1is a zero of £ and the theorem

is proved.
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4. Asymptotic Convergence of AFPAm

The statement of our accelerated fixed-point algorithm in section 2
is not conducive to an analysis of its convergence rate. However, Theorem
3.6 shows that for large enough i all parallel chord steps are performed
and zi is obtained from yi in exactly n+1 pivots. It is thus possible
to describe how zi is obtained from yi without reference to the fixed-
point algorithm; zi is the zero of an approximation to £ based on n+1
specified points. Below we state an asymptotic form of the algorithm and
show that it coincides with AFPAm for sufficiently large i. We then ana-
lyze the convergence rate of AFPAm in this asymptotic algorithm, and fi-
nally discuss the efficiency of AFPAm in the spirit of Brent [1]. From

this discussion we deduce good values of m.

Asymptotic Algorithm with Parameter m = 1 (AAmZ_

i'GRn d > 0 a1 _{2n-1 2n-3 _LT n
Step 0 Choose y and e, , and let w = \ o seees B ER.

2n
Set i = 17,
Step 1 Set vl’O = yl- €.V and vl’q = vl’q-l-i-eieq forq=1, 2,..., n,

where eq is the qth unit vector in R". Define Ai by

Aieq = [z(vi’q)- z(vi"q.l)]/ei forq=1, 2,..., n.

Step 2 Let zl’0 = vl’o. For j=0, 1,..., m, set zl’J+l = zl’J -A;lz(zl’l).
Step 3 Set x1+]. - zl’m, y:|.+l - zl,m+l’ and €10l = eiHyi+l _x1+ln -
e,HAflz(xl+l)H, where 0 < 9. € 8. Stop if e, is within desired bounds;

i i i i+l

otherwise increase i by one and return to step 1. (The choice of Gi will

be discussed below.)
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. i’ . . .
Note that we start AAm with vy~ and €t with i' possibly greater

than one. We now claim that for sufficiently large i', if AFPAm gener-~

. i -y
ates {x"} and {y"} and AA_is started with v, e r» then AA also gener-
ates {x} and {yl} for 1> 1i'. Indeed, choose i' sufficiently large so

that the conclusions of Theorem 3.6 hold. Then z  is the zero of the ap-

proximation to { based on the facet of ZeiJé containing (yl, ei). But

this facet is just ¢ (vl’o, ei),..., (vl’n, ei)> . Hence the Ai of AFPAm

is exactly the Ai of AAm. Also, zt = vl’0-A£lZ(vl’0), so that the zl’l
of AFPAm is the zl’l of AAm. Hence the algorithms produce identical se-

quences.
We first state a version of Lemma 3.2,
Lemma 4.1 Under assumption (3.1), “Ai -L'(yi)H < Knei.
Proof From the definition of Ai’ we have
[4, -2 DI = (2D H -a6h - rH @D - yh ]

L h b - e hH bt yi>]}/ei .

Using the triangle inequality and Lemma 3.1, H[Ai -L'(yl)]eqH = Ke, and
the result follows.
Now we suppose xTAx and yl-'x* with z(x*) = 0 and ﬂ'(x*) nonsingular.

1

-1
5(28 + 1) <8 Our approach

Define B = K(%i—Zn)HL'(x*)-lH, and letve <

follows that of Brent [1].

Lemma 4.2 For all i> 1i', lety, = ”xl -X*H, 6, = Hyl-x*H and N, =&, +te,.
—_—— i i i i i
Suppose ﬂi < e¢. Then for j=0, 1,..., m, ztd is defined and
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[zt - = m, (4.1)
and
S N ES R (4.2)

Further, v, 5 G1)O™,, 6., 5 @GN, e, = 28, (BN)™, and

Niap = (28, +BTD @™,

Proof From (3.1), HZ'(yi) -2'(x*)H'Siﬁéi < Kﬂiraﬁd:ffom Lemma &4 .1,

HAi ‘z'(yi)H < Kne, S Knﬂi, so

la; - 'Ol s (a+ DEN, .

Using BT, < Be < 1 and the Banach Perturbation Lemma [10,2.3.2],

~Ai is nonsingular and

5
2+2n

3
24—n

e )

la; il <

Hence zi’j exists for all j. Now suppose (4.1) holds for some j. Then
lagH 3T -] = flay @B - - aG )

A Y I O I b [ PO A e /[ EA |

< 1xll2md 24 e x5 o)

s G+nxn, |24 - x|

2 i ’

A I e IRV N E e [P P Ry
(4.2) holds for j. Since Bﬂi <Be <1, (4.1) then holds for j+1. Now
(4.1) holds for j = 0, establishing (4.1) and (4.2) for all j by induc-

tion.
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The bounds on e and 6i+l follow immediately. Also, €41 =

5 H yi+l 1+li

l <8, ) and ”ﬂ =8 +€i+l’ so that the proof

(&t i+1

is complete.

. 31 )
Theorem 4..3 Suppose Hyl -x*H + e; < e¢. The algorithm AAm is well-defined
i i . * i * .
and generates sequences {X }, {y } converging to x . Further, x #x with

1+l
Q-order at least m+ 1, that is, for some comstant p, x J‘H

*lm-i-l

pHxl-xl , I =4i', i'+1,... If we choose Si = -Xei log ei, yl-'x"'c

m— R Lo i
with R-order at least m+2; that is, if p< m+2, lim Hyl + -x"Hl/P
Proof The first part follows from Lemma 4.2, since ni+l < (261+B”ﬂi)
. < - 0. = < s

(B'ﬂi)m’ni (26+1)Be’ﬂi and so T]i 0. Now T]. 6. +e. yi+291‘yi
(26+1)yi. Hence Lemma 4.2 gives iy s B (2'1\+1)m+1 T+l, and x - x*
with Q-order at least m+1. Now let p =m+2-, {> 0 and note that

' L, c P, '
s < - -
N, S (28, +B1)@EN)O™, = @™ 15 - 8™ 10gM MY, since 8. < -AT, logT, .
Now the term in parentheses tends to O for any { > 0 as T]i-b 0. Hence,

T]i-* 0 with R-order at least m+ 2. Since 6i < ”ﬂi, 614 0 with R-order at

least m+ 2.

Suppose now that the Jacobian of 4 is Holder continuous, i.e., that
(3.1) is replaced by HZ'(x) -4 (y)“ < KHx - pr for some p € (0, 1]. Then
in Lemma 3.1 we have “e(y, x)” s (p+l)-lKHX-an+l, and in Lemma 3.2,
le@| = (p+1)" LgeP™ and [a-2 @] s 2(p+1) 'Kne?. Lemmas 3.3 - 3.5
are unchanged, while in Theorem 3.6 we must require Qi Z'M_ei log ei)p
for all 1. In Lemma 4.2, we obtain HAi -Z'(yi)“ < 2(p+1)-lKnep. For
Lemma 4.2 we let B = 3K(n+ 1)\\£'(x*)'ll! and ¢ < [a(ze+1)]’1/P < B'I/P,
Then Lemma 4.2 is valid with (B'ﬂi)p replacing B“ﬂi everywhere. In Theorem

4.3, x" 4 x" with Q-order at least mp+1. 1If Si = X(-ei log ei)p. for all i,
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then yi-0x* with R-order at least mp+p+1l. The proofs are almost iden-
tical.

Instead of keeping Ai constant in step 2 of the algorithms, we could
update it using a quasi-Newton update. For the Broyden update [3], [4],
the bounded deterioration of Ai as shown in (3.5) and (4.8) of [3] is suf-
ficient to keep our results valid. Quasi-Newton updates allow a super-
linear rate of convergence to be attained without resorting to step 1 [3];
one may therefore wish to continue quasi-Newton steps until they deterio-
rate, rather than setting an a priori bound of m.

We now discuss the choice of the parameter m. We choose m to maxi-
mize the efficiency of the sequence {yi}; as defined by Brent, the effi-
ciency of the sequence wi converging to w* with R-order p is k-1 logop
where k function evaluations are needed to compute wi+1 from wi. We will
use the lower bounds on the R-order of convergence of {yi} and {xi} rather
than their true unknown values. Then the efficiency of {xi} is
(n+m+1)-1 log (m+1) and that of {yi} is (n+m+1)-1 log (m+2). Brent's
Table I [1] gives optimal values of m+1 for {yi} for various n; for exam-

plem =6 for n = 10, 21 for n = 50 and 36 for n = 100,
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5. Global Convergence

The algorithm AFPAm as stated in section 2 is probably the way one
would implement such an accelerated fixed-point method. However, such an
implementation possibly sacrifices one of the main advantages of fixed-
point techniques; that is, under suitable conditions on £, one obtains

global convergence. The problem is that, although AO can be chosen so

that z1 is found in a finite number of steps, the change in artifical map
to rz(x) = Al(x-yl) may permit the algorithm to diverée, so that 22 is
not found.

In this section we show how the algorithm can be modified so that
global convergence is maintained. The basic idea is to change the map
to Ai(x-yi) only locally. We consider the algorithm as being a special
case of the EavesfSaigal algorithm [6] with a modified triangulation T
and labelling rule L defined on the set TO of vertices of T. While T
and L depend on the b?havior of the algorithm, this does not invalidate
the argument.

For simplicity we assume 261 = 1., The triangulation T is then the

image of J3 under a "'piecewise shearing'" homeomorphism h of R™ X (0, 1]

onto itself. The function h is defined by a sequence {ak}°° in R®. If

0
-k -k-1 .
2 T ztz=2 for some integer k 2 0, then h(x, t) = (x+a, t), where
a= (2 C DR+ - 20 1n other words, R X {Z-k} is translated

by (ak, 0) for each integer k = 0, and the layers-between are mapped by a
linear interpolation.

The sequence {ak} will be chosen so that Hak-ak+1H < (mi-l)Z-k for
all k. It follows that if ¢ is a simplex of T lying in R x (0, t], then

diam p(c) £ (m+2)t, where p projects R™ x (0, 1] onto R,
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We now choose a nondecreasing function « : R++ R+ with «(0) = 0,
(1) < 1, and o(s)*» as s=+=, The labelling L: TO—*RP depends on £,
rl, o and the past behavior of the algorithm. Let Lk(v) = L{v, 2~k)
for all k. We must now describe how the sequence {ak} and the labels
Lk are recursively defined.

To start, define Lo(v) = rl(v) = Ao(r-yl) and aO = yl- l/2n-1

A" og -
1 T 1 o
. ——> . Now define a~ = a and
2n
rl(v) for a(”v-—yln) =z 1
L (v) =
1
£(v) if not.
0 k . .
Suppose a ,..., a and LO""’ Lk have been defined in such a way that

lad - a3t = @+2)279 for 05 j < k and that L) = ti(v) for 05 §5 K
1
and Hv-—y H sufficiently large. These properties certainly hold for k = 1.

We now define G: Rnx [Z_k, l]-'Rp to agree with L on TO and to be linear

on each simplex of T. Then the Eaves-Saigal algorithm consfructs a
piecewise linear path of zeroes of G, Since all labels are rl outside
a compact region and since the projected diameter of any simplex of T
is at most m+2, this path cannot diverge. Hence it hits R™X {Z-R} for

the first time at a point zk, say, lying in a simplex T (Note that

K’
. k . k
this 2z 1is not the same as the z of AFPAm.)

If some vertex of Ty is not labelled according to 4, then we set

ak+l = ak and define

rl(v) if a(Hv-ylH) 2 k+1
L (V) =

L(v) if not.
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Otherwise we compute Ak so that Ak(v'-zk) = L4(v) for vertices v of Tk and

then HAilz(zk)H. If this quantity is at least 2-k-l, then define a< '

and Lk+l as above.

If HA;lz(zk)H < Z-k-l, we compute L ang yk+l as in steps 2 and

kel ~zkH < mz'k‘l. Now pick 0.< ei <L so that

3 of AFPA_. Note that Iy 3

e I N
Choose Ek so that (Ek-ak, Z-k) and (zk-ak, Z-k) lie in the same
facet of J3 and so that (%k-ak, 2-J'l) lies in the center of a facet of
J3. For example, if the vertices of the facet containing (zk-ak, 2-k)
are (yl, Z-k), 0= i< n, in natural order, choose %k-ak = y0<l-+£%if;ga >-+
Ez:i %yl+2%—1-8 yn , with g8 = 2k-J-l. Then define ak+l = ,,. = aJ+l =
ak+yk+l - %k. Note that Hak+l - akﬂ = Hyk+l - zk+ zk - %kﬂ £ (m+ l)Z-k.
Now we define L .., L For Hv-zkH s (m-|-2)2-k (v) =
k+127777 T+l ’ Lk+1
. = Lj(v) = Ak(v-yk+l). Otherwise, for each q = k+1,..., j+1,
1 . 1
r(v) if Q(Hv-y H) Zz q
L (v) =
q
L () if not.
0 j+1 .
The sequences a ,..., a , L L satisfy the above proper-

0’ "7 Ti+l

ties. Hence the inductive definition is complete., See also Figure 1.
Note that part of the path G_l(O) can be predicted. 1In the notation

above, every simplex of T meeting the line segment joining (zk, Z-k) and

k+1 z-k-l

k+1
vy 7,

) has all vertices labelled according to Ak(v-zk) or Ak(v -y ).

Hence this line segment lies in G—l(O), as does the line segment from

k+l, Z_k-l) to (yk+l, 27d).  The algorithm can therefore be reinitiated

(y
at (yk+l, 273). If the layer R%x [27J, 2°k] is never encountered again,

the algorithm coincides with AFPAm. However, it is possible (when the algo-

rithm accelerates when it shouldn't) that this layer is encountered again.
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We now give conditions under which the algorithm converges. Note
1 k .
that, because of our use of ¢ and r, each z exists. We must show that
¢ k . . . .
{z"} remains in a bounded set under appropriate conditions. One such con-

dition is the following:

There exist § > 0, wERn, CEL(Rn) and compact S<R™ such that

(i)-x €5, Hy-xH < § imply Z(x)TC(y-w)> 0; (ii) AT

0C is positive definite.

Merrill [9) has shown that many applications satisfy this condition

with C = -1,

Theorem 5.1 If the condition above holds, all zk lie in a bounded set.

Proof We first find j so that 27 < 8. Then zk for k £ j lie in a bounded
set. Suppose k 2 j. Then (zk, Z-k) lies in a simplex Tw of projected di-

i .
ameter at most &. Let the vertices of T, be (v, ti), i=0,..., n. Let

k
Hvo -wﬂ = p; we obtain a bound on p independent of k. Let T =
min {xTAng il = 13> o.

Now 0 is in the convex hull of L(vi, ti), i =0,..., n. Suppose
firsttthat each L(vi, ti) is L(vi) or rl(vi). We show that, if p is too
large, L(vi, ti)TC(vO-w) > 0 for all i. 1Indeed, if p is so large that

v' does not lie in S, then the inequality holds by the assumed condition

if L(vi, ti) = 4(v). Suppose L(vl, ti) = rl(vl) = Ao(vl-yl). Then

1.T,T

@ -yHTalew® W

L(Vl, ti)TC(vo -w)

(v0 - w)AgC(vo -w) + (vi - vo)AgC(v0 -w) + (w~- y]')A'gC(v0 -w)

L\

To? - flatdle @+ 2+ |lw - v



i T
Hence if p is too large, L(vl, ti) C(vo-w) > 0, and T, does not contain

k
a zero of G.

Suppose now some L(vl, ti) is neither l(vl) nor rl(vl). Then by the
construction of L, v’ is within a distance of m+2 of some z* lying in a
simplex whose every vertex is labelled by £. Since we have shown above

q

that all such z* lie in a bounded set, the same is true for zk. The

theorem is proved.
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Path of zeroes of L

k+ k+
vel k X 1 y 1
earing of triangulation —3
vel k+1 _ i\" —————— ;
l n 5 kel T
e—cylinder B(z, (@#2)2™¢x [27, 27% 1 | !
_l within which labels are changed to : !
+ )
| A (v-y<T ’ 1
k 1
| . |
| h ,
! ( l
| !
| | '
| |
] |
l - \
wel j y ! i
wel 41 = — - ~—— — — — — —— — — — — /_" - — - -

T

ktl 2-j-1) in center of facet

Acceleration Step in Globally Convergent Algorithm

Figure 1



10.

1}!

12,

13.

14.

15,

-23-

References

Brent, R. P., "Some Efficient Algorithms for Solving Systems of Non-
linear Equations," SIAM J. Numer. Anal., 10 (1973), 327-344.

Brouwer, L. E. J., "Uber eineindentige, stetige Transformation von
Flichen in Sich," Mathematische Annalen, 67 (1910), 176-180.

Broyden, G. C., J. E. Dennis and J. J. Moré, "On the Local and Super-
linear Convergence of Quasi-Newton Methods," J. Inst. Math. Applics.,
12 (1973), 223-245.

Dennis, J. E. and J. J. Moré, "Quasi-Newton Methods, Motivation and
Theory," SIAM Rawiew, 19.(1927), 46-89.

Eaves, B. C., "Homotopies for Computing Fixed Points," Mathematical

Programming, 3 (1972), 1-22.

Eaves, B. C. and R. Saigal, "Homotopies for Computing Fixed Points on
Unbounded Regions," Mathematical Programming, 3 (1972), 225-237.

Eaves, B. C. and H. Scarf, "The Solution of Systems of Piecewise
Linear Equations,' Math. of 0.R., 1 (1976), - 1-27.

Kellogg, R. B., T. Y. Li and J. Yorke, "A Constructive Proof of the
Brouwer Fixed Point Theorem," SIAM J. Numerical Analysis, 13 (1976),
473-483.

Merrill, O. H., "Applications and Extensions of an Algorithm that Com-
putes Fixed Points of Certain Upper Semi-Continuous Point to Set Map-

pings," Ph.D. Dissertation, University of Michigan, Ann Arbor, Michi-

gan, 1972.

Ortega, J. M., and W. C. Rheinboldt, Iterative Solutions of Nonlinear
Equations in Several Variables, New York: Academic Press, 1970.

Ostrowski, A. M., Solution of Eqpatiéns and Systems of Equations,
New York: Academic Press, 1960,

Saigal, R., "Investigations into the Efficiency of Fixed Point Algo-
rithms," Fixed Points - Algorithms and Applications, S. Karamardian,
Editor, New York: Academic Press, 1977. '

Saigal, R., ""On the Convergence Rate of Algorithms for Solving Equa-
tions that are based on Methods of Complementary Pivoting," to appear
in Mathematics of Operations Research, 2 (1977).

Saigal, R., "On Paths Generated by Fixed Point Algorithms,'" Mathe-
matics of Operations Research, 1 (1976), 359-380.

Saigal, R., "Fixed Point Computing Methods,'" Encyclopedia of Computer
Science and Technology, New York: Marcel-Dekker Inc., to appear.




-24-

16. Scarf, H., "The Approximation of Fixed Points of a Continuous Mapping,"
SIAM J. Appl. Math., 15 (1967), 1328-1343,

17. Scarf, H. E., Computation of Economic¢ Equilibria (in collaboration
with T. Hansen), Yale University Press, New Haven, Conn. (1973),
249 pp.

18. Smale, S., "A Convergent Process of Price Adjustment and Global Newton
Methods," Journal of Math. Econ., 3 (1976), 107-120.

19. Todd, M. J., "On Triangulations for Computing Fixed Points," Math.
Prog., 10 (1976), 322-346.

20. Todd, M. J., "Orientation in Complementary Pivot Algorithms," Mathe-
matics of Operations Research, 1 (1976), 54-66.

21. Todd, M. J., "Improving the Convergence of Fixed Point Algorithms,"”
Tech. Report No. 276, Department of Operations Research, Cornell Uni-
versity, Ithaca, New York, 1975.

22, Todd, M. J., The Computation of Fixed Points and Applications, New
York: Springer-Verlag, 1976.

23, Varian, H., "A Remark on the Boundary Restrictions in the Global
Newton Method," (unpublished communication).



