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ABSTRACT

It is known that the price mechanism whereby the rate of change
of a price is proportional to the excess demand of the corresponding
commodity need not converge to a competative equilibrium for a pure
exchange economy with more than two commodities. On the other hand,
there exist convergent price mechanisms, similar to the Newton iterative
process, where the rate of change of the prices is determined by the
excess demand and the marginal excess demands of all the commodities. This
is a considerable informational requirement. It is shown that this require-
ment cannot be substantially reduced for any convergent price mechanisms,
that is for price mechanisms expressed in terms of a difference or differential

equation where the solutions converge to a competative equilibrum.



1. INTRODUCTION

We consider a pure exchange economy whose utility functions satisfy
the classical axioms of convexity and monotonicity. By using the Kakutani
fixed point theorem, one can show that such an economy has a competitive
equilibrium (See Debreu (1959) or Arrow-Hahn (1972), for example.) A
more difficult task is to determine the actual value of the price at such
a competitive equilibrium. This leads to a deeper problem, which goes back
to Walras, namely, to find some sort of adaptive mechanism on prices which
leads, hopefully in a naturai fashion, to these equilibrium points from
any initial price system. In this paper, we will describe some necessary
conditions which a price mechanism must satisfy in order that it be effective,
i.e., from any initial price system in any given (classical) pure exchange
economy it always yields a path which terminates at a competitive equilibrium
of the system.

Let R, = [0,=), the non-negative real numbers. In an economy with ¢

commodities, let P denote the normalized price simplex

c 2 2
P={p=(pp..-»p) € R | py+...+p_ = 1}.

For any distribution of commodities, let r(p) denote the usual aggregate

excess demand function at price p. That is r(p) is the difference between

the commodity bundle demanded at price p and the total supply. When

1.

C(Eﬁ) = 0, supply equals demand and ph is a competitive equilibrium.

Since p-r(p) = 0 for all p, by Walras' law, r(p) can be viewed as a

tangent vector field on the price simplex P.
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Since the zeroes of  are our desired equilibria, an obvious

choice for a price mechanisms is the differential equation

N =¥
e

=@

This mechanism would be an effective one (roughly in the sense of the

first paragraph above) if the solution curve of this differential equation
through any given point near the boundary of P would always tend to a

zero of ¢ as t.4 +e . That this is not the case was shown by Scarf (1960).
He constructed an economy whose excess demand function has only one zero,

and this zero is unstable in the sense that all orbits starting near it tend

away from it. The construction of such counterexamples has been simplified
by a theorem of H. Sonnenschein (1972) -- a result which has recently been

generalized by others. (See section 4.) Sonnenschein's theorem is that any
smooth vector field on P satisfying Walras' Law on a compact set in the
interior of P can be realized as the excess demand function for some classical
pure exchange economy. One can then use index theorems to construct examples
like Scarf's.

Are there any effective price mechanisms? Recently Kellog, Li, and
Yorke (1975), extending an ideas of M. Hirsch (1963), described an adaptive
method which computes fixed points of a map from a convex bounded set B into
itself by determining paths from arbitrary points on the boundary of B to

fixed points in the interior of B. Since the problem of finding a zero of a

map (ér véctor field) F is eduivalent to the problem of finding a
fixed point of the identity map minus F, one can use the Kellog-Li-
Yorke result to find zeroces of , i.e., price equilibria. So,
there does exist a price mechanism with the property

that, from any point p mnear the boundary of the price
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simplex P, the mechanism tends asymptotically toward a zero of . Kellog
et. al. do impose a technical condition on the eigenvalues of Dr(p) (the
Jacobian matrix of  at p). Near the competitive equilibrium, this price
mechanism behaves somewhat like a high-dimensional version of Newton's

Method whose differential equation is

dp _ _ -1
- orenTEE.

This means, of course, that this mechanism requires a considerable amount of
information on the part of the price adjuster (or auctioneer) in that it
requires knowledge not only of ((p) but also of every first partial derivative
of r at every point.

A more recent effective price mechanism has been discussed by S. Smale
(1975). ©Not only does he relax the assumptions on the eigenvalues of
D (p), but he also discusses the implications of his method in the search
for price equilibria, Although the eigenvalue condition is relaxed, Smale
still rsquires them to be non-zero at a zero of . This is not severe since it is
satisfied for an open dense set of vector fields. Also, his algorithm is
somewhat closer to Newton's method than is that of Kellog, Li, and Yorke.

The purpose of this paper is to study how much information a price
adjuster needs to have in order that his price mechanism be effective for all
standard economies. The above "Generalized Newton Method" (G.N.) requires
knowledge of r(p) and the gradients of all but one of its component
functions.

In other words, if the price adjuster uses the mechanism é = C(R)’

he needs to know ¢ quantities at each price; if he uses one of these

2
quasi-Newton methods, he needs to know (c-1) + (c-1) quantities at each



b=
price, including how the th commnodity affects the rate of charge of the
demand for the kg}- commodity for all j and k.

For practical problems, this is a staggering amount of informatiomn.
Consequently, the natural question is whether there exist effective price
mechanisms with a more modest demand on information content; say one which
depends on r(p) and the gradients of only some of the component functionms.

We investigate this question in this paper, and our results show that the
informational requirement cannot be relaxed by any significant amount. That is,
should some price mechanism require a "low amount of information" (in Theorem 1
we define what is meant by this), then there can be found a classical exchange
economy for which the mechanism is not effective.

of céurse, if we have a priori knowledge concerning a given vector field
r (p), we may be able to design a simpler mechanism. However, this is merely
an exchange of type of information used, and, as Roy Radner pointed out to us,
the expense of determining this second type of information may be very high.

We assume throughout this paper that the paths-of prices follow the
trajectories of a differential equation. It is not clear that this method
adversely effects the information content. For example, other commonly used
methods of tracing paths are the sandwich method and the method of complementary
pivoting. (See Scarf (1973), Merrill (1972), and Saigal (1976)). H. Scarf
pointed out that these methods require the same kinds and amount of information
as do the generalized Newton methods.

Before we give a mathematical formulation of our goal, we will simplify
the notation and reduce the dimension of the problem by eliminating the

normalization constraint on the prices and the constraint on [ given by
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Walras' Law. The constraint on the prices implies that P is the (c-1)
&imensional manifold obtained by intersecting the unit sphere in RS  with
the closed positive orthant of EF. Notice that this manifold can be
represented by a single chart, for example its projection into the hyper-
plane p_ = O.

n

Let mn = c¢=~-1. We can associate each p € P with a vector q in R

in many ways. For example, we could use the diffeomorphism

- 3 2
(PI:---:PH:PC) = (quooqunyx/l ‘ql- | ),

since the last coordinate of p is determined by the first n. A more natural
way would be to consider the hyperplace Q in R®  which contains 0 and is
normal to the vector (1,1,...,1) in ZRC. Then, project P onto a subset

U of Q 1in a natural one-to-one fashion via a projection map g. The
vectorfield r(p) on P can be identified with a vectorfield £(q) on U

where q = g(p) and

. lfagl agl /f
@ =05e@) = /5 ® - - - H e\ @\
j c X / \
] L \
o S
\ s, og, \\\ /
\apl(p) . gi(P) A PN ¢ !

Similarly, any vector field on U "lifts" to a well-defined vector field on

X s d
P which satisfies Walras' Law. The differential equation Eg =r(p) on p
t

&3

is equivalent to the differential equation 3% = f(q) on U.
dt
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In the latter system, we have eliminated the constraints without loss
of information. Thus, we shall work with gq and £(q) rather than p
and r(p). Indeed, the Kellog-Li-Yorke and the Smale algorithms are
applied to f and g. We can now describe in more detail the purpose of
this paper.
Assume that there are ¢ = (n+1l) commodities and that

2

M(z;yll,...,yln,yZl,...,ynn) is a smooth mapping from Hflx R" into R".

Let E% = f(q) be a differential equation on U arising from an excess demand
dt
function ¢ as above. Consider the new differential equation

dq of of; of
(1.1) dat - ME@ 5@y 57 @5 @)
91 9 9n

1]

M(f@,g—j@) = M(Q) -

We shall investigate the existence of functions M with ignorable coordinates

oM

.. (that is, with coordinates .. a = i
Vi ( , wi inat le such that 5—;; 0) which serve as
effective price mechanisms in the sense described above. So, we will want

il

almost every orbit of (1.1) to tend asymptotically to some stationary point of
(1.1). These 'sinks" of (1.1) should be zeroes of f£.
Each ignorable coordinate corresponds to a direction or a bit of information
which is not necessary for the effectiveness of a mechanism -- information which
is differential in nature and both expensive and difficult to obtain. Conse-
quently the hope is that some mechanism M with several ignorable coordinates

exists. However, as we stated earlier, our results show that the information
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content of the G.N. methods, that is, knowledge of £f(g) and all

of.
gai(g)'s, cannot be substantially relaxed for effective adaptive price
]

mechanisms. Thus, price mechanisms require a considerable amount of information
to become effective!

We would like to thank H. Sonnenschein for originally suggesting the
question to us and for several subsequent helpful discussions. We would also
like to thank G. Debreu, who invited us to present this paper at the N.B.E.R.
Conference on the Theory of General Economic Equilibrium in February, 1976,

We benefited considerably from discussions and conversations at this meeting.
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2. BACKGROUND ON DIFFERENTTAI EQUATIONS

n 1
Let U be an open subset of IJI. Let £:U-» R be a C

(continuously differentiable) function, and consider the differential equation

on U

dq
2.1 —= =
(2.1) - f(g) .

We remind the reader of some basic facts and definitions concerning solutions
of (2.1). We suggest Brauer-Nohel (1969), Arnold (1973), or Hirsch-Smale
(1974) as references in this area.
For q € U, let ¢(t;q) be the (unique) solution of (2.1) which passes
through q at t =20, i.e., ¢ (0,9) = g and ?%?@ (£39) = f(p(t;9)). If
f(g°) = 0, then o(t,9°) = g° for all te R, i.e., q° is a stationary
or equilibrium point of (2.1). For such a g°, the stable set of g¢°,
ws(gf), is the union of all points in U whose orbit tends to g° as t o te,

that is,
Wo(°) = {q €U |p(t,q) + q° as t o +al.

Similarly, the unstable set of ¢°, Wu(g°), is

{aeU | o(t,g) +» q° as t» - .

One calls g° a sink, an attractor, or an asymptotically stable zero of (2.1) if
ws(g°) contains an open neighborhood of ¢° in U. Similarly, one calls

q° a source if Wu(gf) contains an open neighborhood of g¢° in U. If

q° has non-trivial stable sets and non-trivial unstable sets, gq° is called

a saddle peint.
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There are effective algebraic tests for deterpining whether a zero

of f 1is a sink, sourcg, or saddle. Let £(q°) = 0 and let Df(g°) be
f

the Jacobian matrix (,gal (@)
]

\

a) If every eigenvalue of Df(q°) 1is negative, or has a negative real
part, then ¢° 1is a sink.

b) If every eigenvalue of Df(q°) 1is positive, or has a positive real
part, then g¢° 1is a source.

c) If some eigenvalue of Df(q°) is positive or has positive real part,
then there is an open neighborhood V1 of g° and a dense open subset V2 of V1
so that the orbits of all g ¢ V2 leave V1 as t-+ + o, i.e., ¢° 1is not a
sink.

d) If Df(gq°) has j eigenvalues with negative real part and k
eigenvalues with positive real part with j + k = n, then Ws(g°) is a
smooth j-dimensional disk through ¢° (stable manifold) and Wu(gf) is a
smooth k-dimensional disk through g° (unstable manifold). Ws(gf) and
wu(9°) are tangent to the appropriate eigenspaces and intersect transversally

-]

at g°. In this case, ¢° 1is called a hyperbolic zero of f.

FIGURE 1 -- See page 57.
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e) If g° 1is a non-hyperbolic zero of f with Df(q°) having some
zero or pure imaginary eigenvalues and having no eigenvalues with positive
real part, then one cannot determine whether or not g° 1is an attractor
simply by examining Df(q°). In this situation, the stability or non-stability
of q° 1is usually determined by derivatives of f of order = 2.

Definition. We will call g° a non-degenerate or non-singular zero of f

if f£(g°) = 0 and det Df(q°) # O.

One can associate a number I(x°,f), called the index, to every isolated
o

zero x° of the differential equation x = £(x) on R . To define the

index, let
s=f{xeR |z =1

be the unit (n - 1)-dimensional sphere in R". Let Br(§°) be the ball of

radius r about x°, with r chosen so that x° is the only zero of f in

Br(§°). Consider the induced map £:S5 + S, defined by

~ _ £(x°+ rx)
£(x) = Ho I Il xl

1l
=

As a map between spheres, } has a degree which is an integer defined via
algebraic topology and which measures how mahy times }(S) "wraps around" S.
This integer is the index (or degree) of x° as a zero of f, I(x°,f). See
Milnor (1965), Smale (1967), Arnold (1973), or Dierker (1974) for the formal
definition and further discussion.

We now list some properties of I(x°,f) which will be needed in later

sections of this paper:
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o

f) Let U be any neighborhood of x* with the property that the

boundary of U, oU, is homeomorphic to S. One can use U instead of

o

Br(§°) to define I(x°,f), provided x° is the only zero of f in U.
. - Ir
g) If OU=~S and if UNE 1(g) = {x°,...,x}, then the degree of

the map £:0U ~ X » X, where

- f(x)
Yy - £00
® = e
k i
is well-defined and equals Z I(X ,f).
i=0

h) 1In particular, if the vector field f points into U along OU, then

f 1is homotopic to the antipodal map of S, which has degree (-l)n. The

sum of the zeroes of f in U must equal (-1)n

i) 1If §° is a hyperbolic zero of f with an s-dimensional stable

manifold and a wu-dimensional unstable manifold, then
I(x°,f) = (-1)S = sign det DEf(x°).

From statements h) and i), one sees that if x° 1is the only zero of
a vector field f on an n-dimensional disk U and if (- 1)n det Df(x°) < O,
then f cannot point into U all along the boundary of U. Later, we will
prove the converse of this statement, i.e., if B is an n y n matrix
such that (- lfndet B>0 and p° 1is a point in the mn-disk U, then
there exists a vectorfield f on U such that f points into U on OU,

p° is the only zero of f in U, and Df(p°) = B.
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3. DEFINITIONS
As we mentioned in the introduction, one price mechanism which does
work is the generalized Newton method (G.N.), which near a zero of £f(q)
assumes a form close to %%—= - (Df(q))-lf(q), a form we shall call Newton's
method (W). Let q* be a zero of f. Then, q* is also a zero of
qQb— - (df(q))-lf(q) = N(q). To see why this method works, we perform an

eigenvalue analysis of the latter equation at q as described in section 2,

*oy-1 . ] . . .
assuming for convenience that (Df(g )) exists, Taking derivatives, we find

* 2 -1 * * K o - *
DN(g )v = - D'f "(£(q ))(f(g),v) - (@Pf(q)) L Df(g J¥v
=0 - Iv,
since f(g*) = 0. So, DN(Q*) = - I and every eigenvalue of DN(Q*) is - 1.

* . d
By a) of section 2, g is a sink of a% = N(g), and all orbits
starting near g“ tend toward g“. Thus, the price mechanisms G.N. and N.
have the effect of converting a zero of f£(gq) into a sink or attractor of the

new differential equation.

This motivates the following definitions.

Definition 1. M(E;yll""’ynn) is a local effective price mechanism

(LEPM) 1if for any smooth excess demand function f and for any q such that

f(q) = 0, the point g is an atiractor for Equation (1.1). Furthermore, we
require that there exist a smooth excess demand function f and & zero gﬂ

-t

of f such that DMf*(g") is non-singular.

Definition 2. M 1is an effective price mechanism (EPM) if for any smooth

excess demand function £, the following are satisfied:
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a) if £(q) = 0, themn M(£f(q);Df(q))= 0; b) for almost all q in some open
subset V of Uy» the solution of (1.1) through g tends asymptotically
to a zero of f as t & + e« (the choice of V 1is fixed and, hence, independent
of the choice of f£f); and c¢) for some q and f for which f(g) =0 and

Df(q) 1is non-singular, g is a non-singular zero of é = Mf(g).

An LEPM can start at any price near an equilibrium point and the
price mechanism (Equation (1.1)) will adjust prices so that they will tend
asymptotically to the equilibrium point. However, this may not happen for
initial prices outside some designated neighborhood of a specified equilibrium
point. Consequently the limitation of a LEPM 1is that you must start near
an equilibrium point.

For an EPM, we require only that it converges to some zero of £(gq), but
we have no control over which one it may be. For example, it may turn out that
the adjusted prices (solutions of equation (1.1)) pass arbitrarily close to
one zero of f(q), only to leave this neighborhood and converge to a second
zero of £, Examples of this phenomenon can be found in the proof of our main
theorem in Section 6. (Of course, a combination of such an EPM and an LEPM
would eliminate this behavior.) On the other hand, the initial condition need
not be near an equilibrium point. A mechanism can be an EPM and not an LEPM,
and vice versa.

Intuitively, before a price mechanism is labeled effective, we want most
of the solutions to converge to an equilibrium point. It turns out that this
is a very strong condition; for example, such a raquirement excludes the G.N.
methods. Without a condition on the initial conditions, it is easy to construct
examples of economies for which the G.N. methods will not converge to

equilibria. Therefore we relax this restriction by merely requiring (condition b)
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that most solutions starting in some predetermined open set V should
converge to some equilibria. (In the G.N. methods, V 1is some open
neighborhood of the boundary of U.) Technically, condition b) means that
M depends on V. However, since we use only the fact that V is an open
set, we ignore this dependency. Thus the main purpose of condition b is
to admit a larger class of potential EPM's.

The last parts of the above two definitions are natural non-degeneracy
conditions. They are natural for a number of reasons. First of all, an open
dense set of all vector fields on U have only a finite number of zeroes and
these zeroes are not only non-degenerate but also hyperbolic. (See, for
example, Smale (1967).) There are two additional reasons one would want an
EPM to have a hyperbolic attractor. First of all, as stated in assertion e)

of section 2, if g“ is a non-hyperbolic attractor of Mg, its stability

is very fragile. 1In particular, one could drastically alter the stability of

e
w KA

q as a zero of Mf by changing some higher order derivatives of f at g":
Secondly, in order to be truly effective, our price mechanism should converge
rapidly to a zero of M.. To guarantee that orbits near a sink g of (1.1)
tend reasonably quickly to g, g must be a hyperbolic sink of (1.1) (in
which case, such orbits move exponentially toward gq).

A price mechanism could certainly not be considered effective if it
transformed every zero of every excess demand function, including all the
strongly attracting hyperbolic sinks, to weak degenerate zeroes. In fact, every
concrete example of a price mechanism transforms every non-singular zero to
another non-singular zero and often to a hyperbolic zero.

Nevertheless we shall see in the proof of our theorem that this rsgularity
condition can be considerably weakened. We shall indicate how this condition

can be relaxed, primarily to illustrate the role of the regularity condition.
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The following lemma will be useful in working with price mechanisms.

Lemma 1, Let M(x;y) be a price mechanism with the property that
M(f(q );DE(g )) = O whemever £(g°) = 0, e.g., M may be an EPM or
: n2 k
LEPM. Suppose that M: R x R - R is C , where k > 1. Then, there

2 2
exists a ck mapping A:Bfliyﬂfn -+ L(Hfl,ﬂgl) - R (actually defined only

n

on some neighborhood of x = 0) such that

(3.1) M(x;y) = A(x3y) * X

Proof: This is a standard result in singularity theory, and is sometimes

called Hadzmard's Lemma.

By hypothesis, M(0;y) = 0 for all .
Let M = (Ml""”Mﬁ)' Then,
t=1 1 4
Mj'\E;X) = MJ (tx3y) \ o = ur E—MJ (tx;y)dt
0
n 1 oM.
- ox [ e
i=1 0 i

So, onz can let A(x:;y) be the matrix <<aii(§;z)>>

1 oM,

= -——l °
where aij .F axi(tE,X)dt .
0

For example, in the Newton method,

A(xsy) = - w7

where y 1is viewed as an n y n matrix.
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Note that if Vhi is an ignorable coordinate for M, it is also an

ignorable coordinate for A in that

SA
Y e

(x;y) =0, for all (x;y).

However, in the statement and proof of our theorem, we actuallv use a weaker

concept of an ignorable coordinate in that we only wequire that

2

oA (O;y) =0 for all y & Rr"

Y s

We are now ready to state our main result.

Theorem: Let r be an excess-demand function for a standard economy

n ,
with ¢ commodities. Tet n =c-1 #nd let £:U-+ R be the corresponding

2
n

n_ n .
vector field as constructed in Section 1. T.et M:R ¥ R -» R be a price

mechanism.

d
a) If ¢ =2, E% = C(B) is an EPM;
b) If ¢>3 (n>2) and if M has some ignorable coordinate yij in
some neighborhocd of x = 0, then M cannot bz an LEPM;
c) If ¢>3 (n> 2), if yij

M in some neighborhood of x = 0, where i # h and j # k, and if
2
is not identically zero on {0} x RrR" , then M cannot be an EPM.

and Yhi 2re ignorable cooriinates for
a,, or
ji

3kh ,
Here aijiz;z) is an entry in the matrix A(x;y), where A 1is as in (3.1).

d) TIf the vector zj and some yik for k # j are ignorable coordinates

for M(§;zl""’zn)’ then M cannot be an EPM.
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e) If n=2or 3 and M has two ignorable coordinates Vi 5 and
Yy With 1 #h and j # k, then M cannot be an EPM. Tf n = 4 and

M has three i ble dir
« i1gnorable coordinates yhlkl’yhzykz’
not all equal and the kj’s not all equal, then M cannot bz an EPM.

and yh3:kq with the hi's

-REMARKS :

As 'we stated earlier, thz regularity condition in the definitioa of an
EPM can be considerably weakened. F¥For the proof of part c¢) it can be
dropped altogether. For the proof of part d), it can be weakened to the
regularity requirement of a LEPM, n=mely, that the mechanism transforms
some zero of some excess demand function to a non-degenerate zero. For tha
proof of part e), a similar relaxation of this requirement is possible; there
need only exist a zero of a special type that is transformed to z non-degenerate

zero by M. See the remark at the end of Section 7.

Recall that the Newton method,

-l

dg -1.
7 = - @f@) "),

ig an 1EPM. Part b) of the above theorem states that the information content
required by the Newton method cannot be relaxed for price mechanisms of the

type we are considering. The other parts indicate that an EPM cannot be

devised which substantially reduced the informatios requirements of the

generalized Newton methods.

Part d) states that, if a proposed price mechanism does not take into

consideration the rate of change of the demand for two commodities, the mechanism
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will not be effective. 1In fact, if the mechanism ignores this rate for
one commodity and also ignores one component of this rate for another
commcdity, it will not be effective.

If one writes the yij coordinates as an n ¥ n matrix ((yij))’
part d) states than an effective M cannot ignore a column and one more
entry of ((yij))' The same result (with the same proof) holds if WM™ has
a row of ((yij)) and one other entry as ignorable coordinates. As a
result, an effective price mechanism cannot fail to take into consideration
how two commodities affect the rate of change of the demand for all the
commodities.

Part e) of the Theorem attempts to sharpen the result of part d), at
least for economies with less than six commodities. In answer to the '
question: just how many entires of ((yij)) can be ignorable coordi-
nates for an effective M, we show that in economies with three or four
commodities (n =2 or 3), if M has two ignorable coordinates in different
rows and columns of ((yij))’ then M cannot be effective. Presumably,
this pattern continues for any number of commodities. (See Remarks 1 and
2 in section 8.) 1In the last section of this paper, we will indicate that
these results are about as sharp as one can expect by discussing examples

of effective mechanisms.
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4, PRELIMINARIES ON EXCESS DEMAND FUNCTIONS AND PRICE MECHANISMS

Before proving the theorem, we need some results from the literature.

c ., .
Definition. An excess-demand type function F:P + R is a continuous

function such that
a) p'F(p) =0 for every p € P,
b) |F(p)]l + » as p -+ OP,
c) there exists k ¢ R such that for every p ¢ P, Fi(R) > k,

where F =(F1,F2,...,Fc).

If F 1is an excess demand type function, let its set of equilibria be

denoted by E_.. So,

F

Ep = {peP| F(p = 03.

Recall that we are working with pure exchange economies which have
continuous, monotone, strictly convex preference relations. For such
economies, it is known that every aggregate excess demand function ¢ 1is
an excess demand type function. (For example, see Arrow and Hahn (1972),
chapter four.) Let P_= fper !piz e¥i}. Let F be an excess demand
type function. It follows from the work of Sonnenschein (1972;1973),
Mantel (1974), and Debreu (1974) that F need only satisfy condition a)
in order to guarantee that there exist an economy whose (aggregate) excess
demand function agrees with F on Pe. However, it does not necessarily
follow that the equilibria for this economy-all lie inside the trimmed

price simplex Pe. To ensure this result, we need the following stronger state-

ment proved by Mas-Collel (to appear).

Lemma 2. Let F be an excess demand type function and let ¢ > O.

Then, there is a y with 0 <y < ¢ and an economy with excess demand
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function  such that ¢=F ‘P# and EF

=E cP.
C !
Since our main concern is the set EC’ it follows from Lemma 2

that we can view any excess demand type function as an excess demand function

for some standard economy.

REMARK :

Let us return to our chart U for the pure simplex P. Recall that
Q 1is the n-dimensional hyperplane in R® = I1n+1 which is perpendicular
to the wvector (1,1,...,1) and contains the origin, that g:P + Q is the
projection along the vector (1,1,...,1) in C, and that U = g(P). Let
h:U + P be the inverse of g. If g 1is any vector field on U, then
Z = dh(g) will be a vector field on P and thus will automatically satisfy
condition a) for an excess demand type function.

Suppose that E 1is a continuous vector field on U that is non-zero
on OU and points inward into U at all points of OU. Let V be an open
n-disk lying in U so that VvV c U, € has no zeroes in U-V, and £ points
into V at all points of OV. The vectorfield Z = h(g) will point "into"
P on the boundary of P. 1In particular, at the intersection of OP with
the x, - axis, Zi will be positive for i # j and zero for i = j. One
can now modify Z to vector field 2 on P so that: 1) E agrees with
Z on h(V), 2) 7 is non-zero on P-h(V), and 3) if {Bk} is a sequence
in P tending to pg € dP, then \%(Ek)\ + o while the negative components
of E(pk) (in ﬂin+1) are bounded below. Thus, Z will be an excess demand
type function on P with all its zeroes in h(V) where it agrees with
Z =h(E).

Consequently, whenever £ 1is a continuous vector field on U that is

non-zero and points into U at all points of OU, there is an excess demand
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function Z on P such that 7 = h(g) except on some thin band around

JP and Ey = Eh(g)'

We will call such a vectorfield g on U an excess demand type

vector field on T.

Let us now return to our price mechanism M(x;y). For any given f

on U,
q - M(£(q), DE(q) = M (q)

n

is a mapping from U cC E(n to R Thinking of M_. as a vectorfield on U,

£

it makes sense in view of section 2 to discuss its eigenvalues at a zero
uts

point gh. The following lemma collects some of the invariant properties

of these eigenvalues.

Lemma 3. TIf g“ is a zero for f and an attractor for M then

f’
i) the eigenvalues of DMf(g*) must have non-positive real parts, ii) the

trace of DMf(g*) must be non-positive,
iii) (-1)" det DM (g%) > 0, and

iv) (-1)" det A(0; DE(g*)) det Df(q*) > O.

Proof: Statement i) is standard and was discussed in section 2. Since
the trace and determinant of a matrix are invariant under linear coordinate
changes, it follows from the Jordan cannonical representation of a matrix
that the trace of DMf(g*) equals the sum of its eigenvalues and the deter-
minant of DMf(S*) equals the product of its eigenvalues. Thus, 1ii)

and iii) follow directly from 1i). Recall from Lemma 1 that
M (Q) = M(£(Q); DE(Q) = AE(D), DE()-£(D).
But, DM (g*) = A(Q, Df(g*))-Df(g*)

by the chain rule since f(gh) =0, and iv) follows from {iii).
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5. PROOF OF THE MAIN THEOREM: PARTS A AND B

Proof of Part a): This well known result follows immediately from

the fact that U can be viewed as a line segment and f(q) can be viewed

as a continuous real valued function on the interior of U which is positive
near the left hand end point and negative near the right hand endpoint. Let
q* be some initial condition in predetermined open set V c U. If £(q*%) > 0,
then the solution of a = f(q) moves to the right until either it encounters
a zero of f, or it reaches the right-hand endpoint of U. The intermediate
value theorem shows that the former case will occur. Thus the solution

tends to an equilibrium point of £. If f(q*) < 0, a similar argument a

applies. ©Notice, the zero need not be a sink, i.e. our EPM is not an LEPM.

For example, If U= ( - 2,2) , f(q) (q+1)2(1-q) 1 and V = (—2,—%),
(4-q%)

-1 1is not a sink.

then the solution tends to -1 but g

Proof of Part b): We now show that a local effective price mechanism

cannot have any ignorable coordinates. Assume then that M(x;y) is an
LEPM and that y . is an ignorable coordinate for M. By Lemma 1,
M(x;y) = A(x;y) x for some smooth A:R™ % L(]Rn,]Rn) - L(]Rn,]Rn), since
M(0;y_)= 0; and ke is also an ignorable coordinate for A. According to
the second part of the definition of a LEPM, there is an excess demand function
f%x: U > Rp and a point g* such that f*(g*) =0, Mf*(g%) = 0, and
DMf*(g*) is non-singular. '
Denote Df*(g%) by B. Recall from the calculations of Lemma 3 that

DMf*(gf) = A(0;B)°B. Since

0 # det DMf*(g*) = det A(0;B)-det B,
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B 1is also non-singular. By the inverse function theorem, there is a neigh-
borhood V of g* in U such that gq* is the only zero of f* in V.
Since M is an LEPM, we know from Lemma 3 that

(-1)" det A(0;B)-det B > O,

. 2
There is a standard identification of n x n matrices with R" . With

this identification, the determinant can be viewed as a continuous mapping

2
n . P . . .
from R + R. By using the definition of a continuous function, it

vfollows that there is a non-empty open set in I{nz such that the determinant
of any element h;s the same ;ign as det A(0;B). But A(0;—-) 1is a smooth
mapping from R™  into Bin . Consequently there is an open set G c:ﬂinz
containing B such that if C € G, then the sign det A(0;C) 1is the same
as the sign of det A(O;B).

Let B' € G be such that Bﬁk’ the co-factor of the hkth entry of
B', is non-zero. Since the set of points where this cofactor is equal to ‘
zero is a lower dimensional algebraic set, such a B' can always be found.
From elementary matrix theory,

B L g

det B' = E (-1) hj hj
S = 2

j=1

where B' = ((b!.)) and B!, is the cofactor of b',. Since B', is non-
1] 1] ij hk

zero, we can change the sign of this determinant by changing the hkth entry

of B' appropriately while leaving all the other entries of B' fixed.

Call this new matrix B". Since Yhk is an ignorable coordinate for A,
det A(0,B') = det A(0,B").
Since det B' and det B'" have opposite signs ,

(-1)"det[A(0,B")-B"] = (-1)™ det A(0,B')-det B" < 0.



Finally, we find an excess demand function g on U such that
g(g*) = 0 and Dg(g*) = B". Let h:U-» R’ be an excess demand type vector
field on U so that h points into U on oU and h is non-zero on OU.
Let W be an open subset of U such that
q* e v C:V cWecWcU.
(as usual, G means the closﬁre of V.) Let ¢:U+ R be a C® function such
that ¢ 1is identically 1 on vV and ¢ 1s identically zero outside W .
Define g:U - R by
g(x) = o X)B"(x-g*) + (1= (x))h(x).
On V, g(x) = B"(x-g%); so, g(q*)=0 and Dg(g*) = B" . Near the boundary of
U, g is h. Consequently, g is an excess demand type function; and by
Lemma 2 and the Remark beléw it there is a standard economy whose excess
demand function (when projected into U) is g.
However, since
(-1)" det DM (g%) = (-1)™ det A(0,B") det B" < O .
we know from Lemma 3 that ¢* cannot be an attractor for Mg. This con-
tradicts our assumption that M was an LEPM and finishes the proof of part

b) of the Theorem.

The construction leading to B" shows there exists an éﬁéﬁ set of
éounter-examples to the efficiency of M. This will be true for most of what
follows. This means that the counter-examples are not isolated occurances,
but they are, in fact, stable in the implied sense of perturbationms.

As we remarked in section three, the non-degeneracy requirement in the
definition of an LEPM is a natural one for a number of reasons: the rare-
ness of vector fields with degenerate zeroes (i.e., zeroes where the
Jacobian is singular), the instability of any degenerate zero of Mf , and
the need for a guarantee that the orbits of M will tend quickly to the
zero of f . Nevertheless, we will demonstrate now that one can weaken
this requirement considerably and still show that a mechanism which is

locally effective cannot have ignorable coordinates.
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2
First, suppose M:U x R™ o BR™ is a smooth mapping with M(x;y) = O

whenever x = 0. By Lemma 1, there is a smooth map A such that

M(x;y) = A(x;y)x . Suppose that M (and A) have Yy @S an ignorable
coordinate and that a . (0;y) is not identically zero. We shall show that
M cannot be locally effective, i.e., there exists a smooth excess demand
function £ and a zero qk of £ such that q* is not an attractor for

Mf(z) = M(£(x);DEf(x)).

To see this, let B = {(bij)) be a matrix such that akh(O;B) + 0.

Clearly,
n
Trace A(0;B) «'B =.Z{_ aij(o’B) bji .
i,j=1
Since Yy 1s an ignorable coordinate for A , if we change bhk to bhk

and leave all the other bij fixed, we will not change any aij(O,B).

¥

Since an (0,B) % 0, we can find a bhk such that the above trace is posi-
tive. Let B' be this new matrix, i.e., B and B' differ only in entry (h,k)
but

Trace A(0,B') ° B' > 0.
By the methods used earlier in this section, construct an excess demand
function g on U so that g(g*) = 0 and Dg(g*) = B' for some g% € U..
Since

Trace DMg(g*) = Trace A(0,B') © B' > 0, g* cannot be an attractor
for Mg by Lemma 3. Consequently, M cannot be locally effective in any
sense.

Both of the proofs in this section used first order techniques to show
that a mechanism is not locally effective, i.e., they used DMg(g*) and

Lemma 3 to show that g* is not an attractor for Mg . On the other hand,



26~

if a mechanism M has Yhi @s an ignorable coordinate and column h of

the corresponding matrix A(Q;y) is identically zero, then Yk will also
be an ignorable coordinate for the first derivative of M, i.e., A(O;y) o ¥y
will be independent of i ° It is certainly improbable that a mechanism
with so many zeroes built into it can turn any zero of any f to an attrac-
tor of the corresponding Mf . However, our first order techniques will not
work here and one would have to examine the higher order derivatives of Mf
to study these very fragile zeroes of M. . We conclude this section by
studying what we feel is the weakest regularity requirement of an LEPM for
which first order techniques will work.

As we indicated earlier, we feel that the stronger regularity conditions
given above handle any problem of interest to economics. Nevertheless we
include the following result to illustrate how weak the regularity condition
can be without it adversely affecting our conclusion.

Suppose M:U x ﬂinz 2 R” is a price mechanism in that M0;y) =0,
so that M(x:;y) =A (X,y)x for some A as in Lemma 1. Suppose that
an ignorable coordinate for M(and A). Suppose there is a matrix B such
that bhk is the only non-zero entry in row h of B and such that
A(0,B) has rank n~-m, but if one replaces ecolumn h of A(0,B) with a column
of zeroes then the resulting matrix has rank. less than n-m . (Thus,
column h contributes to the rank of A(0;B).) For example, A{0,B) may
have full rank--the case treated at the beginning of this section. We will
show now that M cannot be locally effective.

To prove this statement and to prove other parts of our main Theorem,
we will use the following lemma frequently. Although it is a well-known

result of modern algebra, at the end of this section we will sketch a proof

of it for the sake of completeness.
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n-1

Lemma 4. Let p(u) = o™+ q; u + ... + ¢ + q, be a poly-

n-1 "
nomial with real coefficients Qyse+59,- Suppose that all the zeroes of p
are non-positive or have non-positive real part. Then, each q is non-
negative. 1If all the zeroes of p are negative or have negative real part,
then each q; is positive.

To prove the statement above the Lemma, let M(x;y) be a price mechanism
with ignorable coordinate Yk ? which satisfies the hypothesis of the state-
ment, Let B = ((bij)) be a matrix with bhj =0 for j % k and for
which the corresponding A(0;B) has rank n-m ; but if one replaces column h
by a column of zeroes, then the resulting matrix has rank less than n-m.
Since these rank conditions are defined by inequalities and since non-singu-
lar matrices are dense in the set of all matrices, we can choose such a B
that is non-singular. Denote by B(A\) or Bx the matrix B with A\
replacing bhk . So, B(bhk) = B; and A(Q;BX)]= A(0;B) for all X ¢ R.

Write 243 for the i:jth entry of "A(0;B) and i3 for the i,jth

entry of C = A(0;B) « B(0). For simplicity, we will take h =k = 1,

Therefore, a a : x 0 0
11 *° 34n .o
A(O;B(N))°B(N) =
« a21 .o a2n b21 b22 .o b2n
a1 *** %mn } bnl n2 °° nn
+
Mgt en €12 *** in
= Ma1 7t ey Cop +++ Cop
Xanl +c c vese C

nl n2 nn
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The characteristic polynomial of A(O0;B(X\) © B(\) is

py(u) = det <u1 - A (03B) ° B(V))
-xall - c12 . -c1n
= ded “M21 92 ¢ "Cyp + det (uI-C)
—Kanl -cn2 . u-cnn
- @ (2) (3 (n)
= A {allp (u) + ayy P (u) + azq P (w) +...+ ay P (u?
n . n-1 n-2
+ut o+ + + ...+
v Y You Yn
n n-1 y n-2
(5.1) =u + (v;Hvoy)u t (yg + 2an) u toot (v, T A,

where vy, ...,y _,% o are real constants independent of A and each
1, ’in n

1702
p(J)(u) is the (j,1)-th cofactor of (uI-C) and is thus a polynomial of
degree < n-1, independent of choice of A .

Suppose that Uy Ty T e =@ = 0, i.e., that

{allp(l)(u) + ..+ a, p(n)(u)} is identically zero. Then,

1

n n-1
px(u) =u + YU + .. +yn ‘for all X\ ;

and rank A(0;B) = rank A(O3;B) ° B, since B is non-singular,

number of non-zero roots of Py, (u)
11

largest j such that Yj is non-zero.

However, the matrix C does not use the elements a and

117 %2170 21

the \Z are computed from det (uI-C). Therefore, the yj's are independent

of 3117 39q2-es 3,75 and the rank of A(0;B) is not changed if one sets

the first column equal to zero. This contradiction to our initial hypothesis
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that column one contributes to the rank of A(0;B) implies that some ajo + 0
in (5.1).

Now, choose X\ , say equal to A% , so that (on + x*ajo) is negative.
By Lemma &, pX*(u) will have a positive root or a root with positive real
part. Then, A(0;B(Z*)) ° B(A*) has an eigenvalﬁe with positive real part.
As before, construct an excess demand function g so thaf g(g*) = 0 and

Dg(q*) = B(A*) for some q* € U. Since DMg(Q*) = A (0;B(2*) ° B(A\*) has

ot

an eigenvalue with positive real part, g% 1is not an attractor for Mg,
although it is a zero for g . Consequently, M cannot be considered locally
effective.

As we promised earlier, we finish this section by sketching a proof of
Lemma 4. See Mostowski and Stark [1964] for a complete proof and discussion.
Lemma 4 may be considered as a special case of Descartes' Rule of Signs and
also of the Routh-Hurwicz Theorems.

Proof of Lemma 4: Let ayserer@s bl’ bl"" bs’ bs be the complete

set of zeroes of p(u) = u” + q; un-1 +..+ 9, where ajs..,a_ are real

and non-positive and by, bi""bs’bs are complex with non-positive real

part. Then,
n-1

p(u) =u” +q u' " Ak q = (u-a))...(u-a_) (u-b)) (u-by)...(u-b ) (u-b)

(@4 la]) on Gt lal) @+ 2 Rebjju+ by ).’ + 2 (reb |+ |b, P .

Clearly, the product of polynomials with non-negative coefficients is a poly-
nomial with non-negative coefficients. The first part of Lemma 4 now follows
from the fact that two polynomials are equal if and only if corresponding

coefficients are equal.
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If all the a, are negative and all the bj have negative real part,
each ‘ai],\Rebj], and 1bj 2\ is positive in (5.2). To prove the second
part of Lemma 4, one uses induction and the fact that, if Py is a poly-
nomial of degree d1 with all its d1 + 1 coefficients positive and if Py
is a polynomial of degree d, with all its d2 + 1 coefficients positive,
then PP is a polynomial of degree d1 + d2 with all its d1 + d2 +1

coefficients positive.

6. Proof of Part C

Assume now that M(x;y) 1is an effective price mechanism with ignorable
coordinates yij and Yhi We shall reach a contradiction by constructing
an excess demand function for which M is not effective. It should be
clear that, because of the global constraints on the vector field r , we
will need more intricate arguments than those of the previous section. For
example, consider an excess demand vector field r with a single rest point
and with all vectors pointing in on the boundary of our simplex P . The
index of the rest point must be (-1)n by statement h) in section 2., 1If
we modify r to E as we did in Section 5 by changing the sign of an
eigenvalue at the rest point, then we change the index of the rest point.by
statement i) in section 2. Since E must still point inward on OP and
the sum of the indices of its zeroes is (—1)n, it follows that E has more
than one rest point. To show that M is not effective for E , we will
have to examine all the zeroes of ; , including the newly created ones.
.Consequently, it is to our advantage if we can construct our new excess
demand vector field % so that it points into U on the boundary of U and

has only one zero in U -- necessarily a zero of index (-1)n. Lemma 5 below

will be a valuable tool in such constructions.
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In fact, the following argument shows that it makes sense to choose
our original Z so that it has only one rest point. Suppose that Z has
more than one zero but that Z is gemeric in that all its zeroes are hyper-
bolic and therefore have index + 1. (See Abraham-Robbin [1967] or Smale
[1967]1.) It follows that Z has a zero, p,, of index (-1)n+1, i.e.,
(- 1)n+1 det DZ(p,) > 0. Suppose that M is a price mechanism with ignor-
able coordinate Y11 and that p, is a hyperbolic attractor for MZ, i.e.,
(_1)n det DMz(po) > 0. Use the argument in the first proof of section 5 to
change B = DZ(po) to B' by changing only b11 so that det B and det B' have
opposite signs. Since A(0,B) = A(0,B') where M(x;y) = A(x;y)x, det A(0,B')oB'
and det A(0,B)°B will have opposite signs. Lemma 5 below states that we can

find an excess demand field Z' such that DZ'(p,) = B' and p, is the only

zero of Z' in U . Since

(-1 det DM, (po) = (-1)™ det A(0,B') 0 B' < 0,
Po cannot be an attractor for MZ' (Lemma 3) , and consequently M cannot be

an EPM.

+
This argument shows that if p, 1is a zero of index ('—1)n 1 (and there-

fore not an attractor) for some excess demand function Z and if M is an effective

price mechanism with an ignorable coordinate, then p, will not be a hyper-
bolic attractor for M, . If Mz is "generic'", then

some other zero of Z will be the attractor for MZ. In particular, M
cannot be an LEPM. Since we want to concentrate on the zeroes of Z which
can becope attractors for MZ’ we will work only with the zeroes of Z of
index (-1)n. If all the zeroes of Z have this index, Z can have only

one zero. Thus, it makes sense to emphasize excess demand functions with a

single zero.
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We now indicate how to extend a linear map with an isolated zero of
n
index (-~1) to an excess demand function with a single zero. We will use

this Lemma a number of times in this paper.

. n
Lemma 5: Let Uc R be our chart for the price simplex P with 0 ¢ U.
Let C be an n x n hyperbolic matrix such that (--1)n det C > 0. Then there

exists a vector field Z on § such that i) 0 is the only rest point of U,

ii) DZ(0) = C, and iii) Z points into U on the boundary of U.

Note that the Z of Lemma 5 is what we called '"an excess demand type
vector field on U" in the remark following Lemma 2, TIf one projects Z
onto the price simplex P, then there exists an excess demand function which
equals this projection -- except possibly on some narrow band near oP

where both functions are non-zero.

Proof: Since C 1is hyperbolic Efl= E1 + E2 where E1 is the maximal invari-
ant subspace corresponding to the eigenvalues of C with negative real part
and E, is the maximal invariant subspace corresponding to eigenvalues of C
with positive real part. 1In the notation of Section 2, E; = WS(Q;C) and

E, = Wu(Q;C). Let s = dim E and u = dim E Since det C 1is the product

1 2°
of the eigenvalues of C, sign det C = (+1)u(—l)S = (—l)s. However, by
construction, sign det C = (-1)n.f Therefore, (-1)n = (-l)s, n and s have
the same parity, and u = n-s 1is even. |

First, consider the even dimensional subspace E,. Let C2 = C‘EZ.
By b) of Section 2, 0 1is a source for é = C2(§) on E,. By standard
linear algebra arguments (see p. 149 of Hirsch-Smale [1974]1), there is an
inner product <, > on E, such that (x, C2§) > 0 for all non-zero X in E,.
This means that the vector field C2(§) points out .of each sphere about 0.
Choose r > 0 so that the ball of radius 2r (in this metric) lies in

E, N U. Let g(§) be a non-zero vector field on the (odd dimensional) unit
X

sphere in E, . let g(x) = ( == ) onE - {%
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Let Xﬁ[O;@) - ]§+ be a smooth function so that

0 for tx3r ,
ME) = 1 fort=1r,

1
and A'(t) > 0 for all t>%ir. Let p(x) = A (<x, x>7); and

let £ =u@® sx) + 1-uE) C,)(x),

a smooth vector field on E, which equals C, for 1z} < % and equals the
non-zero vector field ; for \5\ =r., For 0< \5] <r, £(x) # 0 since

(x,£(x)) = (14 (x) (x, C,(x)) which is positive. For x| >r, (x, £(x)) <0

and £ points into all balls whose radius is greater than r . _Since

Bzr(g)FWEz cun E2’ we can construct our £ on UN E2 se that it points inward
on a[UFWEz] and is only zero at 0.

Now, let C; = C|E;. Since 0 is a global sink for % = C;x on E , we
can readily modify C1 to h so that 0 is a global sink for h on Ur]E1
and h points into U on 8[Ur1E1]. Finally, writing R" as Efﬁ'Ez,
the vector field

(xl,xz)' = (£(x)), h(xz)) = H(xl,xz) has the property that 0
is the only rest point for H, H points into U on OU, and DH(0) = C.
(If dim E, = dim R" = 2, the above construction yields the phase portrait

of figure 2 -- the phase portrait of Scarf's original example. Thus, the

proof of Lemma 5 describes a higher order "limit cycle'" construction.)

FIGURE 2. -- See page 57.
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We now return to the proof of part c¢) of the Theorem. Assume that
M(x;y) is an effective price mechanism with ignorable coordinates yij and
Yok where 1 # h and j + k. For simplicity of notation, we will assume that
(i,j) = (1,1) and (h,k) = (2,2). The modifications of the following proof
that are needed in the general case are straightforward and will be left to
the reader.

By Lemma 1, M(x;y) = A(x,y)x for some smooth mapping A . By hypoth-
esis, there is a matrix B such that all(O;B) or 322(0;3) is non-zero,
where A = ((aij))' Without loss of generality, we will assume that
all(Q;B) + 0. Since the non-singular hyperbolic matrices form an open,
dense subset of the set of all matrices (see section 7.3 in Hirsch-Smale

119741) and since ajq is continuous, we can find a (non-singular) hyper-

bolic matrix C = ((clJ)) such that aj (0, C) = 0 and

c ~
. _ 33 .... cqy
C33 ¥ 0, where Cyg = det . A

€3 +eee Cop

Now using the fact that

aa.. ~
§-§ll (0;€¢) = 0 for all i, j; for k = 1,2,
kk

we will construct a new matrix C by varying €11 and Cyp SO that

all(Q;C) %+ 0, the trace of A(0;C) °oC is positive, and det C = (-l)n.
First choose AN e R eo that
~ . n
sign A Cg5 = sign (-1 and

ajg (0;Cc) + A 2y (0;C) + 0.
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Let vy be a real parameter and let CY = ((cij)) where €11 = Ys €9y = Y,

"N
c.. = c., otherwise,.
ij i

By a simple calculation,

N

2
det CY = Ny 033 + v F (x,cij) + G(cij) and trace A(0;C)C = vy [a11+ Xazz] +

H (a, ¢) where F, G and H are independent of 11 and Choe Now, let

\y\_;—k e while vy (al1 + A a22) remains positive. Because of the domina-
2 ~
tion by the <y -term, det CY has the same sign as X\ Cg3 (which has the same

sign as (_1)n),and the trace A(Q;CY)QY > 0, for \y\ > \yo\, Let C denote

CY for such a y. Again, by the density of hyperbolic matrices, we can per-
turb C to a hyperbolic matrix ci keeping the properties that det Ch has
the same sign as (—1)n and that the trace of A(O;Ck)0 ¢~ is positive.

Now use Lemma 5 to construct a vector field Z on U such that i) 0 is

the only rest point of Z on U, ii) DZ(Q) = ¢, and iii) 2 points into

U on the boundary OU. Finally, use Lemma 2 and the remarks below it to
realize Z as the excess demand function of some standard economy.
To show that our price mechanism M 1is not effective, we need only

show that 0 1is not an attractor for M, . However, by Lemma 3,

ale

DM, (0) = A(0;DZ(0))° DZ(Q) = AQ,C )°c” .
By construction, the trace of DMZ(Q) is positive. By Lemma 3, 0 cannot be
an attractor for M, .

It should be clear that the choice of Y11 and Yy, as the two ignor-
able coordinates of M was made only for the sake of simplicity of notionm.
A very similar construction works if i and Ypr are the ignorable

coordinates of M, provided that i + h and j % k.
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7. Proof of Part d)

Part d) of the Theorem states that if y. and some Y ik for i £k
are ignorable coordinates for M(Ein""Zn)’ then M cannot be an EPM.
For this part of the theorem, we can further relax the regularity require-
ment in the definition of an EPM by requiring for each effective price

mechanism M only that there exist an excess demand function Z and a zero

po of Z such that p, is a non-degenerate attractor for MZ’ i.e., det

DM, (Po) * 0.

Suppose there is an effective price mechanism M(§i21:"’zn) with
¥11°Y21° * Y012 and Y10 as ignorable coordinates. (Again, we have chosen
these subindices only to simplify the notation.) Let Z be an excess demand
function such that p, 1s a zero of Z and a non-degenerate attractor of MZ.
As usual, define A(x;y) by M(X;y) = A(X;y)x and let B = DZ(p,). By Lemma 3,

DM, (Po) = A(Q;B) ° B.
OQur goal will be to change B to B' without affecting A(0;B') so that
(_1)n det B' > 0 and the trace A(0;B')° B' is positive, just as we did in
Section 6.
Since det DMz(pb) + 0, det A(0;B) % O.

First, perturb B to B' so that A(0;B') is still non-singular and

1] 1]
b33 .o b3n
B§3 = det . . is non-zero. By part c¢) of our Theorem,

b! b'

n3 77 "nn

we can assume that a21(0,B') = 0 and alk(O,B') =0 for k + 1. Since

det A (0,B') % 0, ajq (0,B'") = 0 . Change bil to b{l so that

1" n '
(7.1) a,;(0,B") b, + z . .(0,B")b, 0.
11%°? 11 : ’jzl al_]( ’ ) ji >
(i,3) + (1,1)



Since B33 + 0, we can change b2

"

5 "
1 and b12 to b21 and b12 so that

" 3] "

and b

det B" has the same sign as (-1)n where B" is B' with bll’ b21 12

replacing byq, b21 and b12 respectively. Since Yo1 and ¥y, are ignorable
coordinates for A, A(0,B") = A(0,B') = A(0,B). Since alz(O,B) = a21(O,B) = 0,

1t "

the choice of b12 and b21 will not affect inequality (7.1}.

.(7.1) Summarizing, we have constructed a matrix B" so that (-1)n det B" > 0
and trace A(0,B")° B" > 0. As in Section 6, one uses Lemma 5 to construct
an excess demand function Z with a single rest point ét 0 so that
DZ(0) = B" . Since
trace DM?(Q) = trace A (0,B")° B" > 0,
0 cannot be an attractor for M, by Lemma 3. Consequently, M cannot be an

EPM.

8. Proof of Part e)

In this section, we will try to derive the sharpest possible estimates
on just how many ignorable coordinates a price mechanism can have and still
be effective -- at least for economies with not many commodities. Part a)
of the theorem took care of the problem for economies with two commodities.
We examine next the situation for three commodities, i.e., mn = 2,

Suppose that M:]fzx'ﬂf'-+ Eg is an EPM with two ignorable coordinates:
Yij and Yhk where i #h and j # k. Again, for simplicity of notation,
we will choose (i,j) to be (1,1) and (h,k) to be (2,2), without loss
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of generality. Since M(0;y) = 0, M(x;y) = A(x;y)x for some A = ((aij)),
by Lemma 1. Since M is an EPM, we can assume that all(g,z) and
322(9,1) are identically zero by part c¢). Let Z be an excess demand
function on U such that Z has a unique zero P, € U and DZ(po) is

the diagonal matrix

[o]
B = DZ(p ) - M )

0 A

N O

By our regularity requirement on M, DMZ(po) is a non-singular matrix.
(Actually, the regularity requirement can be weakened considerably in this

case. See the remark at the end of this section.)

By Lemma 3,
0 aio / xi 0
DM, (p_) = A(Q,B) ° B = )
3y 0 \ 0 xz
o
0 KZaIZ
o
KlaZI 0

Since DMZ(po) is non-singular, A(0,B) is non-singular. Let B(xl,xz,b)

denote the matrix

so, B(Ko,xg,0)= B. By hypothesis, A(Q;B(Xl,xz,b)) is independent of changes
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in Kl and x2. Furthermore,

2712

A(Q;B(K]_;}\ sb)) o B(M b) = P

1)%‘2)
121 21

where ag, and a,, are functions only of b.
Since A(0,B) is non-singular, 321(0) # 0, say a21(0) < 0. Then,
by the continuity of a5y there exists positive ¢ such that for all
|b| < e, apy(b) < 0. Choose b° = - £ and let B°=B(-1, -1,b°). Since
det B°= 1 and B0 is hyperbolic, there is an excess demand function Z0
o

such that 0 is the only zero of z° and DZO(Q) = B~. On the other

hand, since

(e}

trace DMZO(O) = trace A(O,Bo) o B = b°a21(b°) > 0,

0 cannot be an attactor for MZO' Since 0 was the only zero of Zo,

M cannot be an EPM. Thus, in economies with three commodities, an EPM
cannot have two ignorable coordinates in different rows and columns of
((yij))-

Next, we examine economies with four commodities, that is, n = 3.
Suppose that M:]R3X L(IR3 ,IRB) - IR3 is an EPM with ignorable coordinates
Vi and Yhi? i#h, j#k. As in the previous arguments, we will assume
for notation's sake that (i,j) = (1,1) and <(h,k) = (2,2). Once again,
M(x;y) = A(x;y)x for some A = ((aij)); and all(g,z) = azz(g;z) =0
for all y.

Let Z be an excess demand function with a unique zero Pg and with

Dz(po) a non-singular diagonal matrix:



A 0 0
DZ(p ) = 0 X0 =c
Py 2 ooV

0 0 b

[1f Y13 and yoq Were the ignorable coordinates, for example, we would
choose Z so that the corresponding Jacobian matrix C has non-zero entries
only in the (1,3), (2,1), and (3,2) positions.] Since M is

effective, DMZ(po) is non-singular. [Once again, the reader is referred

to the remark at the end of this section to see how the regularity requirement
for an EPM can be relazed in this situation.]

Keeping b33 fixed, let B(Kl,xz,blz,bZI) denote the matrix

A, b, O
byp A O
0o o by

In particular, B(K?,K;,0,0) = C. Since Y11 and Yoo are ignorable
coordinates for M (and A), A(Q;B(Kl,Kz,blz,bZI)) is independent of xl
and ),. Demote this matrix by A(blz’bZI)' Recall that

=0 for all b12 and b21.

a1 (P19sPp1) = 855 (Byp5059)
Since C 1is non-singular, bgs is non-zero. For simplicity of notation,

we will take bgy toO be negative., Throughout the argument for n = 3, we

will always choose xl,xz,blz,b21 so that (x1%2 -b12b21) >0, i.e., so

3
that (-1) det B(kl,kz,blz,b21) > 0, For each such choice, we can find
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an excess demand function Z such that Z has a unique zero at 0

and DZ(0) 1is B(xl,Xz,blz,bZI) (Lemma 5). Since M is an EPM,

0 will have to be an attractor for N, and the characteristic polynomial

of

DMy (@) = ABypbp1) o BOMsAysDBy5Bp)

must have all its coefficients non-negative by Lemmas 3 and 4.

One computes easily that A(b12’b21) o B(xl,xz,blz,bZI) equals

(8.1) =

0
0
bag
N
313b33
3y3bg4
}
ag1My T a35by, ag1by +agh, 333bsg //

Write the characteristic polynomial of (8.1) as

P(Xl;

From linear algebra,

3 2
xz,blz,b21)(u) =u -+ qlu + qzu + 95-

qj is (-].)J times the sum of the determinants of

the (jx j) principal minors of (8.1). Consequently,

q1=—

4 =

L]

a3

319byy = 8y1P1y = 233bas;

(b + b, ,b,,A

21012 = M) B33 F by bashy = MbaaAs, - LD

33811
+ b1ybyghigs
- det A(blz, b21) « det B()\.l,7\.2,b12,b21),
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where Aij = Aij(b12’b21) is the (i,j)th cofactor of A(b i.e.,

127 21)

the determinant of the 2 % 2 submatrix one obtains by deleting row i and
column j from A(b12’b21)‘

As remarked above, since M 1is an EPM,

(8.2) each q.(Kl,xz,blz,bZI) must be non-negative for all

Ayshysbigsbyy  such that (A, = bioby)) > 0.

We first claim that All(b and A22(b12,b21) must be identically

127P21)

zero. Suppose there is a bl,,b; such that A l(b

1 .
127991 b 1) # 0. We will work

12°
- 1 . . . . . 3 -
with b33A11(b12,b21) positive, but a similar argument is valid if

bs 11(b12’ 21) < 0. Choose

b! b}
12721 -
2n, 1f Bypbyy <0
2b!. b}
_ 12721 .
M T N 1f 1505y >0
1 '
T, 1f byybyy =0
|
. - ] ] . . - .
Let XZ tend to + ». As it does, xlxz b12b21 will remain positive.
By (8.2),q2(x1,x b12’ 21) must be non-negative. However, as xz 4+ + o,

the (- x2b33 11 - term in 4, will tend to - », the (- Klb33A22)-term
will tend to zero, and the other terms will remain constant. As a result,

4y will eventually become negative. (If b b‘l) < 0, let

33811 (P12s

Ay * - w.) This contradiction to (8.2) demonstrates that All(b12’b21)
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must be identically zero.
Similarly, if one lets \Kl\ + + » and choose Kz so that

(Mg - Bl,bsy) >0 and A

12 -+ 0, one sees that A22(b12,b21) must be

2

identically zero.
Next, we claim that A12(0,0) = A21(0,0) = 0. To prove this, one
argues as in the n = 2 case at the beginning of this section. Suppose

A21(O,O) > 0. Then, there is an ¢ > 0 such that A21(b12,b21) > 0 for

. £
all \blz\ < ¢ . Choose b12 =0 and b21 =+ 2 so that

b 0. Let A, and A\, go to zero so that

21 P33 Ayq (0,byy) =6 < 0. 1 and Ay stay

Kl KZ
positive but the (-x]_z 33) term in a, become less than § in absolute
value. Since A11= A22 =0 in dys 9, will be negative when Kl and Kz are
small enough. This contradiction to (8.2) shows that A21(0,0) =0
Similarly, A12(0,0) =0

Finally, we claim that

A1100,0) = A,,(0,0) = A,,(0,0) = Ay;(0,0) =0 .

implies that the determinant of A(0,0) must be zero. Expanding along the

first row, we have

(8.3) det A(0,0) = 11 11 a12A12+a13A13

a15h13 = 21339193 -
Expanding along the first column, we find

= +
det A(0,0) = aj A 173554, F 23,44,

b =
(8.4 a31hyp = 331%10%3 -
Since 0 = A22 = - a3123; (8.3) or (8.4) must be zero; and therefore,

det A(0,0) = 0.
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The fact that det A(0,0) is zero contradicts our original choice of C
so that A(0;C) = A(0,0) is non-singular. This contradiction shows that M
with its two ignorable coordinates cannot be an EPM.

Last of all, we consider the case n = 4 which corresponds to econo-
mies with five commodities. We will demonstrate that a price mechanism which
has three ignorable coordinates (not all in the same row or column of the
matrix ((yij)) ) cannot be considered effective. There are three cases to
consider, each with a different proof: 1) each ignorable coordinate is in
a different row and different column of ((yij)), ii) two ignorable coordi-
nates are in the same column (row) of ((yij)) but they all lie in different
rows (columns), and iii) two ignorable coordinates lie in the same column of

((yij)) and two ignorable coordinates lie in the same row of ((yij))'

First, consider case i), the simplest case. We will assume again, for
simplicity only, that the ignorable coordinates are Y112 Y27 and Y33
So, suppose that M 1is an EPM with Y112 Yo2° and Y33 2s ignorable coordi-
nates. Let Z be an excess demand function with a unique zero at p, such
that DZ(p,) 1is non-singular and diagonal. Let

[e]

xlooo\\
° \

DZ(p.) = C = 0 A 00
o]

0 0 230

0 0 0%,

By our regularity requirement for M, DMZ(RJ) must be non-singular. (See
the remark at the end of this section.) By Lemma 1, M(x;y) = A(x,y)x for

some A = ((a;)); by part ), ay;(0,y) = ay, (05 = a53(03y) = 0 for all y,
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By Lemma 3, we can write

DM, (P ) = A(05C)° C

i [o]
S P IS & BT M 000
{
o3 0 33 3y, 0% 0 o0
-
1
1 ()
% a31 a32 0 ‘ a34 0 0 x3 0 }
ﬁ\
N1 %2 %3 %4 0 0 0 b, //

Now, let xl,xz, and A, wvary in C , keeping the non-zero b4 fixed., Call

3
the resulting diagonal matrix B(xl,Kz,X3). Since Y112Y99> and Y35 are

ignorable coordinates for M and A, A(Q;B(xl,kz x3)) = A(0;C), which we
2

will write simply as A, Our goal is to derive a contradiction to the non-

singularity of A,

One computes quickly that AoB(xl,kz,x3) equals

0 Ma1o Ay2yg LT
Map 0 N3y 3 b,294
N33y M33g 0 - byag,
Magy R A3y, 3 bhas,

4
and that its characteristic polynomial u + 9 u3 + 4, u2 + qq u + 4, has

(8.3) 4y = = MMgR1p%1 7 MMR31213 L MNPy

= Mh3dy3a3y = Mbpa,a,, - Agbjaga, g .

Arguing as we did in establishing statement (8.2) above, we claim that
qz(xl,xz,x3) must be positive for all (xl,xz,x3)

(8.6)
such that (—1)4 det B (xl,xz,x3) = x1x2x3b4 >0 .
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% ata Ja

Suppose (8.6) is not true, i.e., there is a (x{,xg,xg) such that

.
ate U
w

qz(xl,x;,xg) < 0 and Xl)\;)\;134 > 0. By Lemma 5, there is an excess

(N ate

demand function zh such that 0 1is the only zero of z" and

e

DZ*(Q) = B(xi,xg,xg). Since M is an EPM, all the eigenvalues of DMZ*(Q)
must be non-positive by Lemma 3, Consequently, the qz-coefficient of the
characteristic polynomial of DMZ*(Q) must be non-negative by Lemma 4.
Since this q, is the above qz(xi,x;,xi), we have qz(xi,x;,xg) = 0.
By the proof of Lemma 4, 45 is the sum of all products of pairs of eigen-
values of DMZ*(Q). One computes easily that if each of these four eigen-
values is non-positive or has non-positive real part, q, can only be zero
if one of these eigenvalues is zero, i.e., if DM, (0} is singular. Since
DMZ*(Q) = AoB(Xi,X;,X:) and B(xi,x;,xg) is non-singular, A must be singular.
This contradiction to our choice of Z and C shows that if M 1is an EPM,
(8.6) must hold.

However, a careful examination of (8.5) shows that (8.6) cannot hold.
For example, let us show that 2198y, must be zero. Choose Xl = Xz and

1
x3 =+ N with the sign chosen so that xix Ab, > 0. Let A, » + .

1 27374 1
2 . . .
Since - xlx2a12a21 = - xl 31939, will eventually dominate gz in (8.5),
. - = -1
q, > 0 implies that - a21a12 > 0. Now, let xl = - xz and XB =1 xl 5

and let xl + + o again. This time, we see that - 357219 < 0. Consequently,

ay131p = 0. The same type of argument shows that each term in (8.5) must

be zero and, thus, that gq, = 0. This contradiction to (8.6) shows that M

cannot be an EPM.
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2

Remark 1. The same proof will work for any n. In other words, if
M: IRn x R® o R" has (n-1) ignorable coordinates - all in different rows
and columns of the matrix ((yij)), then M cannet be an EPM.

We now examine cases ii) and iii) listed above for n = 4, i.e., where
two of the three ignorable coordinates lie in the same row or same column
of ((yij))' Once more, for simplicity of notation, we will assume that the
ignorable coordinates are ¥112Y99s and Y15 ©F ¥q3- Suppose that M 1is an
EPM having these yij's as ignorable coordinates, Let Z be an excess demand
function such that Z has a single zero p, and DZ(p,) is non-singular and

diagonal. Write

(o]

7\.1 0 0 0
[e]
DZ(p,) = C = 0 N 0 0 .
0 0 b33 0

Since M 1is an EPM, DMZ(po) must be non-singular. Let A(X,y) be the matrix
such that M(x,y) = A(X,y) x (Lemma 1), By part C', we can suppose that
all(g;_y) and a22(9_;_y) are identically zero entries of A(0;y).

Let B(xl,xz,blz,b21,b13) denote the matrix

Mo P Py O
by, 0 0
0 0 byy O ,
0 0 0o b,

where b33 and b44 will remain fixed (non-zero) entries throughout this

proof. Let A(b12)b21)b13) = A(_Q;B(%'l)>\2)b12)b21)b13))‘ Then)

[e] [e]

C = B(:51,,0,0,0) and A(0;C) = A(0,0,0) .
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X - . . th _
First, set b 0. Let Aij(b b21,b13) denote the (i,]j) co

13 127

factor of A(b By arguing exactly as in the n=3 case above

12°P21:P13) -

and working with 3> the coefficient of the u-term in the character poly-

nomial of A(b12’b21’0) o B(Kl,Kz,blz,b21,O), one computes that

App(byysbyg50) =0,

Bgp(PygsPyy O =0,

A12(0,0,0) =0 ,
A21(O,O,O) =0
We now concentrate on case ii) where Y13 (and not y12) is the third
ignorable coordinate for M. We will keep b12 = b21 =0 1in this part of
the proof. Let u4 + 9 u3 + q, u2 + q5u + q, denote the character-

istic polynomial of A(O,O,b13) °© B(kl,Kz,O,O,b13). One computes, as above,

that
41 = - Py3®3p 7 P33z v Pusyy
Ap = 7 MM21g8oy T M (P33By485y T Dyu20,3,,)
= MP13399839 ~ Mo(P33a9333, + byas,2, .
(8.7) + b3y (a3y8,4734123,) + Dasby,(a333,,ma5,8,5)
A3 = = MAp(bgghy by, A )= Mbasby A,
+ Aoby3byshyg - Mbasby,Agy s and
q = det A(0,0,b )+ det B(x ;X,,0,0,b ).

Once again, one argues as in the proofs of statements (8.2) and (8.6) to
demonstrate that
(8.8) each qj in (8.7) must be non-negative for all Kl,xz,b13 such that

K1K2b33b44 = (—1)4 det B (xl,Kz,O,O,b13) is positive.
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Since Y117 Y29 and yi3 are ignorable coordinates for A, the aij and

A, and b_._.. Further-

Aij in (8.7) are independent of our choice of Kl, 9 13

more, det B(xl,xz,o,o,b13) is independent of b One can use part c¢) or

13

is the coefficient of b

one can notice that agy 13 imqg

in (8.7) to

demonstrate that a31 must be =zero.

Next, examine d3 in (8.7). As we noted above, All(0,0,0) =

A22(0,0,0) = 0. One can easily verify this again, by setting b13 =0

and then letting \xll + @ and M A, + 0 in qp. If A,,(0,0,0) # 0,

- >\1b33b44A22 will dominate d3 and will force it to take on both signs,

contradicting (8.8). We now show that A13 must be zero by the same
argument. This time, fix xz and let Kl -+ 0 so that >\1>\2b33b4ér stays
positive but lez + 0. The K2b13b44A13—term will dominate d3- By first

letting b13 go to + » and then to - «», we can make 3 take on both signs

if A, # 0. Since q3 cannot be negative by (8.8), A ; must be zero.

Next, by examining d9 in (8.7), we claim that 34341 must be zero.

Fix b13 = 0; let 1x1] -+ = and xz -+ 0 so that lez + 0. Then,

- >\1(b33a13a31 + b44a14a41) will dominate qy- Recall that azy = 0. So

if 21484 # 0, we can make this term go to + ® and to - », forcing 9, to

take on both signs. Since 9 cannot be negative by (8.8), 314341 must
be zero.
o] o
Let us bring together all our information. At (Kl,Kz,0,0,0), we
have Ay = Ayy T Ay ThAyy TA3 =0 and ayy =a,, =ay =a,a, =0.

By computing det A(0,0 Q) along the first row and also along the first
column as in (8.3) and (8.4), one finds that det A(0;C) = 0. This contra-

diction to our hypothesis that
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DM, (po) = A(03C) ° C
is non-singular shows that an EPM cannot have Y11°Y99 and y15 as ignorable
coordinates.
Finally, we examine case iii) for n = 4, where Y1199 and yi, are
the ignorable coordinates for the mechanism M which we assume to be an EPM.
For this part of the proof, we will set b13 = 0 and work with

B()x1 0). Let Z be as in the proof of part ii) so that ps 1is

TP I T
o] o]
the only zero of Z, DZ(0Q) = B(xl,xz,0,0,0) =C and DMZSQ) = A(®;C) o C
is non-singular.

Recall that we have already computed that

A;,(0,0,0) = 4,,(0,0,0) = A ,(0,0,0) =0
and all(0,0,0) = a22(0,0,0) = 0.
4 3 2 s s .
Let u + qqu + qyu + q3u + q, denote the characteristic polynomial of

A OB(kl,X 0,0), where we have written A for A(Q;BO\1 0,0))

2:P19 NPT

since the latter is a constant matrix because are ignorable

Y11°922°¥12
coordinates for A(O;y). Once again, the hypothesis that M is an EPM

requires that

each qj must be non-negative for all Ll,xz,blz such that
4 .
(8.9) (-1) det B(xl,xz,blz,0,0) = x1x2b33b44t> 0.
(Compare (8.%) with (8.2), (8.6) and (8.8).)
First, compute that q; = - b12a21-b33a33-b44a44. Since we can vary
b12 without affecting det ?(xl,xz,blz,0,0), if ay, # 0, we can make 9

negative by proper choice of b12 and, thus, violate (8.9). Consequently,

a21 =0,
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Next, compute det A using aj1 T @y = a21 = (0. One finds that
231 222 43 214
(8.10) det A = det det
1 P42 23 4
Now, compute q, using all =a,, = ay; =0:
Ay = 7 M(b33a1385; +byu,3,)
= My(bgzassa5, + byuas,a,,)

= byy(b3zay3a5, +b,425,3,0)

+

bysby,(ag38y,-aq,8,4)

Fix A and A, so that A A,bssb,, > 0 and let [b,| + o . If

(b + b44a24a41) # 0, we can make a, negative by proper choice of

33%23%31
b12 and, as a result, violate (8.9). If (b33a13a31 + b44a14a41) # 0, we

can fix b let ]xll 4+ » and A, » 0 so that X A b,,b stays positive.

12’ 2 172733744

Again, proper choice of xl will force q, to be negative and violate (8.9).

Consequently,
(®

338317 Pgadyp) - (By35734,)
and

(P333317 Pagday) - (3535 3

By hypothesis, b33 and b44 are non-zero. Thus, in order for these two

equalities to hold, either azy T84 < 0 or
a a.
det 13 14 0 .
223 24

However, if we substitute these zeroes into (8.10),we see that det A must be zero.
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This contradiction to the non-singularity of

DM, (po) = Ao C
shows that M with its three ignorable coordinates cannot be an EPM.

Remark 2. This type of argument works for values of n greater than
4, However, there is a quantum increase in the number of cases that must be
examined and in the complexity of the arguments for n >4 . We feel that
we have proven our point: A price mechanism which can be considered effec-
tive in any sense of the word must take into consideration just about all of
the first partial derivatives of the excess demand function.

Remark 3. 1In section 3, we required that in order to be effective a
price mechanism M:R® x R® -+ R™ should have the property that if an
excess demand function Z has a non-degenerate zero, then the corresponding
MZ should have a non-degenerate zero at some zero of 2 . Actually we have
used a much weaker regularity requirement in this section. We have proven
that: |

If each zero of an excess demand function Z 1is also a zero of

MZ’ if M has ignorable coordinates and if

y 30005 ¥ ,
hIkl hmkm

there exists an excess demand function Z such that:

i) Z has a unique zero po

ii) the matrix of DZ(p,) has exactly one non-zero entry in
each row and in each column; and if j = hi for some i,
then the non-zero entry in row j occurs at one of the
(hr,kr)'s (and similarly for the columns),

iii) DMz(po) is non-singular,

then if m 1is large enough (e.g., m > n - 1) and if the
yhiki do not lie in the same column or same row of ((yij))’

there is an excess demand function Z' such that no zero of A

is an attractor of MZ"
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9. SOME EXAMPLES

In the last three sections we examined the following algebraic problem:
Let Wg denote the space of all n x n matrices, a space naturally isomor-

2
phic to I?’ . Let A‘W%T'W% be a continuous (non-linear) mapping. Suppose

i) there exist a B ¢ 7 such that A(B) is non-singular,
ii) for all B € with (-1)n det B > 0, all the eigenvalues of
A(B)°B have non-positive real part.
Can A have ignorable coordinates; and if so, how many?
Actually, we are willing to let the domain of A be some open (and
preferably dense) subset of 7. For example, let 7] be the set of all non-

* * -1 *
singular matrices in 7], and define A 7 -7 by A (B) =-B . Thas, A

works since Aj?B)OB = - I, all of whose eigenvalues are -1. Of course, A*
corresponds to Newton's Method and has no ignorable coordinates.

In Section 6, we saw that if A has two ignorable coordinates b]._J
and b with i # h and j # k and if components aji and a of A are not

hk kh

identically zero, then ii) will not hold for A. In ection 7, we saw that
if bli""bni’ bjk are ignorable coordinates for A with k # i, then A
will not satisfy both i) and ii). 1In Section 8, we saw that for n = 3, &,
if A has (n-1) ignorable coordinates not all in the same row or column of
B and if A satisfies i) for some special B, then A will not satisfy ii).

To see that these results are as strong as possible, we will construct

an A : W% - W% which satisfies i) and ii) and which has a complete zolumn

~

of entries of B as ignorable coordinates. If A had one more ignorable

~

coordinate, then the above mentioned results show that A could not satisfy
both i) and ii).

For n =2, let A = _ . For

n =3, let A(B) = ((a,(B))), where
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2, ® = 185 51,23,
3
z
i=1 b, b,
223 = "3-2—2‘—3 byz " byps 37 12,3,
2 bi3
i=1

a3j(B) - - bj3; = 1)2)3'

Here, bjk is the (j,k)th entry of B and Bjk is its cofactor. One

computes easily that

1) K(B} is well-defined, provided the third column of B has a

non-zero entry,

det B 0 0
’ ~ 2
2y A®)eB = e L [N L ,
b 4|2 ,
% * _\2.3\
where h. is the 3-vector corresponding to the k-th column of

k
B,
3) if det B # 0, A(B) is well-defined and hyperbolic,

3
4y 4if (1) det B> 0, i.e., det B < 0, then all the eigenvalues of

A(B) e B are negative,

5) bll’b21’ and b31 are ignorable coordinates for A.

One can construct such a mapping Afmn 4‘mn for each n. The first
row of A(B) will contain the cofactors of the elements in the first columm
th
of B, with proper choice of signs. For j > 1, the j row A 3 of A(B)

will be constructed from elements in the last n - j+1 columns of B so that
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as an n-vector it is perpendicular to columns j+1,j+2,...,mn of B and
has a negative inner product with the jth column of B, The resulting
A(B) will be well - defined and non-singular (even hyperbolic) for non-
singular B and will be independent of the etnries in the first colummn of
B. The resulting A(B) o B will be a lower triangular matrix which will
have all its eigenvalues negative if (- 1)n det B > 0.

The construction of such an Kfmn -+ m@l shows that the results of
parts c¢),d), and e) are about as strong as possible ~-- at least algebraically.
We conclude this paper with an introductory report on the corresponding price
mechanisms -- a report which we hope to continue in a later paper. We will
work with the simplest situation, n = 2, although the following remarks hold
for all n.

For n = 2, recall that

P11 P2 - by, by,
A ) = ) and
Py Ppp BT Y
- det B 0
A(B) o B =
2 2
T DygPip T Py - By - By,
The simplest corresponding M 1is
"V Y2\ /F )

M(Xl}xz 23’11:}’12;}’21;}’22) =
T Y12 T Y23 &)
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If f = (fl,fz):U<:iR? > Eg is an excess demand function, then

Mg (%9,%,) = M(E(x);DE(x)) =

- 2@ £ £ (x) '(fzf; - ') @
1 2 2 1.1 22
- fy(z) - fy(z) f - (f fy + f fy) )

1f £(x0) =0, M(x”) = 0. If M (x") =0 and det DEG") # 0, £(x°) = 0.

If f(§o) = 0 and det Df(go) > 0, 50 is a hyperbolic attractor of
é = Mf(§). (However, if f(§°) = 0 and det Df(go) < 0, §o will not
be an attractor for Mg by ¢) 1in section 2. Hence, M 1is not an
LEPM.)
Suppose that £ 1s an excess demand function from a regular economy,
as discussed in Debreu (1970) and Dierker (1974). (Basically, this means
that det Df(§o) # 0 whenever f(zo) = 0. Debreu (1970) shows that these
are the typical excess demand functions.) Then, by index arguments, there is

o
an x  such that det Df(§°) > 0 and therefore zé is an attractor of M_.

f
If f is an excess demand function for a regular economy with a unique price
equilibrium p° and if det Df(x) # O for all x, then x = M_(x) will be
a vector field on the 2-disk whose only rest point is the attractor Ro.
If one starts near RO and uses é = Mf(§) instead of Newton's method to
compute the equilibrium, this mechanism will converge rapidiy to BO --

even though there are ignorable coordinates and no matrix need be inverted.

What happens globally will be the subject of a future report.



FIGURE 1.
Saddle point. The heavy line with the arrows pointing inward is the stable
manifold. The other heavy line is the unstable manifold. Only those solutions

on the stable manifold converge to the equilibrium point.

FIGURE 2.

Limit cycle. With the exception of the equilibrium position, all solutions

tend toward the limit cycle.
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