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Characterization of Domains Admitting Nondictatorial
Social Welfare Functions and Normanipulable Voting Procedures

by Ehud Kalai and Eitan Muller

1. Introduction

The purpose of this paper is to characterize the domains
of individual preferences which admit n-person nondictatorial Arrow
type social welfare functions, (see Arrow [ 1 ]), and the domains
which admit nonmanipulable voting pfocedures (see Gibbard [ 6 ]’
and Satterthwaite [ 15 ]). We show that the existence of such a
function or procedure for a given domain is independent of the
number (n) of people for which they are desired, i.e. there exists
an n-person social welfare function (voting procedure) for a given
domain if and only if there exists a 2-person social welfare
function (voting procedure) for the same domain. Thus a concept
of a domain being nondictatorial or nonmanipulable (admitting a
nondictatorial social welfare function or nonmanipulable voting
procedure) can be defined independently of the number of individuals
in the society. 1t turns out that these two concepts are completely
equivalent and we give the characterization of those domains (our
definition of a nonmanipulable voting procedure assumes a certain

rationality condition).

Attempts to overcome Arrow's impossibility theorem by
restricting the domains of individual preferences are numerous.
The most celebratedlexample is the single peakedness condition
originated by Black [ 2 ] and extensively discussed by Arrow [ 1 ].
Sen and Pattanaik [ 18 ] discussed the conditions under which

majority rule which satisfies Arrow's conditions of unanimity,



independence of irrelevant alternatives and nondictatorship, would
also satisfy transitivity. For an extensive discussion see Sen's
book [ 17 ]. Recently additional negative results were demonstrated
by Kalai-Muller-Satterthwaite [ 7 ]. In this paper we.consider any :
social welfare function, not just those based on majority rule.

The equivalence of Arrow's axioms to axioms of nonmanipula-
bility  was treated by many authors. One direction of this equiva-
lence was first proved by Gibbard [.6 ] and very elegantly by
Schmeidler~-Sonnenschein [ 16 ]. Satterthwaite was the first to
prove the full equivalence for the case of unrestricted preferences
in his 1975 paper. Pattanaik [ 12 ] proved one direction of the
equivalence for the cases in which individual preferences may be.restrict-
ed, and a discussion of the possibility of full equivalence for these
cases appears in Blin-Satterthwaite [ 3 ].

Maskin studied the question of social choice on restricted
domains in great depth. In his two,papers [ 8,9 ] and'verbally, under
the assumption of anonymity (symmetry of individuals), he characterized
the domains which admit a 2-person social welfare function, gave the
equivalence of an n-parson function to two, three or five parsons
functions depending on n, and proved the equivalence of Arrow's axioms
to axioms of nonmanipulability. Also, since then, independently of
us, he studied similar questions to the ones we treat here: namely
he replaced the restrictive anonymity assumptions with the well known
assumption of nondictatorship, and obtained interesting results under
a different approach (see Maskin [ 10,11 1).

A by-product of our characterization is a generalization of

Arrow's impossibility Theorem and Gibbard-Satterthwaite Impossibility



Theorem for all the dictatorial domains. (The unrestricted domain
is easily shown to be dictatorial.) However we do not deal with
the case where the individuals or the society are allowed to be
indifferent over alternatives.

We let A denote a set of alternatives with at least two
elements, £.denote the set of all transitive antisymmetric total
(i.e. if p€X then xpy or ypx or x=y) binary relations on A. An
element of X is called a preference relation. We let Q be a non-
empty subset of Z} the elements of Q represent the admissible
preference relations in the society. For an integer n > 2 o
represents the set of all n-tuples of preferences from O and an

element of Qn, P = (pl,pz,...,pn)éﬂn is called an n-person profile.

An n-person social welfare function (SWF) on Q is a function

n . . s . .
f:0° + Z which satisfies the following two conditions.

1. Unanimity. For every Pen if P =~:(P]_-,P2,-o-','Pn),'X,YEA
and for i#l,Z,...,n‘xpiy then x£(P)y.

2. 1Independence of Irrelevant Alternatives (11A).

For x,y€A and P,Qen" if [xp;y if and only if xq.y
for i=1,2,...,n] then [xE(P)y iﬁ and only if x£(Q)y].

f is dictatorial if there exists an i, 1 i < n, for which

f(P) = P; for every pea™. f is nondictatorial if it is not

dictatorial.



2. Independence of n.

Theorem L. For n > 2 there exists a nondictatorial n-person
S.W.F. on O if and only if there exists a nondictatorial 2-person

- S.W.F. on (.

; Before we proceed with the proof of Theorem 1 we need some
additional definitions and lemmas. We say that the n-person S.W.F.

f is dictatorial whenever two individuals agree if for every ls«i,j=n,

there exists an integer k(i,j) such that for every Peg‘zn,f(P)='pk(i )
b

whenever pi=pj. That is, k(i,j) is a dictator whenever i and

j have the same preferences.

Lemma 1. If n> 4 and f is dictatorial whenever two individuals

agree then f is dictatorial.

Proof. If |0} = 1 then the proof is completed because then f is
1

dictatorial. So we can assume that there are p ,p2 € O and that

p1 # p2. Next we observe that there must be a pair i,j such that

2,.--,132). £(P) = p

and £(P) = p2 a contradiction. So assume without loss of generality

. 1
i# k(@,j) # j. If not, consider P = (p ,p1,p L

that k(2,3) = ! and we will show that 1 is a dictator for f. We

first show that f(P)==p1 whenever pi==pj for some 1 =i, j <nand i # j.
If i #1 # 3 and k(i,j) = s # 1 let P be defined by Py = p1 and p; = p2
for i=2,3,...,n. Since 2 and 3 agree in P it follows that flp) = p1

and since i and j agree in P it follows that f(p) = Pg = p2 # pl a
contradiction. Therefore k(i,j) = 1. The other case is when one of

the individuals i and j, say i, is 1. If 2 # j # 3 then we let P be
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defined by p; = Py = pl and p_ = p2 for 1 = s # j. It follows
(2 and 3 agree) that £(P) = Py - Finally if j = 2 or j = 3, say
j = 2, then since we know already that k(3,4) = 1 we can let 3 and
4 assume the rolls of 2 and 3 respectively and we are back in the
case that j is different from the two distinct individuals.

So we showed that there must be an individual i such that
whenever two individuals agree i is a dictator. Now since n > 4
for any pair of alternatives x,y at least two individuals must agree

on this pair so (by IIA) i is a dictator for this pair. Q.E.D.

We call a pair of distinct alternatives x and y trivial if there

are no pl, pzé Q such that xply and ypzx. Thus the pair X, y is
trivial if there is always unanimity on it.

Let p €Q. Define p-lé Q to be the preference relation which
reverses the ordering of all the non trivial pairs and keeps the
orderings of all trivial pairs. Notice that p-1 may not exist but

when it does it is unique and (p‘l)'1 =

P.

Two preferences pl, pzé Q0 are connected if there exists a non-:
trivial pair x,y € A such that xply and xpzy, i.e. if they agree on
a non trivial pair.

Notice that for every p €Q there is at most one (possibly none)

Eén'(namely p—l) which is not connected to it. Two preference re-

lations pl, p2 are indirectly connected if they are connected by a

finite chain of connected preferences, i.e. there exists ql,qz,...,qn

such that pl = q1 p2 = qn and ql is connected to ql+1

for

i=1’2’ o o0 ,n-l.
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Lemma 2. If any two elements of (o are indirectly connected and £

is a 3-person S.W.F. with the property that for every p€Q there

is an i(p), 1 < i(p) < 2, such that f(pl,pz,p)=pi(p)"then f is
dictatorial.
Proof. If |Q| = 1 then the lemma is trivially true. If Kol §!2

then clearly i(p) is unique for every p (consider a profile with a
conflict between individual 1 and individual 2). We will show
that i(p) = i(p’) for every p, p’ €Q and thus i(p) is a dictator
for £. It suffices to show that i(p) = i(p’) for every pair p,p’

which are connected. Suppose p and p’ are connected through the

non-trivial pair x,y. Eet p1 and p2 be preferences for whiéh
*XP1Y‘3nd ypzx; Considef the two profiIes P = (p1,p2,p) and

P’ = (' ,p°

a conflict between ! and 2 on x,y it follows by I.I.A. that

i(p) =i(p’),  Q.E.D.

,p'). .Since p and p' agree on X,y and since there is

We define the minority rule 3-person S.W.F. f as follows.
3

For every P = (p1,p2,p3) €N

xf(p)y if and only if either Xp.y for i=1,2,3 or
two pi's prefer y to x and the third P; prefers

x to y.

Lemma 3. If the 3-person minority rule is a well defined S.W.F.

on (O then there exists a 2-person nondictatorial S.W.F. on Q.
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Proof. Choose any p€Q and define gp(p1,p2) by

xgp(p1,p2)y if and only if either xp,y and Xp,y Or

only one of PqsPy prefers x to y and p prefers y to x.
It is clear that gp is well defined and satisfies unanimity
and I.I.A.. We have to show that > = gp(pl,pz) is transitive
for every p,p1,p2<EQ. Suppose this is not the case, i.e. there

exist x,y,z€A such that

X >y >z > X,

Case 1. x > y by unanimity of 1 and 2 and the same for y > z.

But then x > z by unanimity, a contradiction.

Case 2. X > y by unanimity and y > z not by unanimity. Assume
without loss of generality yp,z, ZP,Y s and zpy. Since z > X

we must have ZpyX and xpz. But then we have for the minority
rule function f

p:S f(P1 ,stP) y f(P1 :Pzap) z f(P1 :Pzﬁp)x>
a contradiction.
Case 3. y > z by unanimity and x > y not by unanimity. Assume
without loss of generality that Xp.Ys YP,X and ypx. Since z > x
we must have Zp 5% and xpz. But then we have x f(p1,p2,p)'y‘

f(pl,pz,p)z f(pl,pz,p)x a contradiction. Q. E.D.



Case 4. x > y not by unanimity and y > z not by unanimity. Assume
without loss of generality that xp,y, yP,% and ypx. Also since

y > z not by unanimity we must have zpy. Thus by transitivity of

p we have zpx. Soinorder to have z > x we must have zp,x and Zp,X.
Therefore by transitivity we have zp,y and since we have y > z

we must have YPyZ - But now we get x f(p1,p2,p)y f(p1°P2?P)z

f(pl,pz,p)x a contradiction. Q.E.D.

Proof of Theorem 1. Let £ be a nondictatorial 2-person S.W.F. on

Q. Define g:0" + = by g(p1,p2,...,pn) = f(p1,p2). It is easy

to see that g is a nondictatorial n-person S.W.F.

To prove the other direction we show that for n > 3 if a
nondictatorial n-person S.W.F. on Q, f, exists then there exists

a nondictatorial (n-1) person S.W.F. on Q,g. We first show it for

n>4, For 1 <i<j<nwe define g; s by
3

gi,j (P1 ’Pz,o..,Pn_«|) = f (P1 ’p2,--°,Pj_1 )pi,Pj,Pj+1,...,pn_1).

In other words gij replicates i's preferences in the jth place,

shifts pj’pj+1""’pn-1 up by one place and then uses f. It is easy

to see that all the 8; j's are (n-1)-person S.W.E's and we claim that
b

at least one of them is nondictatorial, Suppose that this is not

the case, i.e. all the 8 j's are dictatorial. That implies, for £,
3

that whenever two of its arguments are the same f is dictatorial.

By lemma 1 it follows that f is dictatorial which is a contradiction.
Now we assume that n = 3. We consider first the case that Q

consists of only two elements of the type p and p—1. In this case

we define the 2-person nondictatorial function g by g(p1,p2) =p
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if either p; = p or p, = p and g(p,,p,y) = p-1 if both p, = p, = p
It is easy to check that g(P) is transitive, g satisfies the unanimity
condition and since Q = {p,p-1} it follows that g satisfies I.I.A. .
Thus in this case there exists a 2-person nondictatorial S.W.F. g.
The second case is when O is not of the form described above, thus
any two elements of Q are indirectly connected. We assume first
that there are two individuals, say 1 and 2, that are decisive
for every pair of alternatives, i.e. for every x,y€A and every
p1,p2,p3€EQ if %p.y for i=1,2 then x f(p1,p2,p3) y. For every
pEQ we define gp(p1,p2) = f(p1,p2,p). It is clear that all the gp's
are 2-person S.W.F.'s (unanimity follows from the decisiveness of
{2,31)and by Lemma 2 it follows that if they are all dictatorial
then so is f£. So there exists a 2-person nondictatorial S.W.F. gp:
Finally, if no paif of individuals is decisive for all the pairs
we consider again two cases. Case one is when there is an individual,
say 1, who is not weakly decisive for all the pairs, i.e. there
exist p1,p2 € O such that f(p1,pg‘p2)#lpl- We can define g(Pl,Pz) =
ftp13p2,p2) and g is a 2-person nondictatorial S.W.F. Case two is
when every individual is weakly decisive for all the pairs. In this
case f must be a minority rule S.W.F. on Q and by Lemma 3 there

exists a 2-person nondictatorial S.W.F. g on fl. QLE.D
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3. Characterization of Nondictatorial Domains of Preferences

We say that the set of preferences (CE is nondictatorial

if there exists a nondictatorial n-person S.W.F. on Q. This
definition is independent of n for n > 2 by Theorem 1 (for n=1
every S.W.F. is dictatorial by unanimity). Examples of dictatorial
families are any Q with [Q] = 1 (by unanimity) and the whole space
Z provided that there are at least three alternatives (by a well
known theorem due to Arrow.[1l]). Single peaked preferences on

a line (see Sen [17] and Black [2]) is an example of a non-
dictatorial family. The purpose of this section is to characterize
all the nondictatorial families of preferences.

We let T={(x,y)€§ Ax A : x# y}, TR = { (x,y)€T : there is
no p1 €Q and p2 € 0 such that xply and ypzx} and NTR = T - TR. Thus
T consists of all distinct ordered pairs, NTR consists of the non-
trivial ordered pairs (both xply is feasible by some pl€§} and ypzx
is feasible by some pze ), and TR consists of the trivial pairs

(either xpy for all peqn or ypx for all pep).

We say that a set R € T is closed under decisiveness impli-

cations (closed DI) if for every two pairs (x,y), (x,2)€ENTR the

following two conditions are true.

DI1. TIf there are pl,p2€Q with xply plz and ypzz p2x then
DIla (x,y)€ R implies that (x,z)€ R, and
DIlb (z,x)€ R implies that (y,x)€ R.

DI2. If there is a p&€Q with x p y p z then
DI2a (x,y)€ R and (y,z)€R imply (x,z)€ R, and

DI2b (z,x)€ R implies that either (y,x)€ R or (z,y)€ R.
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We say that Q is decomposable if there exists a set R, with

TR % R % T, which is closed under decisiveness implications.

Theorem 2. Q is nondictatorial if and only if it is decomposable.

Lemma 4, Let R1 < T, TR ? R1 ? T, R1 is closed under decisiveness
implications, and R, = TRU{ (x,y)€ T: (y,x)¢ Ry}, then TR g:R2 g T

and R, is closed under decisiveness implications.

2

Proof. It is clear that TR ; R2 ? T. To show that R2 is closed DI

we assume that (x,y), (x,z)€NTR.

To show DIl for R, we assume that for some pl,pzén xply plz
and ypzz pzx. We assume contrary to DIla that (x,y)E€ R, and (x,z)# Rye
Since (x,y),(x,z)ENTR it follows that (y,x)§ Ry and (z,x)E€ R -
By DIlb of R, we get a contradiction so that DIla must hold for R2°
Assuming, contrary to DIlb for Rys that (z,x)€ R, and (y,x)§ R, we
see that (x,z)¢ R1 and (x,y)E€ Rl' This contradicts DIla for Rl’ thus

R, must satisfy DIlb.

2
To show that R.2 satisfies DI2 we assume that for some pé&Q

X pYypP z. We assume, contrary to DI2a for Ry, that (x,y)€ Rys (y,z)€ R,

and (x,z)§ Ry. This implies that (y,x)E Ry and (z,x)€ R;- By

DI2b of Ry it follows that (z,y)€ R; - This implies that (y,z)€TR

by the definition of R2. Since (x,z)€NTR it follows that there

must exist pzén for which ypzz pzx. Now DIla for R2, which was

already proved, shows that (x,z)€ R2’ a contradiction. To show

that R, satisfies DI2b we assume, per absurdum, that (z,x)€ Ry

(y,x)¢ R,, and (z,y) € R,. It follows that (x,z) ¢ R; and (x,y)€ Ry
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If (y,z)€NTR then (y,z)E€ Ry which contradicts DI2a for R;. So it
must be that (y,z)€TR. But then, by the fact that (x,z)€NT, it
follows that there is a pzéﬂ for which ypg zpzx. Now DIla for Ry

is contradicted which completes the proof of the lemma.

Proof of Theorxem 2, We first assume that ( is nondictatorial. By

Theorem 1 there exists a nondictatorial 2-pesrson social welfare
function £f on . We let R1 be the set of pairs for which voter 1
is decisive, i.e.

R1 = {(x,y)€T: for every Pénz if Xpq¥ then xf(®P)y}. It is
clear that R, = TR. If Ry = TR then 2 is a dictator so Ry 2 TR.
_Also if Ry = T then 1 is a dictator so TR g Ry % T.

Now we show thét Ry is closed DI, so we assume that (x,y),
(x,z)ENTR. To show DIl we assume that for some pl,pzéﬂ Xply plz and
ypzz pzx. Contrary to DIla, we assume that (x,y)e'R1 and (x,z)¢ Ry .
Consider the profile P = (pl,pz). xf(P)y because (x,y)€ Ry yE(P) 2
by unanimity. So by transitivity xf(P)z. Thus, IIA implies (x,z)E€ Rys
a contradiction. Contrary to DI1b we assums that (z,x) € R1 _apd
(y,x) ¢ le Consider P = (pz,pl). yE(P)z by unanimity and zf(P)x
because (z,x)€ Ry- Thus y£(P)x. Therefore, by IIA, (y,x)€ Ry

which is a contradiction.

Tovshow DI2 we assume that for some p€Q x p y p z. We assume,
contrary to DI2a, that (x,y)€ Rl’ (v,2)€ Rl’ and (x,z)§ Rl' Consider
any P with Py =P. xf(P)y because (x,y)€ Rl’ and y£(P)z because
(y,z)€ Rl’ By transitivity xf(P)z. 1IIA implies thét (x,z)€ Rl’ a

contradiction. Finally we assume, contrary to DI2a, that (z,x)€& Ry
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(v,x)¢ R;> and (z,y)é# Ry. Since (x,2)€ENTR there is a pl€Q with zplx.
Consider P= (pl,p). zf(P)x becuase (z,x)€ Ry xf (P)y because

(v,2z)¢ Ry. So zf(P)y by transitivity. Thus IIAshows that (z,y)€ Ry,
a contradition.

Notice that we could have defined R, to be the set of pairs
for which 2 is decisive. This would demonstrate where the structure
of Lemma 4 arises,

Now we assume that (? is decomposable by a set Ry which is
closed DI and satisfies TR % Ry % T. We define R, = TRU{(x,y)éT:(y,x)ﬁRll
then by Lemma 4 R, ig closed DI and TR g R, % T. We define f : Qz + =
as follows. xf(P)y if and only if one of the following three situa-
tions occurs:

1. Unanimity: Xp;y for 1i=1,2.

2. Decisiveness of 1: xp,y and (x,y)€ Ry .

3. Decisiveness of 2: Xp,y and (x,y)€ Ry-
We first show that for every (x,y)€T xf(P)y or yf(P)x but

not both. If both, then neither of them could have occurred by

unanimity, also they could not both occur by decisiveness of the same
voter. So assume without loss of generality that Xp1 Y (x,y)€ Ry5
YPoX, and (y,x)€ R,. But this shows that (x,y)€NTR and contradicts
the definition of Ry- Now assume that neither xf(P)y nor yf(P)x.
We can assume without loss of generality that Xpyy and YP,yX. 'So
(x,y)ENTR, (x,y)# Ry and (y,x)£ R,, a contradiction.

Next we observe that f is nondictatorial because Ry # T and
ﬁz # T, f satisfies ITA since it is defined on pairs, and it satis-

fies unanimity by definition. Finally we show that for every P,
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f(P) is transitive. We assume to the contrary that there is a P for

which >

= £f(P) is not transitive, i.e. for some x,y,z,€ A

X>y >z > X.

Case 1:

Case 2:

Case 3:

Case 4:

X > y by unanimity, and y > z by unanimity. 1In this case

X > z by unanimity, a contradiction.

X > y by unanimity and y > z not by unanmity. Since the
properties of Ry and R2 are completely symmetric we can
assume without loss of generality that Y> z by decisiveness
of 1. Thus Xp1Y Pq%, (v,2)€ R1 and since z > x we must
have ZPyXP,Y and (z,x)€ RQ. DIlb of Ry implies that

(x,2)€ Ry which contradicts the fact that (z,x)E€ Rye

x > y not by unanimity and y > z by unanimity. We can
assume without loss of generality that x > y by decisiveness
of 1, thus we must have XpYPq2 and (x,y)€ Rl' Since

z > x we must have YP9ZP,yX and (z,x)E€ R2' DIla of Ry
implies that (x,z)€ R1 which contradicts the fact that
(z,x)€ R2.

X > y not by unanimity and y > z not by unanimity. If

both of these preferences. occure by the decisiveness of

the same voter, say 1, then we must have Xp1YPy2> zpzypzx;
(x,y)€ Ry (y,2)E€ Ry and (z,x)€ R,. But DI2a of Ry implies
that (x,z)€ Ry which contradicts the fact that (z,x)€ R,-
So we assume without loss of generality that x > y by the

decisiveness of 1 and y > z by the decisiveness of 2.
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So we have Xp1¥, ZP1Ys YPyZs YPoX» (x,y)€ Ry> and (y,z)€ R2.
Since z > x one of the following subcases must occur:

Subcase 4a: zZp; X for i=1,2. 1In this case DIla of R,

implies that (y,x)E€ R, which contradicts the
fact that (x,y)€ Ry~

Subcase 4b: ZP1X, XP,Z and (z,x)E€ Ry- In this case (z,x),

(x,y)ENTR, thus DI2a of R1 implies that
(z,y)E€ Ry - Since (z,y)€NTR this contradicts
the fact that (y,z)€ RZ'

Subcase 4c: Xpy2, zP,% and (z,X)€ R,. 1In this case

DI2a of R2 implies that (y,x)€ R2 which
contradicts the fact that (x,y)E€ Ry~

This completes the proof of Theorem 2.

Remark:

From Lemma 4 and the proof of sufficiency it is clear that
we could have defined decomposability somewhat differently: 0 is
decomposable if there exist two sets Ry and R2 such that TR g Ry g T,
closed under decisiveness implication and satisfying for all
(x,y)ENTR, (x,y)E€ Ri if and only if (y,x)# R,. These two definitions
are equivalent (see Lemma 4), and the difference is in appearance
only. (It is easy to show that in this definition, condition DI2b
is redundant. This adds somewhat to the external difference.) We

let Ri be the set of pairs for which i is decisive, thus having the

following intuitive meaning to the condition:



- 16 -

There exist at least two individuals with some power of
decisiveness (TR Z Ri). The condition that (x,y)E€ R; iff (y,x)§ R,
guarantees the antisymmetry of the SWF. R; being closed under

decisiveness implication guarantees the transitivity of the SWF.

4. Applications

To show the usefulness of Theorems 1 and 2 we discuss the
following examples.
Example 1: Arrow's Theorem. If Q0 = Z and |A| > 3 then all the
relations between any three alternatives are possible. This shows
that the only sets which are closed under decisiveness implications
are @ and the set of all pairs, i.e. there is no nontrivial decompo-

sition. Thus every SWF must be dictatorial.

Example 2: Single peak preferences (see Black [2] and the other. .
standard texts). Let q € Z, and define the set of single peaked
preferences relative to the linear order q by Qq = {p€Z: for every
three distinct alternative x,y,z if x q y q z then it is not the

case that xpy and zpy}. To show that Qq has nondictatorial n-person

SWF's for every n > 2 we must show that Q is decomposable. Let

Ry = {(x,y)€T: xqy}. Clearly § = TR g Ry g T. All that is left to
show is that Ry is closed under decisiveness implications.
DIla. We suppose that (x,y)€ R; and for some pl,p2 éﬂq
xply plz and ypzz pzx. These relations imply that in
q x cannot be between y and z and z cannot be between

x and y. Thus y must be the middle one and since xqy

we must have xq y q z. Thus (x,z)€ R, .
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DIlb. (z,x)€ Ry xply plz and ypzz p2x. Again y must be the
middle one so we must have zqy q x. Thus (y,x)€ Ry .

DI2a. (x,y)€ R,, (y,2)€ Ry and for some p € Qq’ XPVYP 2Z.
This shows that xq y q z. Thus (x,z)€ Rl'

DI2b: (z,x)€ R, and for some p € Qq, Xp yp z. This shows

that z qy or equivalently (z,y)€ R..
1 Q.E.D.
It follows by Theorems 1 and 2 that a family of single peak

preferences admits nondictatorial n-person SWF's for every n> 2,

5. A Characterization of Domains Admitting Nonmanipulable Voting
Procedures

The existence of a nonmanipulable voting procedure on a given
restricted domain is interesting on its own merits, and not just
because of its equivalence to the existence of an Arrow social
wealfare function (which we will show). Imagine a society for which it
is known a prori that all individuals have single pzak preferences. This
knowledge may come about by a prior analysis or by historical experience
and it is shared by all individuals in this society. Restricting the

individual to vote in a single pesak fashion presents'no restriction, and

majority rule is a good.nonmanipulable procedure for such a society.
Are there other types of societies for which this situation is
possible? The answer to this question is given by our characteri-
zation,

The question of strengthening the result by eliminating the
requirement that the stated preferences (ballots), as well as true

preferences, are restricted is still open. Blin and Satterthwaite
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[ 4 ] dealt with the case of majority rule and single peakedness.
They showed that the restriction of single peakedness on preferences
alone without a restriction on admissible ballots is not sufficient
to guarantee nonmanipulability of the (generalized) majority rule.

Our assumption here is that the voting procedure will
count only those ballots which conform to the society's known
restriction, since any other stated preference is insincere. The
resulting voting procedure will be nonmanipulable if and only if Q
(the admissible true preferences) is decomposable., That is, the
same restriction that guaranteed the existence of a SWF will
guarantee the existence of a nonmanipuléblé voting procedure.

An n-person Voting procedure is a function F:anaaA,

where ¢ is the set of all nonempty subsets of A. We will assume
that all voting procedures satisfy the following three conditions.

l. Feasibility. For every geg and every Pea® F(P, o) ca.

2. Independence of Nonoptimal Alternatives (INOA). For every

n .

Pen” and every aeq if gcy and F(P,q)€p then F(P,p)=F(P,q).
3. Unanimity. For every Peq™ and every o€¢¢ if x,y€y and

xp;y for i=1,2,...,n then y#F(P,q).

F is dictatorial if there exists an individual i such

that for every PEQn and every ocqd F(P,q) is ith top choice among
the alternatives of o, i.e. F(P,a)piy for every veg with

Y#F(P,Q’) .
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F is manipulable if there exists an oeq, and P,Peq”™

such that for some i pi#Ei, for every s#i pé=ﬁs'and F(F,Q)piF(P,q).
See Blin-Satterthwaite [ 3 ] for a discussion of the definitions

above.
Theorem 3. Let n be any integer, n > 2. The following three

statements are equivalent for every qc=.
1. ( admits an n-person nondictatorial nonmanipulable voting
procedure.
2. ( admits an n-person nondictatorial social welfare function.
3.  is decomposable (recall that being decomposable is a
property which is independent of n).
Thus () admitting an n-person nondictatorial nommanipulable
voting procedure is a property which is independent of n, is
equivalent to admitting a nondictatorial social welfare function,
and can be checked through the decomposability property given in
Theorem 2. The equivalence was discussed by Blin-Satterthwaite
[ 3 ] after Pattanaik [ .12 .] had proved it in one direction.
Our proof is similar to a proof by Maskin but it relies heavily
on our Theorem 1 which enables us to discard his assumption of
Positive Association.
Clearly our applications in examples 1 and 2 are still
valid. So that in our setup we obtain the Gibbard-Satterthwaite
result as a corollary to Theorem 3. Also Theorem 3 assures us
the existence of a nonmanipulable voting procedures for any

number of people in the cases where the preferences are

restricted to be single peaked.
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Proof of Theorem 3. Clearly if ( admits a 2-person nondictatorial

nonmanipulable voting procedure then it does the same for n .
people (take the extra players as dummies as in the proof of
Theorem 1). Therefore, by Theorem 2, it suffices to show the
following two facts. If ( admits an n-person nondictatorial
nonmanipulable voting procedure then ( is decomposable.  And,
if Q is decomposable then it admits a 2-person nondictatorial

nonmanipulable voting procedure.

To establish the first fact we assume that F is a nondicta-
torial nonmanipulable n-person voting procedure on Q and we define
the n-person S.W.F. ; as follows. For P€n™ and X, V€A xF(P)y if
and only if F(P,{x,y})=x. 1INOA guaranfees that ?(P) is well de-
fined. Unanimity of ; follows by unanimity of F. Also the non-
dictatorship of F implies that F is nondictatorial. To show that
; satisfies ITA we use the Schmeidler-Sonnenschein method [16]. If
T does not satisfy IIA then there are two profile P and Q and a
voter j such that P; < 93 for im# 'R pj agrees with qj on the pair
{x,y}, and ;(P) disagrees with F(Q) on the pair {x,y}. It is clear
then that voter j can manipulate either F(P,{x,y} or F(Q,{x,y}) in

this case. Thus ; is a well defined nondictatorial n-person SWF.

To establish the second fact we assume that ( is decomposable.
By Theorem 2 there exists a 2-person nondictatorial S.W.F. f on Q.
We define the voting procedure F by taking F(P,x) to be the
most preferred alternative in y according to £(P). It is easy
to observe that F is a nondictatorial voting procedure and it is

left to show that it is nonmanipulable.
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We suppose that F is manipulable. 'we can assume without
loss of generality that there exists an oéd, P,Peq such that
P2=§é and a pair of distinct alternatives x,y&y such that
y=F(F,a)P1F(P,q)=X. Therefore, yE£(P)x and x£(P)y. It follows
that xp,y (otherwise unanimity would imply yf£(P)x) hence
Xﬁéy. Now since ﬁi#pl and since f(p) and £(P) differ when
restricted to {x,y} if follows by IIA of f that xﬁly. Therefore,
by unanimity, xf(P)y which is a contradiction. The nondic=-

tatorship of £ implies that F is nondictatorial, Q.E.D.
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