~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Cohen, Claude; Robinson, Barry

Working Paper
An Integrated System for the Interactive Nonlinear
Programming Computations

Discussion Paper, No. 232

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Cohen, Claude; Robinson, Barry (1976) : An Integrated System for the Interactive
Nonlinear Programming Computations, Discussion Paper, No. 232, Northwestern University,
Kellogg School of Management, Center for Mathematical Studies in Economics and Management
Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/220592

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/220592
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

DISCUSSION PAPER NO. 232

AN INTEGRATED SYSTEM FOR INTERACTIVE
NONLINEAR PROGRAMMING COMPUTATIONS
by

Claude Cohen“j
Barry Robinson

August 1976

+ Graduate School of Management
* Vogelback Computing Center

Northwestern University, Evanston, Illinois 60201

Presented at the IX International Symposium on
Mathematical Programming, 23-27 August 1976,
. Budapest, Hungary

Abstract

Existing optimization algorithms are highly formalized and do not allow
much human intervention or interaction. This paper deals with the design
and development of software for nonlinear optimization using a collection
of well-known nonlinear programming codes: SUMT (Sequential Unconstrained
Minimization Techniques), GRG (Generalized Reduced Gradient), GPM (Gra-
dient Projection Method), and MCL (Method of Centers Linearized).

The system has evolved from "stand-alone'" programs to an integrated
package which allows the user to define objective function and constraints
in a simple FORTRAN subroutine and call one of the algorithms to initiate
the solution process. The user can also interact with the process by
changing strategies in mid-stream through the use of different algorithms.
Because of this algorithm interrupt mechanism, one can study the structure
of the problem or observe the solution process (for example, monitoring
precision/convergence/number of function or gradient evaluations). As an
experimental tool, it may also be used to study the interaction of algo-

rithms and the best matching of an algorithm to a given class of problem.

Table of Contents

1. Introduction.c.ceeeeecececsescssacsnsscnonsonsaes 1

2., The need for interaction in optimization...... 2

3. Software design and implementation............ 4
4, System flow chart..veeeeeescesscseesessannnssns 11
5. Example.......e.. Ceeseressessatserereenanen .14

6. Evaluation and possible extensions............20

7. ReferenCeS...vieeeeseeseesoscseccssoccacnasens .. 21

1. Introduction

The interactive capability of present-day computer systems can be applied

to a wide variety of uses: program preparation, computer—aided instruction,
text processing, statistics, graphics, numerical computations, etc. In each
case, the value of the interactive use of the computer (as opposed to batch
processing) is three-fold. First, the quick response characteristic (if

the application is well designed) allows the user to make efficient use of
his time. Second, the ability for the user to interpose decisions based on
experience or intuition can often accelerate or make feasible the solution
of problems of great complexity. This latter procedure can often save com-
puter time as well, despite the overhead of interactive systems, since in
the batch environment one is often forced to approach large problems by ex-
haustive consideration of cases. Third, the use of the computer as an in-
structional device can facilitate the learning of basic principles in diverse
disciplines.

In mathematical programming, perhaps more than any other area of applied
mathematics, theoretical problem formulation goes hand in hand with compu-
tational feasibility. As algorithmic techniques have evolved and multiplied
and as problem sizes have increased, the user has been confronted more and
more with choosing the appropriate algorithm, with problems of numerical
analysis, and with complex software systems. These algorithms are highly
formalized and do not allow much human intervention or interaction.

A number of authors, among them Lasdon [10], Polak [12], and Zangwill [15],
have recognized the need for the study ¢f problem manipulation and mixed =+
algorithm strategies of solution. This paper was motivated by and addresses

the needs of users as opposed to fulfilling the requirements of algorithm

developers. This is not to imply that the latter are of little importance

or interest to the authors, but only to state that they are beyond the scope

of the experimental system described here.

To our knowledge, there have been very few mathematical programming soft-

ware development efforts to. integrate several “algorithms intc-4 system-.and allow
a user (typically a student) to run problems on the computer with minimum
concern for system details and minimum programming effort. MPOS (Multi

Purpose Optimization System) developed at Northwestern [Zj is such a system.

All that is required of the user is the ability to write a set of algebraic
expressions and to specify in English-like ‘commands the *functionsctb e performed for
solving linear, quadratic, and integer programming problems. Related work

in this area is also conducted at other institutions: Argonne National
Laboratory (MINPACK project), Stanford University (System Optimization Lab-
oratory), NBER-Cambridge (Computer Research Center), dnd the Ndtiomal PHysical

Laboratery. im England.

2. The need for interaction in optimization

Given an optimization problem P, we ask the natural and practical question:
how should it be solved? In many instances, there exists a '"standard" algo-
rithm for the class of problems to which P belongs (e.g., simplex, trans-
portation). Problem P is sometimes restated in an alternative form P' that
is apt to be more amenable to solution. Familiar examples are: solving

the dual P' of a linear program P, approximating a constrained convex ob-
jective function P by a piecewise linear function P', and transforming a
constrained optimization problem P into a sequence of related unconstrained

problems P';, i=1,2,... which are (hopefully) simpler to solve.

In integer and non linear programming (NLP), optimizing is not simply a
matter of getting a computer program and using it. Much human judgment is
needed to select an appropriate algorithm and even more important to assess
the results of that method.

The following situations illustrate commonly encountered problems where
the availability of a general and flexible interactive optimization system
would clearly be of great help:

a) Suppose P is a linear programming problem with multiple objective
functions. For this type of problem, it is often necessary to replace the
concept of "optimum" with that of '"best compromise'". In an interactive |
environment, the decision maker learns to recognize good solutions and the
relative importance of the (competing) objectives. In fact, phases of
computation—-—guiding his exploration of the solution space-~alternate with
phases of decision. This problem has received a great deal of attention
in the literature: Dyer [4,5], Geoffrion eteal. [6], Zionts and Wallenius
[161.

b) Suppose P is a NLP problem and the following algorithms are available:
Lagrangian, gradient projection, reduced gradient, and penalty function.
Choosing one of them, a priori, does not guarantee obtaining a solution

if the level sets of the objective function are "banana shaped" or the
feasible set has an "unusual" geometrical configuration, e.g., ridges, or
saddle points. In a batch processing environment, it is impractical and

"explore" the objective function and

time consuming for the optimizer to
recognize that his successive points lie in a valley. If the user can
interact with his program and change strategies through the use of different

algorithms, then he makes use of the computer as a learning tool as well as

a solution tool.

c¢) Suppose P is ill-structured and cannot be mathematically stated in the
form of an optimization model. Heuristic methods, for example hill-climbing
algorithms [1,9]:can provide & crude qualitative:description of:the optimum
and it would be highly desirable for a user to incorporate in such methods
standard algorithms to provide additional information.

d) Finally, suppose P is an integer program, then many solution techniques
are available as in NLP. For example, in a cutting-plane method there are

a multitude of cuts which can be added to the problem at any solution point.
With an interactive system one can decide which cuts to add and when to add
them. If this heuristic approach proves ineffective, then perhaps a branch
and.-bound algorithm, incorporating all the binding cuts added so far, could

be attempted.

3. Software Design

As previously mentioned one motivation for developing an integrated NLP
package is the difficulty our users encounter when attempting to solve
their NLP problems with the existing software at Northwestern. The Vogel-
back Computing Center maintains four NLP codes - SUMT (Sequential Uncon-
strained Minimization Technique)[13], GRG (Generalized Reduced Gradient)
[8], GPM (Gradient Projection Method) [7], and MCL (Method of Centers -
Linearized) [3,11].These codes were developed at four independent sites

and modified locally. They provide dramatic evidence of the lack of
"standards" in the field of mathematical programming software. The user,
particularly the novice, is confronted with a bewildering array of problem
formats, constraints and variable bounds requirements, parameter and option
choices and computer programming and control card requirements. We suspect
that in most cases the choice of an algorithm is influenced more by ease of

use and documentation readability than by any theoretical consideratioms.

ON

swT] duo jB SIuSTpeAl I0
suorjouny TTe @3nduod

592079 NOWKWOO
U SenTea uinNlal

so13TTENnb® oOU

Spaed ejep
PT9TF PeXTJ

T R
("8 pue ‘3a<F8¢7) INGO

popunoq 'x TT®

0 ¢ 78

J Xeu

TON

oN

EJUTEI3SUOD JIBSUTTUOU
sojenTeas ATuo TONI

2wl ®

Je juaTpead s3T pue
uotjouny suo 33ndwod

s3sTT Iojauweied
Ul sonTeA TTB UINnlal

19pIo
Aue ur sar3tTenbs

weifoxd uteu
ut s}20Tq NOWWOD

("8
pue “p<¥8¢7) TONA

wea8oxd urey
popunoq Io0 9917 Tx
RN ORI

J xXeu

Wdd

ON

T
swr] duo 3B H TIB®
10 T8 TTe ®3ndwood

S300Tq NOWWOO UT
senTeA T]EB UINJSI

1sef satlrTenbe

Spied BIEBP
PT1F PSXT3

(*81) goovr

(30) 14QvEd

(*3) 1HAO

(3) XIH4

pepunoq Tx 11R
T

0= (14

0S (x)°3

J xeuw

XM

EEYN

2uwTl B J®
uotjouny suo =3ndwod

SY20Tq NOWKOD
pue sistT I9lsweaed

Ul senyeA UINlal
3sel sor3ITEnbe

Spaed BIBp
PTRT3 PoXTIJ

(ueTsseH) XIULVK

(*s pue 3) TaVHD
(*3 pue 3) INISEY

0 ¢'x 1T®

10 29aF TI®
T

0= (¥)_4

0% (x)'3

A

J uTw

IHOS

EEPER)

I1o3ndwo) GIN Anog JO

T °Tqel

uosTIRduo)

8, 10 ‘3 ‘30 303
SurdousiaIIT(Q TROTISUNYN (L

sauTInoIqNs U933 TaM
-13sSn U0 SUOTIOTIISIY (9

nduy eleq (G

saurinox NViId04
asoy3l A1ddns 3snw 19s) (¥

soTqeTIeA (€

sjuTeI3ISUO] (7

2d£3 uorjeztwrldy (T

Table 1 compares the major features of these packages.

There are several other consequences of these difficulties. The interested
user is deterred from trying several different codes on his problem because
the use of each new NLP package requires a complete duplication of effort.

A programmer would have to code one main program, nine subroutines, and three
sets of data cards for each NLP problem. Even using the same algorithm with
different options is a tedious process. 'Research in nonlinear programming
(effects of different tolerance checks, choice of starting points, comparison
of algorithms on various problem classes) is thus discouraged and probably
greatly curtailed. The maintenance of a library of NLP problems also becomes
a large and time-consuming undertaking.

Our first step in developing a Multi Purpose Nonlinear Optimization System——

MPNOS was, therefore, the definition of a standard NLP problem:

max (or min) f(x)
subject to gi(x) €0 i=l,...,k
hi(x) =0 i=k+1,..,m

aj £ x; £ bs. j=l,...,n

We then converted the four programs to accept this standard description of
the problem in the form of two FORIRAN subroutines, FUNCS for function eval-
uation and GRADS for gradient evaluation.
The next step was the design and implementation of an interactive computer
program that would integrate the available codes into a unified NLP system.
We feel that certain capabilities are of prime importance and should over-
ride other considerations:

- simple problem description

- quick option selection and.problem rerun

— easy and natural switching between algorithms.

There are several other features that we believe should be included in

the "ideal" system. Some of these are user-oriented, and others deal

with the specifics of implementation. Table 2 lists some of these desir-
able system attributes.

The actual implementation of MPNOS Version 1.0 incorporates most of the
features listed in Table 2. Some of the features are implemented in a
rudimentary form and some are left out completely.

The user interfaces with the system by responding to prompts. The use

of prompts is in direct contrast with the MPOS System {2] which is:command
oriented and allows the user to enter the problem in its algebraic form
without coding FORTRAN subroutines. However, an analogous system for
nonlinear programming would involve the development of a symbolic alge-~
braic manipulator requiring a great deal more programming effort.

Instead, MPNOS invokes a text editing program through which the user
enters the FORTRAN subroutines, edits them, and writes them to a file

for compilation. Nextithe FORTRAN compiler compiles the FUNCS and GRADS
routines. If there are errors, they are listed on the terminal and the
user is sent back to the text editor for another try. If there are no
errors, control is returned to MPNOS for further prompts. (It should be
obvious at this stage that no attempt was made to comply with the porta-
bility feature (no. 13). The very real constraints of time and economics
dictated that we produce a working system in a short time. In fact, once
the system was designed, the implementation phase of the project took ap-
proximately one month.)

After compiling the subroutines, MPNOS asks the user to describe the problem
(max or min, number of variables, constraints, bounds, starting point, etc.).

Many of the prompts require a "YES" or "NO" response. If instead the user

10.

11.

12.

13.

Table 2

Desirable Features of an Interactive NLP System

Problem description is simple and is done once for all algorithms.
Problems can be quickly rerun after a few option changes.

User can switch easily and naturally between algorithms.

User interface is prompt driven and uses traditional NLP terminology.
Prompting can be overriden by keyword commandsj; data input is free-form.
The novice user can receive "help" in the form of verbose prompts.
Automatic derivatives checking (numerical differencing)

User can monitor all system parameters (objective function, current
point, constraint values, dual variables, gradient values, norms, etc.)
Interactive user can manipulate all the parameters available to the
batch user.

New algorithms should be easily incorporated into the system.

Programs written in a manner conducive to interactive processing (i.e.,
they are broken into segments each requiring small amounts of computer
storage).

Computer storage allocated dynamically based on problem size.

Entire system easily portable between different types of computers.

types "HELP", MPNOS prints up to five lines of information pertaining to the
problem.
Once the problem has been described to the user's satisfaction, MPNOS asks
the user to select an algorithm, the number of iterations, and a printout
interval. Then execution begins on the selected algorithm. Each of the
algorithms remains as a stand-alone main program with certain modifications.
The data for the problem is transferred back and forth among MPNOS and the
algorithm main programs on a temporary disk file. The algorithms have also
been modified to print intermediate results on the terminal. (See Section V
for a demonstration of the program operation.)
Upon completion of the specified number of iteratioms (or if an optimum or
error occurs), the user can select an option from the following "menu':

1. Continue with this problem

2. Enter a command

3. Start a new problem

4. Stop
Option 1 prompts the user with regard to changing the current point and the
variable bounds. The user is again asked to select an algorithm, iteration
count, and printout interval and execution resumes.
The user who wishes to continue the problem without making any changes can
select option 2. The system then expects to see a command of the form:

SUMT, 10, 3

which means make ten iterations using SUMT and print intermediate results
every third iteration. MPNOS immediately proceeds to the execution of the

algorithm,

Option 3 returns the user to the text editor for entry of a new set of FUNCS
and GRADS routines.

In this initial system, the user is only asked about a few algorithm param-
eters. For example, the GRG user is asked to set the tolerances for con-
straint feasibility and two stopping criteria. All other parameters avail-
able to the batch user are set to their default values. Future versions of
MPNOS will allow the user to manipulate all the-algorithm parameters.

The intermediate printout at the terminal consists of the iteration number,
the objective function value, and the current point. In order to fulfill
the requirements of feature number 8, all four algorithms produce their
standard output which the user can send to the batch printer after the
MPNOS run. An obvious benefit of this batch output is that it provides the
user with a log of the MPNOS run.

The implementation described here and illustrated in Section 5 is a subset
of the final version of MPNOS as we envision it. The system flow chart

follows in the next section.

10

4. SYSTEM FLOW CHART

FUNCS
RHD BRROS =2
WRITTEN

L

TEXT EDITER RETRIEVE THE
REVICUSLY
UGER WRITES FREVI
FUNCS KD KRITTEN
: FUNCS AHD GRADS

GRADS

i j

+ ¢

FORTRAN CSHP.

STCRE CCHMPILED
BUBRCUTIRES
8N FILE BSESE3Y

SUCCESSFUL.

CorP ILRATION

PREBLEM DESCR.

HRX R HIN
Ng. GF VRRS.
- HO. OF
CSHSTRAINTS)
LINEAR
PROFERTIES
CONVEXITY

SET
STRRTINS POINT
70 ZERG

11

DIFFEREN
STARTINS
POIRNT

ERTER
THE NEW
ETARTING POINT

BERIVATIVE
CHECKINS

FERFERM
DERIVATIVE
CHECKINS

DERIVATIVE
ERRGRS

CHANGE
LGHER
BOUNDS

ENTER
LGHER
BOURDS

ARE THEY
CORRECT

oS

4

SET DEFRLALT
UFPER ARD
LORER SEUNDS

ERTER
UPPER
BREOS

12

SELECT>
1 CONTINUE
WITH PROBLEM
2 .ENTER R
COHERND
3.8TART A
HEW PROBLEM
Y .sTOP
1 2| 3] 4
ALASR I THM
DRIVER L1l
- SELECT 8N
ALGERITHY
~ NUMSER 6F
ITERATICKS T8
- PRIKTEUT 8TART
INTERVAL
} ENTER
NEH STRRTING —
ENTER THE POINT
PRRAMETERS
FOR THE ERTER
SELECTED]
RLBCRITHM COBEAAHD
4
EXECUTE THE
8ELECTED
ALEGRITHH
CHAREE
I

VARIRSLE

EXECUTE THE BOUNDS
SELECTED
ALETRITHH v
ENTER NEW
VARIRBLE

BBURDS

5. EXAMPLE

YELCOME TO MPNOS CVERSION 1..0)
MULTI-FURPOSE NONLINEAR OPTIMIZATION SYSTEM

07/27776 14425006

HAVE YOU WRITTEN THE FUNCS AND GRADS ROUTINES? <Y OR N)
7Y

ARE THEY EDITOR SAVE FILES? (Y OR N2
7Y
EDITOR READY

7 OLD FUNCS PWwFPF. -y retrieve previously written text

CREATED 07/15/76 10.08.11%
30 LINES READ

14

7 LIST . 73
10 SUBRGUTINE FUNCSCIS RO T) 11st the text
20 DIMENSION X(2) .
30 JeI+t |
40 . GO TO €100,200,300,4003,4
SO0 100 F=X(1)#%2-X(2)#%2 FProblem 1 :
60 RETURN } 2 2
70 200 Fe=X(1)=LetX(2)%%2+7T. _ Max f(x) = x7 - x
80 RETURN 1 2 2
90 300 F=X(1)*X(2)=~9. S.t. x) = - - + <
100 RETUFN L gl() 1 2x2 750
110 200 FeX(1)=X(2>-S. _ i
120 RETURN gy(x) = x,%x, = 9 $0
130 END ,
140 SUBROUTINE GRADSCI,X, G) 93(X) = x, ~x, -5 =0
150 DIMENSION X(2), 6K 2) ' 2
160 Jelel | -
176 . GO TO €100, 200, 300, 460),J]
180 100 GC1)»2.XC1) See page 19 for a plot of the feasible
190 GC2)w=2e4X(2) region and level curves of f.
200 RETUBN :
¢S,C OR RETURN)?.
210 200 GC1dm=l. .
220 Gl2Im=8.4X(2)
230 RETUFN
£40 200 GC1I)®X(2)
250 GC2Y=X(1) . .
260 RETURN
270 400 GC1)=1s
280 GC2I=-1.
290 RETURN ;
300 . . END L :
? STOP . Leave text editing and compile subroutines
SUBROUTIKES FUNCS AND GRADS ARE BEING COMPILED.
IS THIS A MAX OR MIN PROBLEM?
? MAX
ENTER THE NUMBER OF VARIAELES IN THE PROELEM.
? 2
HOV MANY INEQUALITY CONSTRAINTS?
12
HOV MANY EQUALITY CONSTRAINTS?
? 1
1S THE GBJECTIVE FUNCTION LINEAR? (Y OR N}
TR
ARE ALL THE CONSTRAINTS LINEAR? (Y OR N?
TN
IS THE CONSTRAINT SET CONVEX? (Y OR N)
? HELP —- Note use of 'HELP’ command

THE CONSTRAINT SET ¥ILL BE CONVEX IF EACH INDIVIDUAL CORSTRAINT |
1S CONCAVE. MAXIMIZING A CONCAVE QLJECTIVE FUNCTION OVER A CONVEX |
CONSTRAINT SET ¥ILL RESULT IN A GLOBAL MAXIMUM. MINIMIZING A CONVEX
FUNCTION WILL RESULT IN A GLOBAL MINIMUMe IF YOU ARE NOT SURE
WHETHER THE CONSTRAINT SET 1S CONVEX, ANSWER 'N°.

IS THE CONSTRAINT SET CONVEX? (Y OR M)
TN

CHECKX THE PROBLEM DESCRIPTICON.
THIS IS A KAX PROELEM VITH 2 VARIAHLES,
2 INEQUALITY CONSTRAINTS AND 1 EQUALITY CONSTRAINT .
THE OBJECTIVE FUNCTION 15 NONLIHNEAR. .
THE CONSTRAINT SET 1S NONLINEAR AND NONCONVEX.

1S THE DESCRIPTION CORRECT? (Y CR W
Y

DO YOU RAVE A STARTING POINT FOR THE PROBLEM? (Y OR N)
*Y

ENTER TRE NEW STARTING POINT COORDINATES CSEPARATED BY COMMAS)

? -25,-25 free~form input of data

CHECK THE NUMBERS.
~25.0000 ~25.0000

1S THE DATA CORRECT? (Y OR N)
Ty

$O YOU WANT T0 CHEGK YOUR DERIVATIVES? (Y OR N)
' 3]

THE VARIABLES ARE BOUNDED BELOY BY -1000 AND ABOVE BY +1000.

D0 YOU VANT TO CHANGE THESE BOUNDS? (Y OR N)

™y
SELECT AN ALGORITHM (GPH, GRG,MCL. SUNT)

? GRG

HOY MANY I1TERATIONS SHOULD BE MADE USING GRG ?

?s

ERTER THE ITERATION PRINTOUT INTERVAL.

1

THE CURRENT TOLERANCES ARE EPSILG « 10000E-05

EPSILI +1000CE~0%
EPSILE « 1000DE-0S

DO YOU WANT TO CHANGE THE TOLERANCES? (Y OR M)
? RELP

EPSILO - ZERQ TOLERANCE FOR TME CONSTRAINTS WHICH MUST BE *LE* TO O.
EPSIL) ~ ZERQ TOLERANCE FOR THE GRADIEWNT OF THE OBJECTIVE FUNCTION.
' EPSILZ2 -~ RELATIVE CHANGE TOLERANC. FOR THE PROJECTED REDUCED GRADIENT.
ONLY ENTER THE ITEM T0 BE CHANGED. TO CHANGE EPSIL2 TO lE-8 TYPE IN
2 JE-8

DO YOU VANT TO CHANGE THE TOLERANCES? (Y OR W)
TN

EXECUTING GRG
1TER . OBJ FUNC “ CURRENT POINT

! =.13319E+06 «13364E+02 »10556E+CE augmented objective function
2 ~74509.3992 1142721 69791
3 -19951.1737 Be 4325 3.4351
4 39.0512 644051 144051
OPTIMAL SOLUTION GRG EXIT CODE=1
DO YOU VANT TO 1~CONTINUE ¥ITH THIS PROBLEM

8~ENTER A COMMAND
' 3~START A WEY PROELENM
- 4~ STOP

DO YOU WANT TO CONTINUE FROM THE CURRENT POINT? <Y OR N)
TH .

ENTER THE MEW STARTING POINT COORDINATES (SEPARATED BY COMMAS)
? ~-25,30
CHECK THE NUMBERS.

-25.0000 300000

1S THE DATA CORRECT? (Y OR N)

Ty
DO YOU WANT TO CHANGE ANY VARIAELE LOVER BOUNDS? (Y OR N)
N
.DO YOU WANT TO CHANGE ANY VARIARLE UPPER BOUNDS? (Y OR N)
N
SELECT AN ALGORITHM (G™M,GRG,MCL» SUMT)
? SUMT
_HOV MANY ITERATIONS SHOULD BE MADE USING SUMT?
73
ENTER THE ITERATION PRINTOUT INTERVAL.
t 1
THE CURRENT PARAMETERS ARE EPSI » 10000E- 05
THETAO « 10000E-~05
KHO +59605F-07
..DO YOU ¥ANT TO CHANGE THE PARAMETERS? (Y DR M)
? HELP
EPSI - ZERO TOLERANCE FOR UNCONSTRAINED SUSPROELEMe

THETAO -~ ZERO TOLERANCE FOR OPTIMALITY.
RHO -~ STARTING VALUE FOR SUBPROELEY PARAMETER R(K). .
ONLY ENTER THE ITEM TO BE CHANGEDe TO CHANGE THETAO TO 1E=7 TYPE IN

+1E=-7
DO YOU WANT TO CHANGE THE PARAMETERS? (Y OR N)
Ty
OKe FLEASE ENTER THE PARAMETERSe (SEPARATED EY COMMAS)
? 401

CHECK THE NUMBERS. . .
«10GOCE-05 +10000E~05 < [0OO0E+0]

15 THE DATA CORRECT? (Y OR N)
Y

CURRENT METROD FOR UNCONSTRAINED MINIMIZATION 1§ NEWTON- RAPHSON

DO YOU ¥aNT TO USE A DIFFERENT METHOD? <Y OR N>
7N .

EXECUTING SUMT

ITER OBJ FUNC .. CURRENT POINT .] ,
1 +24322E+05 «15596E+13-.23860E+0] emeemwm= 3 Iterations-.using SUMT

2 15.7761 441488 ~1.1986
3 12.3804 3+ 7430 ~1e2764
- DO YOU WANT TO 1-CONTINUE VITH TH1S PROBLEM

2-ENTER A COMMAND
3~START A NEV PROELEM

_ 4-STOP
72
'}H(;;ER THE COMMAND. - note command mode switch from SUMT
. . to GRG
EXECUTING GRG
ITER 0BJ FUNC CURRENT POINT
a “6+5067 3.7427 -1.2762
5 =3.6262 3.7391 ~1.2769)
.6 12.1922 3.7192 ~1:2808 guemn= 3 iterations using GRG
OPTIMAL SOLUTION GRG EX1T CODEw]
DO YOU WANT TO 1-CONTINUE VITH THIS PROBLEM

2-ENTER A COMMAND
3=-START A NEV PROBLEY
A-STOP

EAVE YOU YRITTEN THE FUNCS AND GEADS ROUTINES? (Y OR W)
1Y

ARE THEY EDITOR SAVE FILES? (Y OR W)
Y

EDITOR READY

? OLD TPl PU=TTT

CREATED 07718776 00+427<00

25 LINES READ

L . o

10 SUBROUTINE FUNCSCILX,F) Problem No. 2

20 DIMENSION X(2) 2
30 JuIisl . _ -

40 . G0 TO <100, 290, 3003sJ. min £(x) =(x;-2)
S0 100 Fa(X(1)=2¢)%%x24({XC2)-fod 402

60 RETURN 2
70 200 F=0.25%X(1)##2+X(2)xx2=1a =

80 pl-ekii s.t. gl(x) 0.25xl
90. 300 F=X(1}~ 2.*){(2)0].

100 RETUEN =

110 END. . . g,(x) xl
120 SUBROUTINE . GRADSC1.X, G}

130 DIMENSION X(2),G¢2)

120 Jerel .
150 ... GO.TO €100, 200, 3003,d

160 100 GC1)=2.%(X(1)=24)

170 GC2)=2ew(X(2)=16)

180 RETURN

190 200 G(X)BOoS*X(l)

200 GC2Ym 2o %X (D)

¢S,C OR RETURN)?

2i6 . RETURN

200 300 G6C1)=1l,

230 G(2)m-2,

240 RETURN

256 . . END

1 STOP

SUBROUTINES FUNCE AND GRADS ARE BEING COMPILED.

IS THIS A MAX OR MIN PROELEM?
* MIN

_ENTER THE NUMBER OF VARIAELES IN THE FROELEM.
7 e

_HOV MANY INEQUALITY CONSTRAINTS?
1

HOW MANY EQUALITY CONSTRAINTS?
71

1S THE OBJECTIVE FUNCTION LINEAR? (Y OR M)

ARE ALL THE CONSTRAINTS LINEAR? (Y OR N>
TN

1S THE CONSTRAINT SET CONVEX? (Y OR N)
TN

CHECK THE PROBLEM DESCRIPTION.
THIS IS A MIN PROFLEM WITH 2 VARIAELES,
1 IREQUALITY CONSTRAINT _AND 1 EQUALITY CONSTRAINT «
THE OBJEGTIVE FUNCTION IS NOWLINEAR.
THE CONSTRAINT SET IS NONLINEAR AND NONCONVEX.
1S THE DESCRIPTION CORRECT? (Y OR N)
Y ’

DD YOU HAVE A STnBTING POINT FOR THE PROBLEM? (Y OR ¥)
1Y

ENTER THE NEV STARTING POINT COORDINATES ¢ SEPARATED BY COMMAS)
1 22

CHECK THE NUMBERS.
2.0000 240000

IS THE DATA CORRECT? (Y OR K)
7Y

DO YOU ¥WANT TO CHECK YOUR DCRIVATIVES? (Y OR N)
N

’

THE VARIABLES ARE BOUNDED BELOW BY -1000 AND ABOVE BY +1000.

DO YOU WANT TO CHANGE THESE BOUNDS? (Y OR N)
N

SELECT AN ALGORITHM GPM,GRG,MCL, SUNT)
7 suuT

HOY MANY ITERATIONS SHOULD BE MADE Using SUMT?
® 50

ENTER THE ITERATION PRINTOUT INTERVAL.
21

2
+ (x2—l)
2
+ 2;Q2 - 1

- 2x2 + 1

in

THE CunionT PARAMMETESRS ARD

DO YOU WANT TO CHAMGE THE PARAMETERS? (Y OR N)
Y

0K+ PLEASE ENTER THE FARAMETERS. (SEPARATED EY CONMAS)
LEPYR!

CHECK THE NUMBERS. .
«{0000E~05 « {00CGE-G5 o 10000E+0}

IS THE DATA CORRECT? (Y OR M)
3 4

CURRENT NETHOD FOR UNCOMSTRAINED MINIMIZATION 1S HEVTON-RAFPHSON

DO YOU VANT TO USE A DIFFERENT METHOD? (Y OR W)
*N .

EXECUTING SUMT

ITER 0B FUNC CURRENT POINT
1 1.4122 + 5689 + 6558
2 13787 «8309 8911
3 1.3%24 «5234 2102 . .)
5 1.3934 8229 .91y < Run with default tolerances
.8 .1.3935 8229 «9lla
OPTIMAL S0LUTIONW

DO YOU VANT TO 1-CONTINUE WITH THIS PROBLEM
2-ENTER & COMMAND
3-START A NEV PROSLEM
&-5TOP

-

t
_P0 YOU WANT TO CONTINUE FROM TRE CURRENT PGINT? (Y OR X)
T

ENTER TEE NEW STARTING POINT COORDINATES C(SEPARATED BY COMMAS)
7 22

CHECK THE NUMBERS.
200090 2.0000

IS TRE DATA CORRECT? (Y OR W)
Ty

_DO YOU VANT TO CHANGE #NY VARIAELE LOVER BOUNDS? (Y OR W)
5
_P0 YOU VANT TO CHANGE ANY VARIAELE UPPER BOUNDS? (Y OR K)
'3

_SELECT AN ALGORITHM (GPMsGRG,MCL» SWAT)
7 StMT :

EOV MANY ITERATIONS SHOULD EE MADE USING SIMT?

? 50

ENTER THE ITERATION PRINTOUT INTERVAL.

? 1

THE CURRENT PARAMETERS ARE EPSI + 100005~ 05
THETAO .+ 10000Z-05
FHO +95867E-D6

_DD YOU VANT TO CHANGE THE PARAMETERS? (Y OR N)

Y

_OKe PLEASE ENTER THE PARAMETERS. (SCPARATED EY CO:MAS)

? 1E-9,1E-9,1 - Tighten tolerances & merun

CHECK THE NUMBERS, . .
«10000E~08 «10000E-08 «100QOE+01

15 THE DATA CORRECT? (Y OR W)
1Y

CURRENT METHOD FOR UNCONSTRAINED MINIMIZATION IS NEWTOM- RAPHSOM

PO YOU YANT TO USE A DIFFERENT METHOD? (Y OR ¥)

18

e Send batch output to

EXECUTIRG SUMT remote printer

ITER OBJ FUNC CURRENT POINT

1 1.a122 +8589 + 6355 ' CONTBOL CARD3:

2 143786 .8209 8911 % DISPOSE, OUTPUT: PR.

3 1.3924 6234 9102 t2E T PR

A 12934 3229 9114

s 143935 <8229 <9154 A :

] J+3935 L 229 «0114 DA‘.II‘!LE Ag OF Y .

7 1.3738 8229 -9114 DISPOSES OUTPUT, Poe
MO FEASIELE SOLUTION. (OPT SUBROUTINE) CONTROL CARDE:

. . ? 3LOGOUT

DO YOU VANT TO 1-CONTINUE VITH TH1S PROFLEM

2-LWTER A COMMMND
J~START A NEV PROTLEN
2~ 5T6GP

19

+ -+ 0oc*ot-

oom. 01 000*8 @o. 9 oom. h 0002 moo. oom. e- oom. h- oom. 9- . ooo..wl oo0- U=

e 3 OOO- wl

P@ y + 000°8-

=3 \ \ & i '
o .icg % 4 '\ 0 nw. + 000*h-

000*e-

d
a

'
4—

000°*

uoiday
91Qq1ISed,] wmnwem .
+ 000'2

ow?m«-f-- _
uoymos Jewndo fraoro r e x =(x)'6

+ 000*h

+ 0008

05 b-ax (Db
+ 000’8

1 wetqoad wo ydeis

L gpool

SIXY eX

20

6. Evaluation and Possible Extensions

In this paper we described an interactive system for nonlinear optimization.
The prototype as implemented on our CDC 6400 computer has not yet been used
by students and researchers to enable-:us to gather information about the
design of the interface between the prompting program and the separate algo-
rithms. It will be important to reassess users' needs with respect to this
experimental verseion and make the necessary changes/additions in future
versions.
We have identified a number of practical and theoretical problems for study
in thinking about possible extensions of MPNOS:
a) An archive of test problems which appear in the literature or can be
obtained from other institutions or through the SIGMAP problem certification
group []4] could be coded only once and run on our system. This would provide
very useful and practical information about the relative performance of the
four codes.
b) Provide graphics capability for bivariate problems on Tektronix or Imlac
CRT's.
¢) Further modularization of the individual codes to

~ monitor performance of one-dimensional search and step sizes (cubic in-

terpolation, bisections, Golden Section, Fibonacci search,

- evaluate convergence properties of the code based on the norm chosen,

- study search directions, e.g., conjugate, Newton, quasi-Newton.
The need for an interactive programming system for nonlinear optimization is
great in both teaching and research. An effort such as MPNOS, properly car-
ried out according to the objectives stated in Table 2, would provide a simple
to use and hopefully reliable computing capability. While there is no distrib-
utable package at the moment, we would like to establish contacts with users
and algorithm implementors to obtain information on existing codes and to

discuss interfaces and documentation.

10.

7. References

Aronofsky, J., Ed., Progress in Operations Research, Vol. III, John Wiley

(1969).

Cohen, C.,and J. Stein, MPOS - Multi Purpose Optimizations System Version

3 User's Guide, Vogelback Computing Center (1976).

Denel, J., "Solution of non linear optimization problems by the method of

centers linearized" (in French), Bulletin de la Direction des Etudes et

Recherches, Vol. 1, Electricite de France.(1973).

Dyer, J., "Interactive Goal Programming', Management Science, Vol. 19, No. 1,

(1972), pp. 62-70.
Dyer, J., "A time sharing computer program for the solution of the

multiple criteria problem'", Management Science, Vol. 19, No. 12 (1973),

pp. 1379-1383.
Geoffrion, A., J. Dyer, and A. Feinberg, "Interactive approach for multi

criteria optimization', Management Science, Vol. 19, No. 4 (1972), pp. 359-

368.

GPM/GPMNLC - Gradient Projection Method for Non Linear Programming, Docu-

ment No. 365, December 1975, Vogelback Computing Center, Northwestern
University.

GRG - Generalized Reduced Gradient for Non Linear Programming, Document No.

315, February 1974, Vogelback Computing Center, Northwestern University.
Huyranne, L. P.,and G. M. Weinberg, "Computerized hill climbing game for

teaching and research" in Optimization, R. Fletcher, Ed., Academic Press

(1970).

Lasdon, L., Optimization Theory for Large Scale Systems, McMillan (1970).

21

11.

12.

13.

14.

15.

16.

MCL - Method of Centers (Linearized) for Non Linear Programming, Document

No. 396, July 1976, Vogelback Computing Center, Northwestern University.

Polak, E., Computational Methods in Optimization, Academic Press (1971).

SUMT - Sequential Unconstrained Minimization Techniques for Non Linear

Programming, Document No. 200 (A), February 1975, Vogelback Computing
Center, Northwestern University.
Tomlin, J., '"Computational Standards for the Mathematical Programming

Society", ACM SIGMAP News-letter, November 1973.

Zangwill, W., Nonlinear programming: a unified approach, Prentice Hall

(1969).
Zionts, S. and J. Wallenius, "An interactive programming method for

solving the multiple criteria problem", Management Science, Vol. 22,

No. 6 (1976), pp. 652-662.

22

