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1. Introduction

Two players, about to play a cooperative game, are unable to come to
a binding agreement concerning their joint action. They resort to binding
arbitration. The arbitrator seeks to assign a fair outcome (in some sense)
to the game. There have been several suggestions in the game-theoretic
literature as to how the arbitrator should proceed when he has complete in-
formation about the game. The problem has been less well-studied for the
case of incomplete information on the part of the arbitrator. The major
difficulty is that if the arbitrator must rely on the players to reveal in-
formation about the game, the players may have incentives to lie, depending
on their expectations as to how the information they provide will be used.

In our view, the arbitrator's problem is to design a new noncooperative
game for the players and a function from outcomes in this noncooperative game
to outcomes in the original game. It would be nice if, based only on his
incomplete information, the arbitrator could always construct a noncooperative
game with a unique pair of undominated strategies which would give rise to
a fair Pareto optimal outcome in the original game. In general, this seems
too much to hope for; although our goal here is not to prove impossibility re-
sults. We shall show instead that a class of procedures (generalizing Nash's
extended bargaining solution [9]), which seems to be a reasonable class for
the arbitrator who has complete information about the game, can be recast
as a class of schemes for the arbitrator who has very limited information
about the game. More specifically, we shall establish certain desirable pro-
perties of these schemes when both players have finite pure strategy sets,
Von Neumann-Morgenstern utilities, and complete information; all jointly

randomized strategies are possible; the arbitrator has complete information
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about the strategy sets; and the arbitrator has no information about the
utilities of the players for any joint strategies.*

There is an extensive game-theoretic literature on bargaining and
arbitration with complete information (see 3], [5], [6], [8], [9], {11],
f12], [15], for example; and [7] and [10] for summaries of other approaches).
To our knowledge, the only work on incomplete information is the fixed-threat
model of Harsanyi and Selten [4]. In the Harsanyi-Selten model, however,
the players have incomplete information; and there'is no arbitrator. They
propose a generalization of the Zeuthen-Nash solution. In our models, the
players are assumed to possess complete information; and the arbitrator's
information is either complete or severely restricted.

In Section 2, we shall describe a generalization of the Nash extended
bargaining solution and discuss its properties for the case of the
arbitrator with complete information. 1In Section 3, we shall describe how
the information-restricted arbitrator may create schemes with desirable
properties based on the solutions in Section 2. 1In Section 4, some possible

variations and extensions are discussed.

2. The Complete Information Case

Let (A,B) be a pair of m xn payoff matrices for a fixed (but arbitrary)
2-player cooperative game in normal form. Let the set of mixed strategies
for player 1 be

m
Sl={x=(x1,..., xm)ZO: ]E}]_ x, =1}

and for player 2 be

n
Sz={y= 0’1,..., an)ZO: ng y.=1].

The set of correlated strategies is denoted



m n
S=£z=(zll,..o, zmn)ZO: = 20z .=1}.

The pair of mixed strategies (x,y) gives rise to the correlated strategy
T . . .

z=xvy (i.e., zi:.| =Xiyj for i=1l,.e., m, j=l,c..., n).
For any correlated strategy z, the expected payoff to player 1 is

and to player 2

m n
vo(z)= 2, 4z, b
2 i=1 3j=1 M

th
(where ai:.| and bij devote the (1,j) elements of A and B, respectively).
A correlated strategy z is efficient for (A,B) if there is no correlated

strategy z' such that
v (z")2v (&), v,(z") 2v,(2), and (v (2"), v,(z") # (v; (2), v,(2)).

The completely-informed arbitrator's problem is to select a correlated

strategy z with the following properties:
1) =Z is efficient for (A,B);

- . <« — R -
2) vy (z) > max min 2Jis xiyjaij’ and v2(z) > max min 22X

Y.b..3
) _ R A T &
xES1 yESZJ.j yESZXESIJ.J

and
3) (v1 (;), VZ(_Z-)) is in some sense fair.

Thus, for any bimatrix game, the arbitrator must produce an efficient,
individually rational (for otherwise, one of the players has a strong in-

centive to avoid arbitration) correlated strategy which is, by some standard,

equitable.
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Let g: S9»S be any function satisfying

4) g(s) is efficient, for all s € S;

5) vk(g(s))ZVk(s), for all s€S and for k=1,2;

6) Vi °©g is continuous and quasi-concave for k=1,2.

Now consider the noncooperative game H, depending on A,B, and g defined as
follows. The pure strategy set for player k is Sk (k=1,2) and the payoff

pair associated with the pure strategy combination (x,y)€581 X8, is
T
(vl(g(x v)), vz(g(xTy))). It will not be necessary to introduce mixed

strategies in the game H. The following is the obvious extension of Nash's

observation [8].

Theorem 1: a) There exists at least one Nash equilibrium pair of
strategies (x*,y*) in H.
b) If (x*,y*) is a Nash equilibrium in H, then g(x*Ty*) is

efficient for (A,B).

c) All Nash equilibria in H give rise to the same payoffs and
are interchangeable.

d) If (x*,y*) is a Nash equilibrium in H, then

v'(g(k*Ty*))Z max min o 2 x.y.a,. and
1 . s 173 1]
;<€Sl yGESZ i ]

v (g(x*Ty*))Z max mwin 25 X x.¥.b..
2 . s+ 173 1]
y € S2 x € S1 i j

Proof: a) The existence argument is a standard one. For each y€ESZ, let
= - ~T T
C, 3 ={x€s8;: v &Y 2v,(gkY)) all x€5,];

i.e., Cl(y) is the set of best responses to y by player 1. Similarly, define
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Cz(x) to be the set of best responses to x by player 2 for all xEESl. From
the continuity of vlo g and the compactness of Sl’ Cl(y) is nonempty for

all yEESz. From the quasi-concavity and continu?Ffiof v1° g, Cl(y) is a
convex-valued upper semicontinuous correspondence., Similar properties hold
for Cz(x). The correspondence which maps (x,y) into Cl(y) XCz(x) therefore
satisfies the hypotheses of Kakutani's fixed point theorem. Any fixed point
is a Nash equilibrium, however.

b) Property 4).

c) Let (x*,y*) and (x',y') be any two Nash equilibria in H. Then
T N T
v, (g(x'" y9)) <v,(gx""y").
With b), however, this implies
T T
vl(g(x' y*))zvl(g(x' y')).
Hence, we have
2L T . T
v, (8x*y*)) 2v, (g&x"y¥)) 2 v, 6" y").
By reversing the roles of (x¥,y¥) and (x',y') we obtain

vy (g (X'Ty')) zv, (g (X*Ty*)) .

Hence equality.everywhere. Similarly for player 2's payoff.

d) Suppose x quaranteed more than-vl(g(x*Ty*)) for player 1. Then, in
particular, it would yield a higher payoff against.y*. But vl(x?y*):gvl(g(xTy*)) <

vl(g(x*Ty*)), a contradietion. Similarly for player 2. ][

The completely-informed arbitrator may solve his problem by selecting any
g which satisfies 4), 5), and 6), computing any Nash equilibrium (x*,y*) for
the resulting game H, and producing z*==g(x*Ty*) as the arbitrated outcome
for the original game. The efficiency and individual rationality of z*
follow from Theorem 1. The fairness of z* depends largely on the specific

form of g. {(Note that since all equilibria of H give rise to the same payoffs,

it does not matter which equilibrium is selected. Note also that a disequilibrium
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strategy not only hurts the responder but helps his opponent. Hence any

equilibrium strategy guarantees each player the equilibrium payoff, regardless

of the action of his opponent.)

We shall describe two particular functioné which satisfy 4), SS;Vand 65.
The first example is the function which results in Nash's extended bargaining
solution. To construct this function, first consider D(A,B) - the convex
hull of [(aij,bij) :i=1,..., my §=1,...,n}. With each nonextreme Pareto
optimal point p in D(A,B), associate the set of points in D(A,B) which lie
on the line segment having the negative of the slope of the Pareto optimal
segment containing p. Associate to each extreme Pareto optimum p in D(4,B),

all points in the remaining region touched by p. (See Figure 1.)
L] ope
2 s utility

Figure 1

W

Now for each correlated strategy z in S, first compute (vl(z), vz(z)), then

=—
/
1's utility

locate its associated Pareto optimal utility pair in D(A,B) and take g(z) to be

any correlated strategy yielding that utility pair. Properties 4), 5), and 6)

follow immediately.
The second example is related to a fixed-threat scheme in [6] and [11].

For every point p in D(A,B), consider the line segment joining p to
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(max a,,, max b,,). Now, associate with p the Pareto point in D(A,B)
@.n 2 oap

which lies on its line segment. (See Figure 2.)

2's utility

Figure 2

1's utility

Again, for each z first compute (vl(z), vz(z)). Then take the associated Pareto
optimal point in D(A,B) and choose for g(z) any correlated strategy yielding
that utility”vector;‘ Again, properties-4), 5), and 6) are easy to verify.

In both instances, arguments for particular notions of fairness repre-
sented by the respective g's may be found in the respective references.
Note that actual computation of the arbitrated outcome in both of these
instances may be difficult in practice.

As demonstrated by these two examples, Theorem 1 can be used to extend
many solutions for the fixed~threat bargaining problem to the variable-

threat problem.



3. The Incomplete Information Case

The situation in this section is the same as that of the previous section;
except that we assume that the arbitrator does not know the pair (A,B),
but only that the game is an element of the set I' of all 2-person, mxn,
normal-form games. The players, on the other hand, know exactly which element
of ' is before them. The arbitrator's problem here is to design a non-
cooperative game for the players, the outcome of which will become the
arbitrated outcome of the original cooperative game. He must do this in such
a way that the arbitrated outcome can be expected to be efficient, individually
rational, and fair in the game (A,B). This must all be accomplished, of
course, in such a way that the arbitrator does not make use of any information
concerning the true game (A,B).

Here are some unsatisfactory schemes which the arbitrator might use.

a) Force the players to play (A,B) noncooperatively. Unfortunately,

there is no reason to expect a Pareto optimal outcome for this scheme.

b} Pick a player at random. Let this player dictate a correlated
strategy for the cooperative game. Unfortunately, even if we could be sure
that an efficient strategy would be selected by the dictator, the scheme

would not be !

'ex ante" Pareto optimal in that it produces a random combination
of Pareto optima which is not, in general, Pareto optimal., In addition,

individual rationality is not guaranteed.

c) Ask each player what his payoff matrix is, then use one of the
arbitration schemes from Section 2 on the reported pair of matrices. Un-
fortunately, for any specified function g, there will usually exist incentives
for the players to misreport their utilities. Thus it is not in general

likely that this scheme will even result in efficient correlated strategies



for the cooperative game.

Consider now the following noncooperative game. First, the arbitrator
announces a function g satisfying 4), 5), and 6) for each (A,B) €I'. (For
what follows it is simplest to redefine g so that its domain is (S xI)). For
each player k, the set of strategies is (Sk)<F), i.e., each player selects a
mixed strategy for himself (a threat) and a game (interpreted as his repart of
the true underlying ccoperitive game). The outcome is.determined as follows for
the strategy (x,Al,Bl) of player 1 and (y’AZ’BZ) of player 2. 1I1f A1=?A2 and

B the outcome is g(xTy,Al,Bl). If A1 #Az or if B1 #Bz, the outcome

17 B2
. T s 1s s . .

is x"y. The utilities for all of these strategy combinations are the
utilities for the resulting correlated outcomes in the original cooperative

game. The noncooperative game will be denoted G(A,B,g). Note that the game

G(A,B,g) can be imposed by the arbitrator without his knowledge of (A,B).

Theorem 2: For fixed (A,B,g), let H be defined as in Section 2. Let (x¥%,y%)
be any Nash equilibrium for H. Then ((x*,A,B), (y*,A,B)) is a Nash
equilibrium for G(A,B,g) which yields an efficient, individually rational

correlated strategy for (A,B).

Proof: Consider 1's best response to (y*,A,B). No matter what element

from S1 he chooses, he cannot do better than to report (A,B), since g satisfies
5). If he reports (A,B), however, he cannot do better than to select x%,

since (x*,y*) is a Nash equilibrium for H. Similarly, (y*,A,B) is a best

, i T .
response to (x*,A,B). The efficiency and individual rationality of g(x*y¥*, A,B)

follow from Theorem 1. l‘
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A major difficulty with arbitration schemes of this class is that there
generally exist many other Nash equilibria for the game G(A,B,g). Many of
these equilibria involve both players reporting a pair (A',B') # (A,B).

One may think of such equilibria as having one player convincing the other
that he is committed to reporting (A',B'). 1If the choice of (A',B') is
judicious, the other player will have no choice but to report it also. See
{12] for related considerations. The equilibrium specified in Theorem 2 is
appealing, however, in that it is the natural one which is suggested in the
absence of communication. This fact alone weakens the ability of either
player to convince the other of his commitment to report something other
than (A,B). See [13] and [7] for intuitive discussions of this point.

As in the last section, it does not matter to the players which
equilibrium they select in H, as long as they both report the true (A,B).
The fairness of this particular class of schemes depends on the specific g
selected and on our willingness to believe that one of the truthful equilibria
of G(A,B,g) will arise. Of course, it would be nice to bg able to design
a noncooperative game with a unique equilibrium with desirable properties,

but that seems to be an impossible task in this setting.

4. Remarks

An obvious direction for further research suggested by this model is a
generalization to accomodate incomplete information on the part of the
players and different kinds of incomplete information on the part of the
arbitrator. The desirable features of the schemes described in Section 3
depend heavily on both players having complete information about the game
and the function g selected by the arbitrator, even to the point of both

players using the same choice of origin and scale factor for reported utilities.



-11-

This may be weakened, of course, by allowing the arbitrator to adjust both
reports to a common origin and scale before checking whether or not the
reports agree. Such a variation would have no effect on the result as

long as the function g was independent of affine utility transformations,
which is the case in the two examples of Section 2 (see [6] and [9]). 1In
addition, the arbitrator could tolerate other differences in the reports of
the players, as long as g(x*Ty*,Al,Bl) =g(x*Ty*,A2,B2)u

Unfortunately, it is not difficult to find examples in which arbitrarily
small differences in the reports would invalidate this last equality.

This would seem to rule out the use of our schemes except under conditions
of essentially complete information on the part of the players, conditions
rarely seen in practice.

On the other hand, our schemes make no use of any knowledge of the
players' utilities which the arbitrator may possess. A scheme which in-
corporated such knowledge might enable one to avoid (at least partially) the
assumption of complete information on the part of the players or the problem
of multiple equilibria,

Another possibility for generalization is to the case of more than two
players. In this context, it is interesting to note the similarities between
this work and the recent work on incentive mechanisms for economies with
public goods and other externalities (e.g., [1], [2], [14]). In particular,
the mechanisms described in [2] (and its references) and [14] have properties

very similar to the schemes we have proposed in Section 3.
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