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Stochastic Control of Competition Through Prices

ABSTRACT

We assume that the price of a product set by a firm affects
its immediate profit rate as well as the probabilistic rate .of
arrival of new firms into the industry. Therefore the firm's
optimal dynamic pricing strategy must balance the increased current
profits from setting a high price against the expected dilution of
future profits due to additional competition. We provide a continu-
ous~-time Markov decision model and characterize the structure of
the optimal control strategy and its sensitivity to the problem
parameters. We also indicate the relationship of our problem with

the queue control literature,



Stochastic Control of Competition Through Prices

S. D. Deshmukh and Wayne Winston

Consider an industry consisting of a number of competing firms .
that produce and sell a single product. Each firm's profit depends
upon the price of the product as well as the firm's market sharé,
the former is controllable while the latter is determined by the
competition. Moreover, the competition may be changing stochastically
due to new firms entering the industry and old ones leaving, de-
pending upon the product price. Thus, setting too high a price in-
creases the established firm's immediate short run profits but also
attracts new competitors into the industry, and induces the
existing ones to stay on, thereby adversely affecting the firm's long
term profit position. On the other hand, setting too low a price,
although discouraging new entrants and driving out the existing
competitors, may be too unprofitable even in the long run. The
established firm wishes to determine an optimal pricing strategy
so as to maximize its total expected discounted profit over the
entire planning horizon.

Economists have studied problems of this type in the liter-
ature on imperfect competition under the general heading of '"limit
pricing.'" Bhagwati [2] and Modigliani [14] have provided surveys
and syntheses of various economic theories of oligopolistic pricing
proposed for taking into account the existing as well as future
competition. Gaskins [5] has posed a deterministic optimal control

model for taking into account the effect of price on entry and has
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provided a comparative static and dynamic analysis of the optimal
price trajectory. Kamien and Schwartz [7] have incorporated the
uncertainty in the time of the entry into an optimal control model
via the hazard rate function of price and have analyzed the prop-
erties of the optimal pre-entry price using the Pontryagin's
maximum principle. In a discrete time dynamic model, Baron [1]
has represented the uncertainty in the entry process by a proba-
bility distribution of the number of entrants in each period and
has investigated the effects of potential entry, barriers to
entry and the attitude toward risk on the price and profitability
of established firms. Deshmukh and Chikte [4] have proposed an
infinite horizon continuous time Markov decision model to study
the limit of the sequence of optimal prices to be chérged as the
number of firms in the industry tends to infinity.

In this paper we consider a more general finite and infinite
horizon continuous time Markov decision model with discounting and
characterize the structure of the optimal pricing policy, using
some of the modern techniques (e.g. by Lippman [9 ] and Whitt [18])
that have been recently devised for the analysis. Although the
basic motivation for the problem treated here arises from an
economics or marketing context, the model formulation, the questions
asked and the methodology employed are those that are typically
found in the operations research and applied probability literature.
In this respect, the paper is in the spirit of the articles by

Leeman [8], Yechiali [19], Low [12] and Lippman and Stidham [11]
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all of which arise from an economics motivation. This provides a
new application of the methodology of optimization in queueing
systems (see, for example, an excellent synthesis and survey of

this area by Stidham and Prabhu [17]), thereby illustrating the
relevance and importance of operations research concepts and methods

in economic analysis.,

In section 1 we allow the firms to be of different sizes,
drawn from an infinite population, and characterize the finite
and infinite horizon optimal pricing strategy of the dominant firm.
It is shown that the optimal price has a certain '"monotonicity'' -
property and is independent of the size of the dominant firm. In
the rest of the paper we assume, for simplicity, that all firms
are identical (as in the existing models). In section 2 we
consider firms entering the industry from a finite population
and show that, under certain assumptions,‘when the industry is
at least half saturated, the optimal price each firm should charge
is nondecreasing in the saturation level. The third section is
devoted to the sensitivity analysis; it is shown that the optimal price is
nondecreasing in the discount rate and nonincreasing in the duration
of the planning horizon. 1In the final section we allow for the firms
to leave the industry (unlike in the existing models) and fbrmulate
the optimal pricing problem in the queue control framework, Al~-
though a further analysis of the model presents formidable theoretical
and analytical difficulties, we suggest possibilities for future

research.
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1. Heterogeneous Infinite Population

Consider an industry consisting of n, firms of size i,
i=1,2,...,I, each producing a single product at cost c per unit.
Suppose that, as in Gaskins [5], the market price p per unit
of the product is controlled by a particular dominant firm (the
price leader) of size L. If the industry price is p, the rate
of total demand for the product will be denoted by D(p), so that

the total industry profit rate may be written as
T(p) = (p-c) D(p).

As is typical in economic theory (e.g. see [7],[6],[4]), we will
assume that I(*) attains its maximum at E < ® agnd is differentiable
and concave on [C,E]. (Specific examples of demand functions

D(p) satisfying this assumption include (i) a e-bp with a, b > 0,
yielding B = ¢ + 1/b, (ii) p ¢ with d > 1, yielding p = cd/(d-1)
and (iii) a-bp with a, b > 0, yielding p = (atbc)/2.) The continu-
ous time interest rate will be denoted by o > 0. We will assume
that the total industry demand is shared among the competing firms
proportional to the size of each firm, the larger the firm the better
being its marketing and distribution capabilities. Consequently,
if the industry consists of ng firms of size i, i=1,...,I, and if
the price leader of size L selects a price p, the price leader's
short run profit rate (i.e. that until the appearance of a new

I

competitor) will be Lﬁkp)/n, where n = _Zﬁ ini denotes the total
l=

size of the industry. Thus, [c,p] is the set of prices of interest

and Lﬁkp)/n is increasing in p€[c,p] with Lﬁkc)/n = 0.



If the prevailing price is p, then suppose that new firms
enter the industry according to the Poisson process whose rate
depends upon the price p. Such an assumption is reasonable if
there is a large number of potential entrants whose behavior is
indépendent of one another and stationary in time. The higher the
price p€[c,p] the higher is the profit rate of the potential
entrant and hence the more attractive the entry becomes. Specifi-
cally, suppose that firms of size k arrive according to inde-
pendent Poisson processes with parameters ik(p), k=1,2,...I, where
for each k, Xk(-) is a non-decreasing and twice differentiable
function on [c,p]. We assume, as in the other models mentioned
before, that, since each firm makes nonnegative profit, there is no
incentive for a firm to leave the industry. As a new firm enters
the industry, the price leader accepts‘this fact, chooses a new
price and the total industry demand is shared as described above;
thus the .existing firms are assumed to enjoy no goodwill.

The obvious pricing problem facing the dominant firm is
to balance the advantages of setting a high price in terms of
increased short run profit rate LI(p)/n and its disadvantages in
terms of reduced long run profits from hastening additional
future competition at increased entry rates, K#(p), k=1,...,L.

Let V(n) denote the maximum expected discounted infinite
horizon profit of the dominant firm starting in the industry of
total size n and following the optimal pricing strategy. Then
it is well known that V(n) is a unique solution of optimality

equation
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V(n) = Max_ {[Lﬂ(p)/n + = A (p) V(otk)]/[a + = kk(p)]} ,
p€[c,pl] = k=1

n=L, L+1,.... . (1.1)

and that there exists an optimal stationary pricing strategy which,
whenever the industry size is n, specifies a price Pi(n) attaining
the maximum of the right hand side of this functional equation.
Instead of analyzing properties of V(:) and P:(-) using (1.1), which
turns out to be a formidable approach, we employ a recent technique
devised by Lippman [9 ] (for optimally controlling exponential
queueing systems) and the results of Whitt [18] (in approximating
continuous time problems by discrete time ones).

Following Lippman [ 9], define

I . _ I _

A= kfi M (P) = pé?i?ﬁl kzi M) <= 1.2)
and consider the continuous time Markov decision progess in which
the intertransition times are exponentially distributed with
parameter A, regardless of the state (industry size) n or the action
(price) P, selected. Now, with the additional fictitious decision
epochs, define Vm(n) as the optimal expected discounted profit of
the dominant firm over the next m stages (transitions), starting in

state n. Then the finite stage functional equations become



: : 1
= M L)/ [n(e+h)] + = X )/ (a+N)V__, (ntk)
v (n) pé[cfg]{ )/ [n(ath)] 2 M@y
I —
+ [A - kz& >\k(p)]/(C>t+/\)Vm_1(n) >
m=1,2,...
n=L,L+1,.... (1.3)
where
Vo(n) = 0.

Now letting

B = A/ (a+0),0(p) = T(p)/ (ath), X (P) = X (P)/A,

I -
and ko(p) =1- = kk(p) yields the following equivalent discrete
k=1

time Markov decision process functional equations.

A I
Vm(n) = Max_ (LI(p)/n+B = Kk(p) Vm_l(n+k%, m=2,3,... (1.4)
p€lc,p] k=0

where
Vv, (n) = LO(p)/n.

The optimal strategy pm(n), when in state n and m more stages re-
main, chooses a price attaining the maximum in (1.4). Also in

the infinite stage problem we have, as usual,

V(n) = 1lim V_(n) and
m-y* m
I
V(n) = I%&_‘Uumh1+BAZ HJ@‘WW&* (1.5)

p€lc,p]
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Thus, properties of V(-) can be deduced from the corresponding
properties of V_(+). With this in mind, we now derive some

important properties of Vh(').

Lemma 1l: The function Vm(n) is nonnegative and decreasing in

n > L for all integers m > 0.

Proof: Clearly, Vl(n) = LI(p)/n has the required property, so that
from (1.4) the lemma follows by a straightforward induction

argument. Q.E.D.

Lemma 2: The function Vm(n) is convex in n for each m, i.e.
< - < - -
0= Vm(n) Vm(n+l) < Vm(n 1) - Vm(n)

for all n > L and m > 1,

Proof: Now Vl(n) = LI(p)/n is convex in n. Suppose that Vm(n)
is convex in n and let pm+l(n) be the optimal price in state n
with (mtl) stages remaining. Then, from (1.4)

. I
Vi (7D = Vg (0) 2 LG ())/ (01T + 8 E by (o ()

[Vm (n-1tk) - Vm (n+k):}
while

I
Vg () = Vg (1) S LEG ) ()/[n@H)] +8 24y (B ()

/

[Vm (ntk) - Vm (n+k+1 )] .

Hence, subtracting and using the induction hypothesis yields the

result for m+l. Q.E.D



-9 -
Lemma 3: For n > L and all m > 1,
V() - V_(ntl) < LIG) (1-8™)/[n(at1) (1-8)].

Proof: Ifm=1, Vl(n) - Vl(n+l) = LI(p)/[n(n+l)], so that the
result holds with equality. Suppose that the lemma is true for m.

Then
I

Vm+]_ (n) = LI (Pm+1 (n)) /n + B ka kk (Pm+1 (n)) Vm (ntk)

and
1

Vo @1 > LO(p, 1 (0))/(ntl) + B Z A (p_,1(n)) V_(ntk+l)

so that, subtracting and using the induction hyﬁothesis,

I
Vm+1 (n) = Vm+1 (n+1) < LI (pm+1 (n) )/ [n(ntl)] + ka’okk (Pm_*_l (n))

[Ym(n+k) - Vh(n+k+li]

I
LI()/[n(ntl)] + B - A NEEC) LI (p)

A

(1-Bm)/[§n+k)(n+k+1)(1-53
< LO(p) [1+8 (1-8™)/(1-8) 1/ [n(n+1)]
= LI(p) (1-em+l)/ n(n+l) (1-62} ,

where the third inequality follows because

[0 o] <[] T ans 2 00 -
n+k) (n+k+1) < In(nt+l) and = kk(p) = 1.

Q.E.D.
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Now consider the infinite horizon problem. Since the action
space [c,p] is compact and the functions I(p) and Ak(p) are con-
tinuous, we may apply the results of Maitra [13] to conclude
that there exists an optimal stationary policy and the optimal
value function V(+) satisfies the optimality equation (1.6) below.
Furthermore, V(n) = lig Vm(n) uniformly in n, so that V(+¢) inherits

m

the properties of Vm(-) shovn in Lemmas 1, 2 and 3. Thus, we may

summarize as

Proposition 1: The optimal infinite horizon expected discounted

profit V(+) of the dominant firm uniquely satisfies

{ I 1

V) = Max_ (LI()/m+8 = A (p) V(atk)} n=L,L+l,.... (1.6)

p€lc,p] k=0 J

and has the following properties .,

0 < V(n) - V(ntl) < V(n-1) - V(n), n=L#l, L#2,... (1.

0 < V(n) - V(ntl) < LI(®)/[@-8)n(ntl)], n=L L+l,... (1.

When the industry size is n > L the dominant firm's infinite hori-

ala
”~

zon optimal stationary strategy P : {L,L+1,...} = [c,p] chooses a
price P;(n) attaining the maximum in (1.6).

The next proposition shows that the optimal pricing strategy
%
PL is independent of the size L of the dominant firm. Hence, we
%
L

W%

may denote P. by P* = Pl'

7)

8)
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Proposition 2: For any L = 1,2,...,1,

* *
PL(n) _Pl(n)’ rl_-]-,Z,'.oo.

Proof: Denote by Vm(L,n) the optimal expected discounted m-
stage profit of the dominant firm of size L, starting in a
industry of size n. We show by induction that at every stage m,
the optimal price in state n is independent of L and that
Vm(L,n) = LVm(l,n). Both of these statements are clearly true

for m=1., Suppose that they are true for m. Then

I
V_,;(L,n) = Max_ {LH(P)/n +8 = A\ (p) V_ (L,ntk) }
p€lc,pl

I ) A

=1L Max_ {;H(p)/n +8 = A_(p) Vm(l,n+k)} .
p€lc,p] k=0 P

using the induction hypothesis. But this implies that the optimal

price in state (mtl) is independent of L and that Vh+1(L,n) =

LVm+1(l,n), as desired. Letting m -= we get the desired result

for the infinite horizon model.
Q.E.D.

Since we have assumed that the total industry demand (and hence
profit) is shared among its members so that a firm's share is proportion-
al to its size, there is no rea1~competition among the firms already in
the industry; the competition is only between the firms in the industry
and the future ones to enter. Also, by Proposition 2, the same

optimal pricing strategy would be followed by any one of the members
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of the group that may be selected to be the price leader. Therefore,
it seems clear that the optimal pricing strategy for the price

leader (and, hence, for any firm in the current group) is the same

as that which optimizes the long run expected discounted profit

of the entire’group of firms currently in the industry. To see

that this is true, let V' (n) be the total maximum expected discounted
profit of the cartel of size n, so that fhe corresponding functional

equation for the cartel's pricing problem becomes

I
V/(n) = Max_ [ I(p) +B = M @) nV’ (n+k)/ (nt+k)
p€[c,p] =

n=L’ L+l,'l.‘

However, with V' (n)=nv(n)/L the above expression can be seen to
be equivalent to (1.6). Thus, the price leader's problem is the
same as that of the group considered as a cartel. Real world
examples of such cartels are found among the oil producers, con-
tainer manufacturers and electrical equipment manufacturers, to

name a few,

We are now ready to characterize the structure of the

optimal pricing strategy P*.

Proposiction 3: There exists a non-decreasing function

n [e,p] =+ {1,2,....} . which is independent of L and is given by

" (og) =[[p 1D 1E)1/(2 1) -0)]] + 1,

Poe[C,P] s (1.9)

sup Aé(p) and [- ] is the usual integer notation,
0<k<I

<>

where b =



- 13 -

_ . _ ) o,
such that for any poé[c,p], P (n) > Pg whenever n > n (po).

Proof: Denote.by V(L,n) the optimal value function of the dominant
firm of size L, n > L being the industry size. Then from the
optimality equation (1.6), it suffices to show that, for all

n ZAn*(pO), all I, € {1,2,...,I} and p €le,pgl >

I
Ll (py)/n + B 2 M () V (L, ntk)

I
> LI()/n +8 = A (p)V(L,ntk)
i.e. I
L{Ip)-1(@)]1/n 28 = [N (P} (pg)] V(L,n+k) (1.10)
I
=8 X ak(p) v(L,n+k)
k=0
= T(P’n)’ say,
where ak(p) = kk(p) - >\k(P(:.)): pE€ [Cxpo]'

I
Noting that = ak(p) = 0, we can use Abel's method of
k=0

partial summation to rewrite the last expression as

T(p,n) = s{a0<p> B V(L) + (ap(p) + a; (P))D V(L,n+l)

I-1
.+ = ak(p) A V(L,n+I-l{]
k=0
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where A V(@L,n) = V(L,n) - V(L,nt+l),

which is non-negative and non-increasing in n by (1.7). Hence,

T(p,n) = B[lao(p),ll& V(,n) + lag(e) + a; ()[4 V(L,ntl)

I-1
e ...t ] = ak(p)]A V(L,n+I-l)“J
k=0 |

I-1 i
<8 = | = a@)lsvi,n).
i=0 k=0
Define ‘Sup Iké(p)l =b < e,
k €0,1,...,1}
P € [c,p]

Then by (1.8),the definition of b and the fundamental theorem of

calculus, we have

I
T(p,n) < B(py-p) LEG@)( = kb)/[n(ntl)(1-B)] (1.11)
B k=1

U(p,n), say, p €lc,pyl.

Thus, from (1.10) and (1.11) it suffices to show that, for
n sufficiently large,

L[I(py)-N(p)]/n 2 U(p,n), P Elc,pgl.
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Now, by concavity of I,

L[L(py)-T(P)1/n 2 L(py-p) 1'(py)/n, p€lc,pyl-

* .
Therefore, (1.10) will hold for n 2 n (po), thereby implying that
% * )
P*(n) > Pys whenever n > n (po), where n (po) is given in (1.9).
Since II is concave, H'(po) is nonincreasing in Pg and hence, from

(1.9), n*(po) is nondecreasing and independent of L.

Q.E.D.

Thus, given any price Py of interest, there exists a
critical industry size n*(po) given by (1.9) such that it is
optimal to charge at least that high a price once the industry
size exceeds the critical number ; moreover, the critical size is
nondecreasing in the given price and is the same for all firms.
This property of the optimal pricing strategy may be called "right-
monotonicity'; it would coincide with the usual monotonicity of
P*, if n*(po) given by (1.9) were the smallest such bound.

(In Proposition &4 below, we prove, within a certain range, the
usual monotonicity of P* in a special case.) In a small size
industry, it may be worth foregoing immediate profits in hope of
discouraging new entrants by charging a price less than Pge
However beyond a certain point n*(po), the marginal reduction in
the dominant firm's profit due to an additional competitor is not
large enough to worry about retarding a new entry, so that the
price charged should at least be Pg- Given Py> the structure of

the optimal strategy given in the above proposition is similar to

the full service level policies studied by Sobel [16].
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From (1.6), (1.9) and the fact that I’(p,) decreases to
Po

n’®) =0 as Py increases to p, we have, as in Deshmukh and Chikte

[4],

Corollary. lim P (n) = p

n-e

lim V(n) = 0

n-+s

As the industry size tends to infinity, the effect of an entry
becomes truly negligible, so that it is optimal to charge the

myopic (immediate profit maximizing) price. However, since thq
total demand is shared among the firms, the total profit of any

firm also becomes negligible.

Il
'—l

In the rest of the paper, for simplicity, we take I =L

and denote Xl(-) by A (*).

2. Homogeneous Finite Population

Let N < @ be the total population size, so that when the
industry consists of n < N firms and the prevailing price is p,
new firms enter the industry according to the Poisson proces;
with rate A(p); when the industry consists of N firms, no
more firms can enter. The special case of N = 2 has been considered
by Kamien and Schwartz [7], while with N = ® Deshmukh and Chikte
{4] have studied the limiting behavior of the P*(n) as n * ®, As
in these models, we will assume throughout this section that A (-) is

increasing and convex on [c,p]. The functional equation (1.4) now becomes

V,(n) = Max_ (G (n,p)]} (2.1)
p€fc,p] "
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where
G, (n,p)=0(p)/n+ B[V, _,(n) - A(p) 8V _;(n)]
n=1,2,...,N
m=1,2,...
witﬁ

A Vm_l(n) = Vm_l(n) - Vm_l(n+1), m=1,2,...

Clearly, the optimal price pm(N) = p and

VM) =1{)/N+B VM), m=1,2,...
In order to characterize‘pi(n) for 1 < n < N, we need
Lemma 4: If N> n > (N+1)/2, then

0 < (n+l) A Vm(n+k+l) <n A Vm(n+k), m=1,2,...
for all k > O satisfying n + k < N - 2. °

Proof: With m = 1, (2.5) becomes

(2.2)

(2.3)

(2.4)

(2.5)

0 < (nt+l) I(p)/[ (n+k+1l) (n+k+2)] < nl(p)/[ (nt+k) (n+k+1)] (2.6)

or
0 < (nt+l)/ (nt+k+2) < n/(nt+k)

which holds provided k < n. However, this is true for our con-

straints on n and k that imply n > (N+1)/2 > (N-1)/2 > k. Sup-

pose (2.5) holds for m and verify it for (m+l). We consider

two cases.
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Case l1: n+k+2<N-1
Abbreviate pm+1(n+k+1) by p* and note from (2.1) tﬁat
(n+1) Vm+1(n+k+1) = (n+1){.H(p*)/(n+k+1) + B[&h(n+k+l)-k(p*).

A Vo (ntk+1 )] }
while

(n+1) V. (nHkH2) z_(h+1){jﬁ(p*)/(n+k+2) + e[xn(n+k+2)-x(p*)

A Vh(n+k+2;]}
so that

(n#l) & V_,o (n#ktl) < (o#l) {n(p*)/[(n+k+1)(n+k+2)] +

B[Fl-k(p*))A Vm(n+k+1) + k(p*) A Vm(n+k+2i]} (2.7)
Similarly, since

n Vg (ntk) > n { H(p*)/(n+k) + B&m(nﬂc)—h(p*)AVm (n+k)J} ,

we have

n A Vm+1(n+k) > n { H(p*)/[n-%-k) (n+k+1)] + 8 Bl-l(p*)) AVm(n-i-k)

gy x(p*) A Vm(n+k+1)]}

> (ntl) {n (p*) /[ (n+k+1) (n+k+2) ]

+ B[{l-)\(p*)) AV (otk+l) + x(p*) Avm(n+k+2)]}
(2.8)

—_ *
by the induction hypothesis and (2.6) with p replaced by p . Hence,
from (2.7) and (2.8)
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n &V ., @tk) > (ntl) B Vg (k)
completing the induction argument for Case 1.

Case 2: n+k+ 2 =N
In this case we must prove that

(ntl) AV

L (-1) <n 8V (N-2). (2.9)

' *
Again, denoting pm+1(N-1) by p , we have, as in (2.7),

(ntl) & V_,o (N-1) < (n+l) T )/[N@-1)] + 5 (nt1) [1-2(p ™) ]

A Vﬁ(N—l) (2.10)

and, as in (2.8),
n 8V (-2) >n 00p)/[(N-1)@-2)] + & n(@-A(p")) 8V, (-2)

+ Bl(p*)nA v (N-1) (2.11)

Since (n+l) A Vﬁ(N—l) <n A Vﬁ(N—Z) and A Vm(N-l) > 0, (2.10) and

(2.11) imply (2.9). Q.E.D.

Let pm(n) be the smallest price in [c,p] attaining the maximum

in (2.1), i.e. Vh(n) = Gm(n,pm(n)).

Proposition 4: For n > (N+1)/2, pm(n) is a nondecreasing function of

n, for all m > 1.
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Proof: Since IlI(.) is concave and )(.) is convex, Gm(n,.), given by (2.2),
is concave on [c,p], If Pm(n) €(c,P) maximizes Gm(n,p), then G’(n,pm(n))=0
i.e. T'(p (m))/12(p (n))] = pn A V (n) (2.12)
By Lemma 4, n > (NM1)/2, implies
(n+1) A Vﬁ(n+l).§ n A Vﬁ(n) (2.13)
Since 0’(p)/A’(p) is nonincreasing in p € [c,p], (2,12) and(2.13) imply
that pm(n+1) > pm(n), n> (M1)/2, m > 1.
1f pm(n) = ¢, then clearly pm(n+1) € [c,p] implies
p,(ntl) > p_(n). Finally, .if p,(n) = D,
I’(p)/x'(p) > Bn 2 V_ (n)
> B(ntl) A V_(n+l), n > (N1)/2,
which implies that G/ (nt+1,p) > 0, i.e. p,(ntl) = p
Q.E.D.
Thus, we have a curious result that the optimal pricing strategy is
monotone nondecreasing (in the usual sensé) once the industry becomes at
least half saturated. We do not know if the monotonicity holds when the

satuation level is below this critical point.

3. The Sensitivity Analysis

In this section we consider thé dependence of the optimal pricing
strategy on the interest rate and the length of the planning horizon when
the industry consists of identical firms drawn from an infinite popula-
tion. Our first result is that the optimal price is nondecreasing in the
interest rate o, as to be expected, since a higher « means that short
term profits (until as entry) become more valuable, in cémparison with

the long term profits (after the entry).
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Proposition 5: The optimal pricing strategy P*(') is non-

decreasing in «.

Proof: In the m stage process with discount factor B = A/(a+A), let
Vm(n,B) be the optimal expected discounted reward starting in an
initial state n > 1. Thus,

@)= Max | Te)s/ (i) + 5 @) Vg a1,0) +

+Ae) V@2 Gl

with Vo(n,B) = 0.
To show that the optimal price at stage m is non-increasing

in B it suffices to show that, for 82.2 Bl we have

Vm-l(n’BZ) - Vm_l(n'H—,;Bz) z Vm-l(n’sl) - Vm-l(n+1’8]_)° (3.2)

Again we use induction and observe that (3.2) holds for m = 2, since
Vy(n,B)= I()8/(nA). Suppose that (3.2) holds for m = k + 1. Now

write py = Ppyy (n+l,Bz) and p, = pk+1(n,51). Then
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Vk+l(n,52) - Vk+l(n+l,52)

> T(p,)8,/ (hn) - I(py)B,/[A(n+1)] + B, {x<p2> Vi (0+1,8,)

+ [1-2(py)] Vy(n,8,) - A(py) V, (n+2,8

- [1'k(P1)] Vk(n+l352)}

and

< T(p,y)8y/ (An) - T(py)By/[A(n+L)] + si{;<92> V, (n+1,8,)

-

i
L

+ [1"k(P2)] Vk(n’Bl) - k(Pl) Vk(n+2’Bl)

- [1’k(Pl)] Vk(n+1’Bl)}

Hence, from (3.3) and (3.4), we will be able to show that (3.2)

holds for m = k + 2 if

)\(pz) Vk(n+l,32)
- A(pp) Vy (042,8,)
> A(p,) Vi, (w5 )

+

+

[l—k(pz)] Vk(nsﬁz)

[1-2(p1)] V, (0+1,8,)

[1—X(p2)] Vk(nsﬁl)

[1-A(p1)] Vy (oHl, )

2)

(3.3)

(3.4)
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[l_k(pz)] [Vk(n’BZ) - Vk(n+l:52)]
+ Ay [V @HLE,) - vy (nt2,8,)]

2 [1-2(py)] [V (m,81) - V, (at1,8))]

—

Ay [V (0#1,8) - v, (nt2,8)].

But this is immediate from the induction hypothesis, so that (3.2)
holds for all m. Letting m - = and considering the corresponding

functional equation, the result follows.
Q.E.D.

It seems clear that a firm facing a shorter horizon should be
less influenced by the threat of new entrants, and will therefore

charge a higher price. This is proved in the following result.

Proposition 6: For m > 2, pm(n) > pm_l(n), n=1,2,....

Proof: It suffices to show that the following inequality holds

for each m.

Vpea (MY, (al) S v g () = V(o) (3.5)

We prove (3.5) by induction. For m = 2, it reduces to I(p)/n - II(p)/(n+l)

> O,which is true. Suppose that (3.5) holds for m = k., Let

P; = Py_1 (@) and p, = p, (ntl).
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Then _
v @) - V() 2 D) /n - 1(p,)/ (o) +'s{;<pl> v,y (o) +
[1-x(pl)] Vk_l(n) - K(pz) Vk_l(n+2)
- [1‘K(P2)] Vk-l(n+l)} (3.6)
and

V1 (@) -V _q(otl) < I(py)/n - H(pz)/(n+1)
+ B{K(pl) Vi _, (ntl) +
[1-A(p)] Vy_,(n) - A(py) V,_,(nt2)

- [1-A2(py)] Vk_z(n+l)} : 3.7)

Together (3.6) and (3.7) imply that (3.5) will hold withm =k + 1
if

[1-A(p)] &V, _;(n) + A(p,) & ¥, _;(n+D)

[1‘X(Pl)] A Vk_z(n) + K(pz) A Vk_z(n+l)

vhere 2 Vk(n) = Vk(n) - Vk(n+1)-

The last inequality, however, is a direct consequence of the in-
duction hypothesis, completing the proof.

Q.E.D.
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Suppose th;t the dominant firm wishes to maximize the expected
discounted profit earned over a (continuous) time horizon of dura-
tion t. If we let pt(n) be the optimal price when time t remains
and the industry size is n, then by combining our results with
a modification of Theorem 10.5 of Whitt [18] we may prove the

following result.

Proposition 7: Given any Py< 5, there exists an integer n:(po), which is
nondecreasing in P> such that pt(n) 2 Py ifn > ni(po), for all tef0,=).

Also pt(n) is nondecreasing in « and t. \

Thus far we have assumed that, since eaciufirm makes non-negative
profit (by Lemma 1), there is no incentive for a firm to leave

the industry. We conclude the paper by indicating the extension

of the model to the case where the established firms may exist
stochasticglly from the industry, depending upon the price pre-

vailing.

4., Stochastic Entry and Exits: An M/M/» Queue Control Problem

Consider homogeneous firms, which are drawn into the industry
from an infinite population and which share the total industry profit
equally. Suppose that, if the prevailing price is p, new firms
enter the industry according to the Poisson process with rate A(p),
while an established firm remains in the industry for a duration
which is exponentially distributed with parameter p(p). It is
meaningful to assume that A(+) is nondecreasing and p(-) is non-
increasing, both being continuous on [C,E]. Thus, setting a higher

price increases current profits but also attracts more new firms and
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induces the existing ones to stay on, thereby increasing future

competition and decreasing future profits. Conversely, setting

a lower price decreases current profits but also discourages new
competition and drives the existing firms out of the industry
faster, thereby decreasing future competition and increasing
future profits,

The problem of selecting an optimal pricing strategy, as a
function of the number n > 2 of firms in the industry may then
be looked upon as that of optimally controlling an M/M/= queue,
in which a single control variable p €[c,p] affects the arrival
rate A(p) as well as the ''service' rate niH (p) along with the
reward rate ﬁ(p)/n. Such a model may be considered as a combin-
ation of the model in Crabill [3], (for controlling the service
rate in an M/M/1 queue) and the one by Low [12] (for controlling
the arrival rate in an M/M/S system). Thus, a seemingly unre-
lated problem of economic interest can be formulated in the queue
control framework. For this problem the finite stage functional
equations become

Va(®) = Max_ {H(p)/n+ﬁ [Vm_l(n) - Ap) 2 V__;(n)

p€[e,p]
+ np (p) A Vm_l(n-lj} n=2,3,...,  (4.1)

vhere

A Vm_l(n) = Vﬁ_l(n) - Vﬁ_l(n+1).

However, it does not seem possible to analyze (4.1) further in order to
characterize the structure of the optimal pricing strategy'Pm(n)
as in the previous sections.

Furthermore, we would expect that the finite stage functional
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equations (4.1) can be extended to obtain the usual infinite
horizon functional equation
rv(n) = Max_ {H(P)/n- A(p) A V(n) + nu (p) & V(n-—l)}

p€lc,p]
n=2,3,..., (4.2)

with A V(n) = Vv(n) - V(ntl), and that the optimal expected dis-
counted reward V(*) is a unique bounded solution of (4.2).

However, in this problem, the number of transitions taking place

in any time interval is not bounded uniformly in n, since the
transition rate is A(p) + nk (p), p € [e,p], n=2,3,... Hence

the maximum operator implied in (4.2) does not possess the re-
quired contraction property and, consequently, (4.2) may not

have a unique solution and there may not exist an optimal
stationary strategy. On the other hand, because the death rate

is linearly increasing in n, one would expect that the number

of firms in the industry does not grow indefinitely,-so that the
usual results still hold. Toward this end, we may first consider
the bounded problem, N where the industry size is forced to be
less than N, so that the existence results hold and then let

N + = and show that the results continue to hold in the limit.
However, we have not been able to carry out this approach success-
fully. Moreover, even assuming that everything works on theoretical
grounds we have not been able to establish the form of the infinite
horizon optimal pricing policy P*(n). Other interesting questions

would be concerned with finding the probability distribution of
the number of firms in the industry or the amount of time each

firm spends in the industry under optimal pricing strategy.
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