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1. Introduction

The purpose of this paper is (1) to hasten the assimilation of some recent
results obtained on the global asymptotic stability of optimal control into
general economic knowledge, (2) to indicate some possible areas of
application of these results, (3) to relate the recent results to standard
engineering literature, and (4) to indicate new avenues of research in this
area.

In order to remain within the space limitation, this survey must be
selective. Furthermore, the emphasis will be on basic ideas and not
technical details. Not only will this save space, but also it will lay bare the
basic structure of the ideas. Details will be referenced where possible.

In order to describe the results contained in this paper it is useful to
state the problem of concern without further ado. Consider the following
optimal control problem:

max baoé&:i:. v(r)] dt, ‘ )

CIQ]

*] thank R. Lucas, M. Intriligator, and J. Scheinkman for helpful comments on this paper.
I wish to thank the National Science Foundation for research support. Needless to say, all of
the above are absolved from all errors and shortcomings.
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subject to

x=T[x(),v(t)t], )
x(0) = x,, given x(t) € R", v(t)ER™, 3)
.c:;o‘ T]-> R™ measurable,

where U is instantaneous utility, ¢ is time, T is planning horizon, x () is
state vector at time ¢, v(¢) is instrument vector at time ¢, T[-] is the
technology which relates the rate of change of the state vector ¥ = dx/dt
to the state x(t) and instruments v(t) at time ¢, p =0 is the discount in

future utility, and x, is the initial position of the state vector at time 0. The
objective is to maximize

T
A“Q&,
0

subject to egs. (2) and (3) over some set & of instrument functions,
v(t):[0,T}>R™,
which is usually taken to be the set of all measurable v(-) or the set of all
piecewise continuous v(-).
Problem (1) was chosen as the vehicle of explanation of the results in

this survey because it is described in chapter 2 of the well-known book by

Arrow and Kurz (1970). Let us specialize problem (1) somewhat. Set
T =, p>0. . 4)

Put!

W(x, to) = sup A“ e Ux (), v(t)] dt

1o

(5)
S.t.

X=T[x(),v()], x(t)=x, v(HE L.

Awm pointed out by Arrow and Kurz, W is independent of to, and, under
strict concavity assumptions on U(-) and T(-), the optimal v(¢) (denote it

by v*(t)) is of the time stationary feedback form: there is a function h(x)
such that

v¥(t) = h(x*(1)). (6)

_Inno:wcv:an:o.nw wcvnn_:::_.,:.nmcv_.n_zci_.mS.S:ofw_.m: instrument functions
v(-)EA. .

£}

e st e
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Thus optimal paths x*(¢) satisfy
X*(t) = Tlx*(t), h(x*(t))] = F(x*(t)), x*(to))= x, O]

which is an autonomous of time set of differential equations.
The basic problem addressed in this article may now be stated.

Basic problem (P). Find sufficient conditions on the utility function
U[-], the technology T[-], and the discount p such that there exists a
steady state of eq. (7), call it x* such that (a) x* is locally asymptotically
stable (L.A.S.), (b) x* is globally asymptotically stable (G.A.S.).

Here L.A.S. and G.A.S. are defined as follows.

Definition. The steady state solution x* of eq. (7) is L.A.S. if there is
€ >0 such that _

[x*—xo|< € implies x(t|xo)—>x*,t >,

where
x(|xq)

is the solution of eq. (7) with x(0) = x,. The steady state solution x* is
G.A.S. if for all x,€ R", x(t|x))>x*, t >,

Here |y| denotes the norm of vector y:

n 112
lyl= AM_ ﬁv :

Before getting into the results, it is useful to discuss why such results
are important. There are several areas of applications of stability results.
A first area is the neoclassical theory of investment associated with the
names of Eisner-Strotz, Lucas, Mortensen, Jorgenson, Treadway, and
others. A version of this theory was used by Nadiri and Rosen (1969) in a
well-known article on estimating interrelated factor demand functions.
The Nadiri~Rosen work culminated in their book (1973) which ended with
a plea for useful results on problem (P).

The paper by Mortensen (1973) derives a set of useful empirical
restrictions on dynamic interrelated factor demand functions derived
from the neoclassical theory of investment provided that the stability
hypothesis is satisfied. Mortensen’s paper can be viewed as “Samuelson’s
Correspondence Principle Done Right” in the context of the neoclassical
theory of investment. Thus, there is no doubt that stability results are of
great importance in the neoclassical theory of investment. . .
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A second area of applications of stability results is economic growth
theory. Fortunately, this area is well covered in the paper by Cass and
Shell (1976), so we will not spend much time on it here. It is,
basically, the extension of the well known turnpike theory of McKenzie,
Gale, Radner, Samuelson, and others to the case p>0.

A third area of applications of the results reported here is the dynamic
oligopoly games of Flaherty (1974), J. Friedman (1971), Prescott (1973),
and others. These games represent exciting new efforts to “‘dynamize” the
field of industrial organization. Indeed, this area is “wide open” for new
researchers.

A fourth area of applications is the optimal regulator problems of
engineering (see Anderson and Moore (1971), Kwakernaak and Sivan
(1972)), the optimal filtering problem (Kwakernaak and Sivan), and the
integral convex cost problem of operations research (see Lee and Markus
(1967, ch. 3)). This application is developed by Magill (1975). No doubt
there are many more applications, but this should be enough to convince
the reader that the stability problem is of basic importance in a number of
areas. Let us turn to the results.

2. Stability results

It will be useful to write down some specializations of the general
problem (5). Put ¢, =0, x = x,, and suppress £, in W, henceforth. The
neoclassical theory of investment as stated by Mortensen (1973) is

W(xo) = sup \ e (x(8), () —wTx(£) ~ g v (1)) dt, (8)
s.t.
x=vov(t,, x(0)=x, v():[0,0)->R" measurable.

Here f(x, v) is a generalized production function which depends upon the
vector of n factors x(t), and the rate of adjustment of the factors v(¢).
The cost of obtaining factor services in each instant of time iswix()(w™
denotes the transpose of the vector w) and the cost of adding to the stock
of factors (which may be negative) is g"v(t). It is assumed that a
stationary solution x, = x* exists for eq. (8), that the optimal plan exists
and is unique for each x, > 0% and is interior to any natural boundaries (i.e.

‘Letx ER", x 20,x >0, x >0meaninturn: x; 20,i =1,2,...,n;x 20,i = ,2,...,nm,
but x#0; x,>0,i=1,2,...,n.
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x¥(t)>0, for all t =0, i=1,2,... »n), fE€C? (f is twice continuously
differentiable), and that the optimal plan is one with piecewise continuous
time derivatives. These assumptions which avoid many tangential techni-
cal side issues will be placed on the general problem (5) also, and will be
maintained throughout this article.

The next few pages will attempt to summarize the fundamental work of
Magill’ (1972, 1974, 1975) on the G.A.S. of the linear quadratic approxima-
tion around a steady state solution of (5). These results go far beyond the
simple checking of eigenvalues that most people associate with a local
analysis. Furthermore, the local results of Magill lead naturally to the
global results of Cass-Shell, Rockafellar, and Brock-Scheinkman, which
are discussed below. :

The linear quadratic approximation of eq. (8) at a steady state x* is

W (&) = sup \ e (£, 1()TAXER), n(t) dr, ©)
s.t. ’ .

E=n(t),  £0)=xo—x* =&,
* 1():[0,%)->R" measurable,
where

£(t) = x(t)—x*,

The symbols f%, f%, f%, f&, f* f* denote

Of f  f f of of
0x” vdx’ axdv’ > ox’ 9v’

nt)=v(t)—v*=0(1), (10)

all evaluated at (x*, v*) = (x*,0), respectively.
The linear quadratic approximation at a steady state (x*, v*) for the
general problem (5) is the following.

Linear quadratic approximation to general problem (Magill (1975, p. 7).

o

Weo=sup [ e{cca, ey gr orew, ne}ds,

Q* q v, Ava
L1}

*Magill (1972, 1974, 1975) also treats the case of uncertainty. Due to the lack of space only
his certainty results will be treated here.
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s.t.

£=TW) +Tin(),
£0)=xo—x*=§,
7(-):[0,0)»R™ measurable,

where

* * * * * N..*
XXy xvy Xy vuy Xy v

are the appropriate matrices of partial derivatives evaluated at (x *, v *).
The quadratic approximation (12) can be expected to hold only in the
neighborhood of x,. The validity of the linear quadratic approximation for
the infinite horizon problem (5) has not been studied yet, as far as I can
tell. The finite horizon case is studied by Breakwell, Speyer and Bryson
(1963), for example (see also Magill (1975)).

A problem that is extensively studied in the engineering literature and is
closely related to eq. (12) is the following.

Time stationary optimal linear regulator problem (OLRP)

- W) =int % e (ORI A (O RO ETRE)

s.t.

£ =FE()+Gn(t),
£(0) = &,
7n(*):[0,)>R™ measurable.

Clearly, by putting

Q=-UL S=-Ui S"=-Uj
R=-U F=T!; G=T,

this is the same problem as eq. (12). The importance of observing that eqs.
(12) and (13) are the same problem is that it enables us to carry the
extensive set of results derived by engineers on OLRP (see Anderson and
Moore (1971) and Kwakernaak and Sivan (1972) for example) to linear
quadratic approximations (12) to economic problems.

Such an approach would virtually resolve the local asymptotic stability
question for problem (5) if the engineers had spent more time on the case
p >0 instead of the case p = 0. Fortunately, the paper by Magill (1975)
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fills this gap. Results on the OLRP are applicable (provided that the
question of sufficient conditions for the validity of the linear quadratic
approximation is resolved for problem (5)) to the L.A.S. problem for
economic problems with p >0 for two reasons.

First, £(t), n(t) may be replaced by £(t) = e®£(t), n(t) = e (t) in
eq. (13). The constraint in eq. (13) becomes 4

£ =(F - (p/DDEt)+ GA(t), £0) = &, (14)

where I denotes the n X n identity matrix. This transformation of
variables (used by Magill (1975) and Anderson and Moore (1971, p. 53)
allows results for the case p = 0 (the bulk of results on the OLRP) to be
carried over directly to the case p > 0. Second, the OLRP suggests an
important class of Lyapunov functions upon which theorems 1-6 below
will be based, viz. the minimum* from &, itself (Anderson and Moore
(1971, p. 41)). The minimum is a positive definite quadratic form £3P¢,
under general assumptions (see Anderson and Moore (1971)).

Before plunging into statements of formal theorems, let us use the
OLRP to explore the determinants of L.A.S. The following is based upon
Magill (1975), but brevity demands that many of his results be passed
over. Assume that the matrix

[§ &

is positive definite’ in order to reflect the concavity of U(x, v), leading to
the negative definiteness of the matrix

5 o
[v? v
in economic problems.
When is the OLRP eq. (13) unstable? First, put S = 0. Then in the one

dimensional case, we see that instability is more likely the larger is F, the
smaller® is |G/, the larger is R, the smaller is Q, and the larger is p. The

*Magill (1972) recognized the importance of the Lyapunov function V, = ¢IP¢, for the
case p >0 as well as for the standard engineering case, p =0, as early as 1972.

*An n X n matrix A is positive definite if it is symmetric and positive quasi-definite. An
n X n matrix is positive quasi-definite if for all x# 0, x € R" we have

xTAx >0,

An n X n matrix B is negative quasi-definite (negative definite) if — B is positive quasi-
definite (positive definite),
|G| denotes the absolute value of the number G.
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intuition behind this is quite compelling for if F is positive the system
E=Fet), £0)=é

is unstable. If |G|, the absolute value of G, is small then a lot of input 7 (t)

must be administered in order to have much impact on £(¢). But inputs

1(t) cost 7 (t)Rn(t) to administer. If n(0) is administered today, then

£(1)QE(t) will be smaller in the ‘“next instant.” But the future is

discounted by p. To sum up in words: why stabilize a highly unstable

system (large F) when control input is ineffective (small |G|), when

control input is expensive (R is large) when deviation of the state from

the origin is not very costly (Q is small) and the future is not worth much
(p is large).

Now assume that S # 0. Change units to reduce the problem to the case

S = 0. Following Anderson and Moore (1971, p. 47), and Magill (1975),

(& T 0 S — T T T
;1) gr g |(&m)=n"Rn+267Sn +£7°Q¢
=(n+R7'STE)'R(n +R7'S¢)
+£7(Q - SR™'S)E (15)

Note that since the L.A.S. is positive definite, R, Q,and Q — SR™'S" are
all positive definite. Defining

ni=n+R7SE,
the OLRP (13) with S# 0 becomes

mzm\n-a?_ﬂw:_+m:0Ihwi.m.ﬂvmv& (16)

s.t.
£=(F-GR™'ST)¢ +Gn, £(0) = &o.

Clearly, eq. (16) is unstable iff eq. (13) is unstable.

Letus useeq. (16) to explore when instability may be likely. Consider the
one dimensional case. Without loss of generality we may assume G = 0.
For if G =0, put 9, = — 7, and stability will not be affected. It is clear from
eq. (16) that when S < 0 adecrease in S is destabilizing. For a decrease in S
makes F —GR™'S" larger and makes

Q-SR™'ST
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smaller. For § >0 an increase in S makes the ‘“‘underlying system
matrix,”

F—-GR'ST
smaller (a stabilizing force), but
Q-SR'ST

becomes smaller (a destabilizing force). Hence, ambiguity is obtained in
this case.

It is known that instability in the multidimensional case is related to the
amount of “asymmetry” in the underlying system matrix,

A=F-GR™'S".

This is so because, roughly speaking, instability of A makes instability of
.the optimal path more likely and instability of A is related to its lack of
Isymmetry.

In the multidimensional case when p =0, G.A.S. is intuitive from the
existence of a finite value to the integral and the positive definiteness of
the matrix

(s &]
ST RFY
Roughly speaking, (x*(¢), v*(¢)) must converge to 0,t — =, or else the
integral will “blow up.” Sufficient conditions for G.A.S. of the OLRP are
covered in detail in Anderson and Moore (1971, ch. 4) for the case p=0.
The important paper by Magill (1975) develops a rather complete set of
results for all p.

Let us apply our intuitive understanding of the determinants of G.A.S..

gained from the OLRP to the linear quadratic approximation (9) to the
neoclassical model of investment (8). Here

0“' ”: &NNI..' HS MHI h.“cu Q"~u NU“O.

By the reasoning above from eq. (16), in the one dimensional case,
provided that A > 0, instability at x* is likely when p is large, — f7, is large,
(it is positive by concavity of f in (x, v)), and — f&+ fLf%7'f% is small (it is
positive by concavity of f). Note that when F =0and S = 0, since 0isnota
stable matrix, the underlying system matrix is not stable, If S =0,

however, a theorem to be proved below will show that G.A.S. holds
anyway.
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2.1. Results for the general nonlinear nonquadratic problem

In searching for sufficient conditions on U, T for G.A.S. to hold it turns
out to be convenient to form the current value Hamiltonian (following
Arrow and Kurz (1970, p. 47)) for eq. (5)

H(q,x,v)=Ulx, v]+qTlx, v]. a7n

Let v*(-) be a choice of instruments that maximizes

o

.‘oé&:ic. v(t)] ds,

)
s.t.

= T[x(t), v()], x(0) = x,,

over all measurable v(-). Then Arrow and Kurz (1970, p. 48) showed that
there exist costate variables q*(¢) (expressed in current value) such that
on each interval of continuity of v *(¢),

4% =pq*(t)— HAq*(t), x*(t)), (18)
Xt =Hyq*(t), x*(t)), x *(0) = x,, (19)
where v *(¢) solves

max H(q *(t), x *(t), v) = H(q *(t), x *(1)).

vER™
Also (1970, p. 35), if W, exists,
q*(t) = W.(x*(1)),

where, the reader will recall, W(x) is the current value state valuation
function. Note further that W,, exists almost everywhere w:m 1S negative
and is negative semi-definite when U and T are concave.” This is so
because W(x) is concave in this case.

’A qualification must be made here. Concavity of U and T implies concavity of W(x) for
the problem with inequality constraints,

max % e Ux(t), v()} dt,

s.t.
X =T[x(t), v(1)], x(0) = xo.

But the assumptions usually made on economic problems lead to
% =T[x(1), v(t)]

for optimum paths.
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We are now in a position to state the G.A.S. results of Cass and Shell
(1976), Rockafellar (1976), and Brock and Scheinkman (1975a, 1974a,
1974b). These results are based on the Lyapunov functions

Vi==(q—gq*)"(x —x*) (20)

(Cass and Shell (1976), Rockfellar (1976), and Brock and Scheink-
man (1974a, 1974b)),*

<~"|.ﬁ~ﬂ.k.

(Rockafellar (1976) and Brock and Scheinkman (1975a)), where (g*, x*)is a
steady state of the system egs. (18) and (19).

2.2. Results based on the
—(q@—-q*)(x—x*) and V,=—q"%

Lyapunov®  function Vi(q,x)=

Cass and Shell (forthcoming) formulate a general class of economic
dynamics in price—quantity space which includes descriptive growth
theory and optimal growth theory. This article is concerned only with
their stability analysis. Roughly speaking, they take the time derivative of
V, along solutions of eqs. (18) and (19) that satisfy

lim g*(£)x*(t) e™ =0, Q1)

#]t is important to interpret the meaning of V, for the OLRP. Here, since the state~costate
equations (18) and (19) are linear, x* = g * = 0. Also the minimum cost, C(&)=— W(&),
given by eq. (13) is quadratic in £, and is 0 when &, = 0. Thus, there is a matrix P such that

C(é) = mwﬁm? '

Also, P is positive semi-definite when the integrand is convex in (£, ). Furthermore, the
costate ¢ *(t) in eqs. (18) and (19) for the OLRP is given by

q*(t) = W, (£*(1)) = —2PEX(1).
Thus,
V,==2£*T()PE*(1),

and asking that V,> 0 is just asking that the minimal cost fall as time increases when the
minimal cost is calculated at £*(¢) for each t. See Anderson and Moore (1971), Kwakernaak
and Sivan (1972), and Magill (1975) for a more complete discussion of i=< V, is the basic
Lyapunov function in the OLRP literature. )

*Cass and Shell (1976) and Rockafellar (1976) were the first to recognize that V, is of basic
importance for G.A.S. analysis in economics. It was used earlier, by Samuelson (1972) to
eliminate limit cycles in the case p =0.
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and interpret the economic meaning of the assumption
02 Vi(a@*(t), x*(1) = — {lpg *(t) ~ HAq*(t), XN (x*(t) ~ x*)
+(a*(t) - q*) HYq(t), x*(t))}. (22
They show that eq. (22) implies
Vi(g*(t), x*(t)) = 0. (23)

Thus, only a slight strengthening of eq. (22) and assumptions sufficient to
guarantee that x*(¢) is uniformly continuous on [0, ») allow them to prove
that the steady state solution x * is G.A.S. in the set of all solutions of eqs.
(18) and (19) that satisfy eq. (21). More precisely:

Theorem 1 (Cass and Shell (1976)). Assuming (stability assumption
for p = 0): for every € >0, there is a 6 >0 such that ||x — x*| > e implies

(S)  (@-a" ™HYq, x)~(HY(q, x)(x — x*)+ pg*"(x — x*)
>—p(@—g¥)"(x —x*)+8.

Thenif (q*(t), x*(t)) solves eqs. (18) and (19) and if eq. (21) holds, then
x*(t)—x*[-0, to>o

Proof. See Cass and Shell (1976).

It should be noted that (S) is only required to hold on the set of (g, x)
such that (g, x) = (g *(¢), x*(t)) for some t = 0. Also (S) is the same as

- d.\_AQ- Hv > 8.

Cass and Shell (1976) also proves the following useful theorem.

Theorem 2. Assume that
H°q, x)

is convex in q and concave in x, Then

d _

e @)= a")(x(t) - x")]1z0, (24)
for any solution (q(t), x(t)) of eqs. (18) and (19).

Proof. See Cass and Shell (1976).
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Note that if U, T are concave in (x, v), then it is trivial to show that
H?®(q, x) is concave in x. Convexity in q follows from the very definition
of H®

H%q,x)=max [U(x, v)+ q"T(x, v)],

regardless of whether U, T are concave. The proof uses the definition of
convexity and the definition of maximum. See Rockafellar (1976)
and its references for a systematic development of properties of the
function H®. Let us turn now to Rockafellar’s work.

Rockafellar (1976) studies the case in which U (x,v) is concave
in (x,v) and T(x,v)=v He points out, though, that the restriction
(x, ) € X, X convex may be treated by defining U to be equal to —
when off X. Thus, a very general class of problems may be treated by his
methods. The paper (and its references) develops, with no differentiability
assumptions on U(x, v) - only concavity is assumed — the following ideas,
to name a few: (1) a dual problem that the optimal costate q*(t) must
solve; (2) duality theory of the Hamiltonian function H g, x); 3
existence and uniqueness theory for optimum paths; (4) theorems on the
differentiability of W(x) under assumptions sufficient for G.A.S. of the
stationary solution x *; (5) relations between W (x) and its analogue for the
dual problem; (6) theorems on the monotonicity of the expression .

V' =—(q:(t) — )" (x:(t) — xx(1))

for any pair of solutions (q,(t), x.(1)), (q2(), x5(t)) of eqs. (18) and (19)
starting from any set of initial conditions; and (7) the notion of (a, 8)
convexity-concavity for the H° function and its relation to G:A.S. of the
stationary solution x *. Due to lack of space, only the main G.A.S. theorem
of Rockafellar’s will be given here. A definition is needed. '

Definition. Let h:C — R be a finite function on a convex set C =R".
Then h is a-convex, a € R, if the function

h(x)- WQ |xJ?
is convex on C. If C is open and h € C?, then « -convexity is equivalent to:
for all x,€ C, for all w e R",

wihe (xo)w = awTw

must hold. Here h..(x.) is the matrix of second-order partial derivatives of
h evaluated at x,. A functiong:C > R is B-concave if — g is B-convex.
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Theorem 3 (Rockafellar (1976)). Assume that H°(q,x) is finite
and B-convex-a-concave on R" X R". Also assume that a stationary
solution (q*, x*) to eqs. (18) and (19) exists and that optimum paths
exist from the initial condition x,. Then the stationary solution x* is
G.A.S. provided that

R) 4af > p*,
Proof. See Rockafellar (1976).

A more precise statement of theorem 3 is given in Rockafellar
(1976). The basic idea of the proof is just to show that (R) implies

V. <0

along solutions of egs. (18) and (19) that correspond to optimal paths. It
should be noted that Rockafellar works with the more general system,™

(x(t), —q(t)+ pq(t)) € 3H (q (1), x (1)), (26)
where

0H(q(t), x(t)) ={(a, b) ER" X R"| @ is a subgradient of H°
w.r.t. q(t) and b is a subgradient w.r.t. x(8)}.

Let us turn now to the results reported in Brock and Scheinkman (1975a,
1974a).

In these papers, the Lyapunov function V,= —q)"x(t) is differen-
tiated along solutions of egs. (18) and (19) to yield

V@), x(0) = = (@0, 5OF B@(t), x(ONd(0), £(0), an
where
Bao.xy=[ln OO0l | @28)

and where I denotes the n X n identity matrix and the matrices of partial

“Let f:R" > R" be a point to set mapping. We say that x(-) is a solution of
HOEfx(),  x(0)=x,
if x(-) is absolutely continuous on {0, ) and
H)Ef),  xO0)=x

for almost every t ¢{0, «).
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(which are positive semi-definite since H® is convex in q and concave in
x) are evaluated at (q(t), x(t)). The following sequence of theorems
summarize the results in Brock and Scheinkman (1975a, 1974a).

Theoremd4. Let (q*(0), x*(0)) bea solution of eqs. (18) and (19). Then

Vag*(t), x*(1)) <0 29
provided that z*(t)"B(q*(t), x*(t)) z*(t) >0 for all t =0, where
z*(t) = [pg*(t) — HYq*(t), x*(t v.v. H(q*(t), x*(1))). (30)

Furthermore, if (q *A.v.x*A_X is bounded independently of t,"' of if
lim sup — Vy(g*(t), x*(t)) <, (3D

then there is a stationary solution (q*, x*) of (18) and (19) such that

(@*(1), x*(1)) > (g*, x*), t >0, - (32

Proof. Inequality (29) is obvious from eq. (27). The second part of
the theorem is just a standard application of results on G.A.S. by means
of Lyapunov functions. See Brock and Scheinkman (1975a, theorem 2.1)
for details.

Theorem 5. If (a) (g™, x*) is the unique stationary solution of eqs. (18) and
(19); (b) For all (g, x) # (q*, x*),

(9 —q*)"HYq, x)+(x —x*)"(pqg ~ H¥q,x)) =0, -
implies

(g —q* x—x*)"B(q,x)(q — q* x —x*)>0;

""Here, given a function y(-): [0, ©)-R, lim sup y(t) denotes the largest cluster point of :_.n
function values y(t) as ¢ -»». Assumption (31) is quite natural for optimal paths because if
W, () exists it will be negative semi-definite since W(-) is concave for U, T concave. Thus,

GFTE* =X () W (x*(1)i*(1) =0,
and eq. (31) holds automatically.
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(c) For all w# 0, wTB(q*, x*)w >0. Then all solutions of (18) and (19)
that are bounded' for t =0 converge to (q@*,x*) as t -»w,

NS&. Put V,(q, x) = ~ (@ — ¢®)"(x — x*) and use (b) and (c) to show that
Vg, x) <0 for (g, x) # (q*, x*). The rest is just a standard Lyapunov
function stability exercise. See Brock and Scheinkman (1975a, theorem
3.2) for the details.

Note that theorem 5 gives a set of sufficient conditions for the Cass and
Shell hypothesis,

d.\—AQ- .Xv < cv

to hold.
Theorems 4 and S are, in some sense, complementary since each asks

that Q be ‘‘positive definite” in directions which are transversal to each
other.

Theorem 6. Assume that W, (') exists and is negative definite on R}. Let
(g*(t),x*(t)) be a solution of eqs. (18) and (19) that corresponds to an
optimal path. Assume (a) H° € C?; (b) (¢*, x*) is the unique stationary
solution of (18) and (19);(c) x* is alocally asymptotically stable solution of
the “reduced form” system

X(t) = HyW.(x (1)), x(1)); (33)

(d) H%q, x) is locally a-convex-B-concave at (¢*, x*); and (e) H%q, x) is
locally a-quasi-convex and H°(q, x)— pqx is B-quasi-concave along
(g*(t), x*(t)) where 4aB > p°. Then (q*, x*) is G.A.S.

?Boundedness of (g *(t), x*(¢)) may be dispensed with provided that one assumes
m lim g*(t)x*(t)e =0,

and ...omsom the Lyapunov analysis a bit or one assumes that W, (-) exists. Benveniste and
mn._.o:.r:_w: (1975) provide a set of very general conditions on eq. (5) that imply that W,
exists and that (T) holds for optimal paths. For if W(-) is concave and W, (-) exists, then

@* ) —g*)(x* (1) ~x*) = [W(x*(1)) - W, (x ") (x*(t)—x*) =0.
The use of W(:) in the last line exposes why the Lyapunov function, — (g — ¢ *)"(x —x*) is
“natural.”

“The unwary reader, after reading Rockafellar (1976) might think that W(-)€C’

mm,:v:om G.A.S. But the OLRP gives examples of unstable systems where the value W(') is
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Here f:R" —» R, f € C? is locally B-quasi-concave at X, € R" if for all
wER", w#0, we have

Wi . (xgw =~ Bw'w,
for all w such that
S\._.%.xﬁkov = O.

g:R" - R is locally a-quasi-convex at xo, € R" if — g is locally a-quasi-
concave at Xo.

Proof. This is an adaptation of Hartman-Olech’s theorem (Hartman
(1964, p. 548)) to the system eq. (33) with their G(-) = — W, (). See Brock
and Scheinkman (1974b). .

Theorem 6 allows a weak form of increasing returns to the state
variable. For B-quasi-concavity in x of the imputed profit function - the
Hamiltonian function H®(q, x)~ pgx —amounts to allowing increasing
returns to x provided that the “isoquants” for each fixed q have enough
“curvature.” We say that theorem 6 allows a weak form of increasing
returns because we assume W.(-) is negative definite which implies a form
of long run decreasing returns. In particular, the state valuation function is
concave. Note that concavity of W does not imply concavity of U or T,
although vice versa holds. .

Theorem 6 is in an unsatisfactory state of affairs at the moment since it
requires that W,.(-) exist and be negative definite, but we do not have a
useful set of sufficient conditions on U and T for this to happen. Both this
question and the question of stability analysis under increasing returns
seem to us to be “‘wide open’’ and important fields of research. Systematic
study of economic dynamics under increasing returns is likely to change
our view of how a dynamic economy functions.

Theorems 1-6 are all unified by the fact that they represent results that
can be obtained from the Lyapunov functions,

Vi=—(q—q*"(x—x*) and V,=-—4gx,

and their analogues. These results lead us intuitively to expect that G.A.S.
is likely when H%g,x) has a “lot of convexity in q” and a “lot of
concavity in x” relative to the discount rate p. More specifically, the
Rockafellar condition,

R) 4aB>p?

or its analogues, are suflicient for G.A.S.
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To sharpen our understanding of functions U and T that satisfy the
hypotheses of the above G.A.S. theorems, it is useful to look at the OLRP
and, what is the same thing, the linear quadratic approximation to
problem (5), as given in eq. (12). The Hamiltonians for these problems are
(converting the OLRP into a maximization problem) OLRP:

H{(q,x,v)=x"(—Q)x +2x"(— S)v + v™(- R)v + q"[Fx + Gv1],"*
34)
H%q,x)=x"[SR'ST—Qlx+q"[F—GR™'S™Ix +i{q"GR'G"q.
(35)
“The derivation of formula (35) follows. First, if A is a matrix, then
(a) %Qq\»xv =(A+ A",
(b %cisn Ax,

must hold. The optimal control v must maximize H. Therefore,
(c) O0=H,=-2Rv-28"x+G"q.
Hence, letting v° denote the optimal v,
(d) v’=—R7'S™x +;R"'G"q.
Substituting (d) into eq. (34), we get
H=-x"Qx +[-R'S™x +{R'G"q]"(-R)[-R'S"x +iR"'G"q]
+{G"q -28"x]'[-R'S™x +31R'G"q)+ q" Fx
= (D) + D) + dI) +(IV).
Now
(D =[S"x -3G"qI"zR'G"q — R™'S"x]
=—x"SR'STx +ix"SR'G"q +1q"GR'S"x
—%9"GR™'G"q,
() =2x"SR~'S"x —x"SR'G"q - q"GR'S"x +1q"GR"'G"q. -
Add (II) to (III) to get
(e) D+ ) =x"SR'Sx +5q"GR'G™q - x"SR~'G"q.
Insert (e) into the expression for H®,

H%gq, x) = )+ AV)+ D)+ II)
=—x"Qx +q"Fx +x"SR~'S7x
+iq"GR'G"q —x"SR'G"q
=xT[SR'ST-QIx +q"[F-~GR'S"]x
+49"GR"'G"q,
which is eq. (35). Equation (37) is proved by puttin =-U=* =-U* =-U=*
F=T* G=T*ineq. 35). y putting Q us s Us R Us

e
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2.3. Linear quadratic approximation to (P)

Let
H(n, &v)=E(WUNE+26TULy +y(URy +0"ITIE+TTy), (36)
H(n, £) = £TUL- UNUL ' URE+ [T -TrULUL)E
—inT[TXULT 0. 37N
Substitute the formula
v°=—-R'S"x +3R7'G"q
to obtain the system

¥ =Fx+Gv°=(F—-GR™'S"x +3GR™'G"q
= HYq, x). (38)

Similarly,
CE=TrA T =(T¥-TIUN'UDE+T . (39

Let us use these formulas to build some understanding of the meaning
of the G.A.S. tests in theorems 1-5, and to obtain at the same time some
of the Magill (1975) G.A.S. results for the OLRP. The Cass and Shell test
requires that :

Ly L -5 =~ lpa ~ HYx +a"HY <0, (O
for all g, x. Note the existence of the stationary solution (g *, x*) =(0,0)
for the OLRP. From egs. (35) and (40)

I%M <_H?Q|~Am-l_.waovx_qx +q"BGR'G™lq .
=(q,x)'B(q, x), 1)
where
B aa (I | _ IGR™'G™ (pIDI @)

“ler —HL| T | (eI 2AQ-SRT'SDH)’
which is the negative of the Magill (1975) K* matrix. Now, it is easy to see
that the Rockafellar condition (R) is, basically, the same thing as B
positive definite (see Brock and Scheinkman (1975a)). Thus, in the case of
the OLRP, all five G.A.S. tests developed in theorems 1-5 amount to the
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same thing. This will not be true for nonquadratic problems, of course.
When is B positive definite? To get some feel for this put G = I, S = 0.
Then in the one dimensional case, we require

GR™)2Q)=R™Q > p*/4. (43)

Inequality eq. (43) holds if Q is large, R is small and p is small. This is in
accord with our earlier heuristic discussion of the stability of the OLRP.
But one source of stability or instability is ignored by eq. (43), and indeed
by all of the theorems 1-6. That is the matrix F, which is the very law of
motion of the system! We shall say more about F later.

In general, as is easy to see, B will be positive definite when

ABGR™GAAQ ~ SR™'SM] = A[GR™'G'IA[Q ~ SR™'S™] > p*l4,
(“4)

where A (A) = the smallest eigenvalue of (A + A")/2. Inequality (44) is
the same thing as (R) since a-convexity of H%q, x) means a = the
smallest eigenvalues of Hy, and, in this case,

%=3GR'G".
Similarly for B8-concavity.

Return now to the role of the matrix F. Any information on F is
“wasted” by theorems 1-6. Indeed, it is pointed out by Magill (1975) that a
fruitful way to view G.A.S. tests based on the theorems 1-6 is that they give
sufficient conditions for G.A.S. no matter how stable or unstable the matrix
F is. A test needs to be developed that uses information on F, for rough
intuition suggests that, for the OLRP, if F has all eigenvalues with negative
real parts (i.e. F is a stable matrix), then it seems odd that it would be
optimal to destabilize the system.'” This seems plausible because it costs
v"Rv to administer control, and one would think that in view of the cost
x"Qx of x being away from zero it would be sensible to use v to speed up
the movement of x to zero when F is a stable matrix. However there are

*Of course, from eq. (16) when S# 0, then GR'S™ may be such that
F-GR'ST=A

is unstable even though F is stable. Thus, the “cross-effects” S may act to destabilize a
stable law of motion. The conjecture is plausible for S =0, however. Magili (1975) calls A
the “underlying system" matrix. A natural and interesting conjecture is: does A stable imply

G.A.S. of the optimal solutions to eq. (16). We sketch the construction of a counterexample in
the Appendix.

3
i
!
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two state variable examples where the underlying system matrix is stable,
but it is optimal to administer control to destabilize the system! See the
appendix for an outline of how to construct such an example.

Now there is one test for G.A.S. of the OLRP that wastes no information
at all. That is to count the eigenvalues of the linear system

4 =pq —Hix —H3q,

Oy Hox+ Hg,

and check whether half of them have negative real parts. Then, provided
that the corresponding eigenvectors in (g, x) space generate a linear space
whose projection on x space is all of R", G.A.S. holds. The problem
(posed by Harl Ryder) of finding a neat set of conditions on (L), making full
use of its structure, for half of the eigenvalues of (L.) to have negative real
parts and for the projection property to hold seems to be open. However,
there are Routh-Hurwitz-type tests for kK = n of the eigenvalues to have
negative real parts, but the problem appears to be in developing a test that is
“efficient” in the use of the structure of (L).

Let us call this kind of test the ideal OLRP test. This sort of test has not
been generalized in an interesting and useful way to nonquadratic
problems, however. This is another research problem of greatimportance.

The tests proposed in theorems 1-6, wasteful relative to the ideal test for
the OLRP though they may be, give good results for nonlinear problems
and generalize easily to the case of uncertainty. For example, they indicate
that G.A.S. follows from just convexo-concavity of H® for the case p =0,
which is the famous.no discounting case in optimal growth theory. Brock
and Majumdar (1975) develop stochastic analogues of theorems 1-5 and
obtain G.A.S. results for a highly nonlinear multisector model under
uncertainty. The objective of the work being surveyed in this article is to:
develop G.A.S. tests on U and T that work for nonlinear, nonquadratic
problems, and that generalize easily to uncertainty. Turn now to the
development of a test that uses information on F.

2.4. Results based upon the Lyapunov function V,= x"G(q, x )%

Brock and Scheinkman (1975b) consider the class of Lyapunov functions
Vi=x"G(q, x)x%, 45)
where the matrix G(q, x) is positive definite. Look at

% = HYaq, x), x(0) = x,. (46)
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Evaluate V, along solutions of eq. (46). One obtains
Vi=iTGx + i"G# + "G
=[Hd + Hok1"Gx + 2"G[H%q + H%X] + x"Gx. 47
Here G(q, x), the trajectory derivative of G, is defined by
Gy = M. (Gia,gs + G, %)
=2 (G, (g, ~ H) + Gy H3). (48)

Assuming W,, () exists and is negative semi-definite, so that ¢"x = 0 along

solutions of eqs. (18) and (19) that correspond to optimal paths, eq. (47)
suggests choosing

G =H.,. 49
Thus,
Va=24"% + X HY Ho+ (HS HS)™ + (HS )1 (50)
We may now state the following theorem.
Theorem?7. Letq(-), x(-) bea solution of eqs. (18) and (19) such that
G'X=0 on [0,x).
Assume
ANH o Hot (H H W™+ (H2) 250 (51)

along x(-). Also assume that W.(-) exists."® Then x(t) converges to the
largest future invariant set contained in

{Z|Vy(W,(x), x) = 0}.

wwo&.s. This is just a standard application of Lyapunov theory to the
function V;. See Brock and Scheinkman (1975b) for the proof and some
extensions of theorem 7. Here X is “future invariant” under x = f(x)if for
m.mo: X0 € X the solution x (t]x,) starting from x, stays in X for ¢t = 0. Many
times the special structure of the Lyapunov function V and the law of

"This result may be generalized by considering
Vi=a,q"5 + apiTHS' % + a,"(— HS')g

and arguing as above. We leave this to the reader.
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motion f can be used to show that the largest future invariant set contained
in {xo| V(xs) = 0} is a point. Obviously, theorems 1~5 may be sharpened in
this way.
Theorem 7 would be very nice if the term

HY
did not appear. This term is a hard one on which to get a grip. However, for
quadratic problems and especially for problems where HY, is independent
of (g, x), the G.A.S. test (51) is useful. Problems where HY, is independent
of (g, x) arise in neoclassical investment models where the adjustment cost
function is quadratic, but the production function is not necessarily
quadratic. See Brock and Scheinkman (1975b, forthcoming) for a wide

class of investment models where eq. (51) is applicable.
Let us apply eq. (51) to the OLRP. Here

HY ' H =(GGR'G")YN(F-GR™'S"). (52)
To get some *‘feel” for negative quasi-definiteness of eq. (52) put G =1,
S =0, then

H$ ' HS =2RF. o (53)
If R and F are one dimensional, then since R >0 by convexity of the
objective, we see that F <0 implies G.A.S. by theorem 7, regardless of

the size of p and Q. This is in accord with our intuition that if F is a stable
matrix, then the OLRP should be G.A.S. independently of p.

None of the G.A.S. tests mentioned above make use of HY, in a way

that parallels HY, in theorem 7. This brings us to one of Magill’s (1975,
theorem 2 ii c¢) clever results for the OLRP, We state it for the case of
certainty only. .
Theorem 8 (Magill (1975)). Assume that

- mme wx
are negative definite. Furthermore, assume that

M* = [pI — HYJ"(— H) ' +(~ H%)pl — HE]
is nonpositive definite. Then G.A.S. holds for the OLRP.,

Proof. Put
V=9"(-HW .
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Then

n=pn()-Hu@)~Hin(t), &0)™)<0
(Magill (1975, pp. 19-20)) implies
V=4"(= HW ' +77(- HLW) "5
=lpn - Hiué - Hin)"(-HY) ™'y
+07(~ H) '[pn — H%E — Him)
=28 + 0" (pl - H)'(—~ H3)™'n + 7" (= HY) (oI — H')n <0.
The rest is standard, since £™n = 2£"W,.£ < 0 under Magill’s hypotheses.

2.5. Other G.A.S. results

Some other G.A.S. results are described only very briefly due to lack of
space. The Lyapunov function,

Vi=aq"x + bx"HY,'(q, x)X,

leads .8 the following question: find sufficient conditions on H%4, x) such
that V,= 0 holds along (q(¢), x(1)), t €0, 8.v, for particular choices of a,
b&R. One useful sufficient condition for V, =0 that emerges from this
approach is that

PALH ., Hoe+ (Hag Ho' + (H2,)) S 22q(- HY, (542)
holds along the solution (q(¢), x(t)) to eqs. (18) and (19). Here A(A) =

largest eigenvalue of (A + A™)/2.

Relationship (54a) is derived by differentiating V, along solutions to eqs.
(18) and (19),

Ve=paq™% + ax"(- HY)x + ag"H',qg
+ bi"[Haq Hou+ (Hyy Ho)" + (H)% +2bq™%
Note that the first line of V, is just
(4, X)"B(q, x)(4, %),

so if B is positive semi-definite along (q(¢), x(1)), justput b=0,a <0to
get V.<0 for all £ 2 0. Similarly if A = HY'HS + (HY HS)' +(HY') is
negative definite along ECVLACV and if we assume that ¢”"x =0 along
optimal paths, we then get V,=<0 for all t=0 by putting a =0, b > 0.

The only case where we can get a new theorem, therefore, is when B is
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not positive semi-definite and A is not negative quasi semi-definite for all
t = 0. Suppose that A(A) >0, t = 0. Grouping the terms common to
G"% in V., choose a <0, b >0 such that 2b + ap = 0. Then

Vis ax"(— Ho)% + bXTAX S ak (- HO)|%[* + bA(A)| X[,

since ¢'x =0. The R.H.S. is nonpositive provided that

q
AS(—a)A,
but

2b
—a)As ==
(—a)Ar P

Therefore,

bA = m?
o2
and this last is eq. (54a)"”
If the Hamiltonian H%4q, x) is separable, i.e.

H%gq,x) = Fi(q) + Fxx), A - (55)

for some pair of functions F;(:), F,(+), then Scheinkman (1975) shows that
G.A.S. holds under convexo-concavity of H® by setting Vs = F,(q), and
using ¢"x =0 to show that V=0 along optimal paths. Scheinkman has
also generalized the above result to discrete time. Note that stability does
not depend on the size of p. Separable Hamiltonians arise in adjustment
cost models where the cost of adjustment is solely a function of net
investment (see Scheinkman (1975) for details).

Swapan Dasgupta (1975) and Araujo-Scheinkman (1975) have, de-
veloped notions of dominant diagonal and block dominant diagonal that
take into account the “saddle point character’ of eqs. (18) and (19), and
have obtained interesting G.A.S. results. The Araujo-Scheinkman paper
also relates l. continuity of the optimal path in its initial condition (in
discrete time) to G.A.S. They show that /. continuity plus L.A.S. of a
steady state x * implies G.A.S. of that steady state! Thus, I.. continuity is
not an assumption to be taken lightly. They also show the ‘“‘converse”
result that if G.A.S. is true, then (/) differentiability of the optimal paths

"Benveniste and Scheinkman (1975) provide a useful set of sufficient conditions on eq. (5)
for existence of W,. They provide conditions only for the case T(x, v) = v, but it should not
be too difficult to generalize their argument to more general functions T.



232 W.A. Brock

with respect to both initial conditions and discount factor must hold. This
establishes in particular that both the policy function and the value
function are differentiable if G.A.S. holds.

Magill (1972, 1974, 1975) has formulated a linear quadratic approxima-
tion to a continuous time stochastic process version of problem (P), and
has established the stochastic stability of this approximation. His paper
(1972) was the first to point out the “correct” Lyapunov function to use,
namely the minimal expected value of the objective as a function of the
initial condition x,. Magill’s is the only stability result that I know of for
the multisector optimal growth model driven by a continuous time
stochastic process. Brock-Majumdar (1975) treats the discrete time case.
This area is largely undeveloped and a promising area for future research.

Scheinkman’s thesis (1973) shows the important result that G.A.S. is a
““continuous” property in p >0 at p = 0. This result was generalized for
any p >0 in Araujo and Scheinkman (1975). Burmeister and Graham
(1973) present the first set of G.A.S. results for multisector models under
adaptive expectations. This looks like a promising area for future
developments.

Another particularly promising area of research is to apply the program
of results surveyed in this paper to noncooperative equilibria generated
by N-player differential games, where the objective of player i is to solve

sup J e U, (x(8), £(8), vi(t), 5:(1)) dt
s.t.

Xi(t) = Ti(x:(2), %:(2), v,(t), 3:(t)),

x:(0) = x;o given,

v;(-): [0, ©)>R™ measurable.

Here x;(t) € R" denotes the vector of state variables under the control of
player i; v.(t)E R™ denotes the vector of instrument variables under
control by i; and %:(¢), §;(t) denote the state and instrument variables
under control by all players but i. A discussion of the economic basis for
these games and some very preliminary results is given in Brock (1975).
Finally, the relationship between L.A.S. and G.A.S. is not very well
understood at this point. In particular, suppose that eqgs. (5), (6) and (7)
had only one rest point x* and assume it is L.A.S. What additional
assumptions are needed on the Hamiltonian to ensure G.A.S.? A non-
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linear version of the OLRP suggests that this problem may be difficult.
For example, consider the problem

min ._o.noJ..Qqu + u"Ru) dt
0
s.t.

x =F(x)+Gu, Xo given.

Note that only F(x) is nonlinear. Now, arguing heuristically, if we let
IGl|—=0,||R)|-> e, |Q|| =0, p -, then the optimal solution of eq. (56), calt
it %(t|xo), should converge to the solution x(t|x,) of

x* = F(x), x(0) = x,. 57

Here |A]} denotes a norm of the matrix A. In other words, given any
differential equation system (57) we should be able to construct a problem
(56) that generates optimum paths that lie arbitrarily close to the solution
trajectories of eq. (57). This suggests that any behavior that can be
generated by systems of the form (57) can be generated by optimum paths
to problems of the form (56). There are many m<m85m,x = F(x) that
possess a unique L.A.S. rest point, but are not G.A.S. An obvious
example in the plane is concentric limit cycles surrounding a unique
L.A.S. rest point.

In economic applications more information on F is available. We may
assume F(x) is concave in x, for example. But, still, a lot of phenomena
may be generated by systems of the form % = F(x), F concave.

An important research project would be to classify the class of optimal
paths generated by problem (5) for all concave U, T. The heuristic
argument given above suggests that anything generated by eq. (57) for F
concave is possible. Thus, it appears that strong additional hypotheses
must be placed on the Hamiltonian, above and beyond convexo-
concavity, to get G.A.S. even when the rest point is L..A.S. and unique. It
should be pointed out that there is a close relationship between unique-
ness of the rest point and G.A.S. Obviously, G.A.S. cannot hold when
there is more than one rest point. The uniqueness of rest points is fairly
comprehensively studied in Brock (1973) and Brock and Burmeister
(1976).

In summary, let us say that a dent has been made in providing
economists with a useful set of G.A.S. results for their dynamic models,
but much more needs to be done.
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Appendix: An example where the underlying system matrix is stable, but the
optimal path is unstable

Without loss of generality, we may assume that S = 0 in eq. (13). For the

one dimensional case, it is fairly easy to show that F <0 implies

£(t{£0) >0, t > o for all &, where £(t]¢0) denotes the optimum solution of

eq. (13) starting from £,. Thus, we must go to the two dimensional case in

order to construct a counter-example. Put £ = x, n = q to ease the typing.
The Hamilton-Jacobi equation,

pW(x)=H(W,(x),x), (A.])

generates, letting W(x,) = x§Wx, be the state valuation function of eq.
(13), the matrix equation

pW=—-Q+F"W+ WF + WGR™'G'W. (A.2)

See Magill (1975) for this easy derivation and a discussion of the

properties of the quadratic matrix Ricatti equation (A.2).
Now, the system

x = Fx + Gu°® (A3)

becomes

X=Fx +iGR'G"q =[F+GR'G"W]x = Ax, (A4

using

q

W, = 2Wx,
and the formula for the optimal control,
u°=3iR*G"q.

The task is to construct a matrix F that has all eigenvalues with
negative real parts and to construct p, Q, R, G so that F + GR'G™W s
unstable. The easiest way to do this is to divide both sides of (A.2) by p,
let p >, and change Q so that Q/p = Q, where Q is a fixed positive
definite matrix., Thus for p large, W is approximately given by W = - Q
and

A=F~-GR"'G"Q.

Our task reduces to: construct stable matrix F and two positive definite

matrices

B=GR™'G",Q

so that A is unstable.
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Put

w - O ?n ) O - N.
so that

BQ =B
and

A=F-B.

Just pick stable F and positive diagonal B so that the determinant of
F - B is negative:

_m.lmw_HQu:lv_v:uﬁlvnv)ﬁ:ﬁn_AO.
To do this set F,, + F,<0,-
F.<0, F,>0, F\Fy— F,F,, > 0.

(A.5)

Obviously if b, is large enough and b, is small enough, then R.H.S. (A.5) is
negative. This ends the sketch of the counterexample.

What causes this odd possibility that it may be optimal to destabilize a
stable system when more than one dimension is present? To explain, let
us call

B =GR™'G"

the control gain. It is large when control cost, R, is small and Gu is
“ef ctive” in moving x. Now, the discount p is high on the future, but the
state disequilibrium cost Q = plI is large. For i =1, 2, the cost of
x; — disequilibrium is weighted equally by Q. But if b, is large and b, is
small, then control gain is larger for x, than for x,. Therefore, the
optimizer administers more control to x, relative to x,. But — F,F,; > 0'in
order that F,, <0, F,,>0, |F|>0, so that the sign of the impact of an
increase of x, on X, is opposite to the sign of the impact of an increase of
x; on X, Thus, the optimizer is lead to destabilize the system.

The economic content of our example is: optimal stabilization policy
may be destabilizing when there is a high cost of state disequilibrium, a
high discount on the future, and differential control gains or differential
state costs.

References

Anderson, B. and J. Moore (1971), Linear Optimal Control, Prentice-Hall, Englewood Cliffs,
N.J.



236 W.A. Brock

Araujo, A. and J. Scheinkman (1975), “Smoothness, Comparative Dynamics, and the
Turnpike Property,” University of Chicago.

Arrow, K. and M. Kurz (1970), Public Investment, The Rate of Return, and Optimal Fiscal
Policy, The Johns Hopkins Press, Baltimore.

Benveniste, L. and J. Scheinkman (1975), “Differentiable Value Functions in Concave
Dynamic Optimization Problems,” Report 7549, Center for Mathematical Studies in
Business and Economics, The University of Chicago.

Breakwell, J., J. Speyer and A. Bryson (1963), “Optimization and Control of Nonlinear
Systems Using the Second Variation,” SIAM Journal of Control, 1, 193-223. -

Brock, W. (1975), “Differential Games With Active and Passive Variables,” University of
Chicago.

Brock, W. (1973), “Some Results on the Uniqueness of Steady States in Multisector Models
of Optimum Growth When Future Utilities are Discounted,” International Economic
Review, 14, 535-559.

Brock, W. and E. Burmeister (1976), “Regular Economies and Conditions for Uniqueness in
Optimal Multi-Sector Economic Models,” International Economic Review, Feb.

Brock, W. and M. Majumdar (1975), “‘Asymptotic Stability Results for Multisector Models
of Optimal Growth When Future Utilities are Discounted,” Cornell University Discussion
Paper; University of Chicago Working Paper.

Brock, W. and J. Scheinkman (1975a), “Global Asymptotic Stability of Optimal Control
With Applications to the Theory of Economic Growth,” Journal of Economic Theory
Symposium, Feb. 1976: University of Chicago Working Paper. (Revision of Brock and
Scheinkman ( 1974a).)

Brock, W. and J. Scheinkman (1974a), “Global Asymptotic Stability of Optimal Control With
With Applications to Dynamic Economic Theory,” Applications of Control Theory to
Econormic Analysis, J.D. Pitchford and S.J. Turnovsky (eds.), North-Holland, Amster-
dam. Also, Discussion Paper No. 151, Center for Mathematical Studies in Economics and
Management Science, Northwestern University, Evanston, Ii.

Brock, W. and J. Scheinkman (1974a), ““Global Asyinptotic Stability of Optimal Control With
Applications to the Theory of Economic Growth,” Report 7426, Center for Mathematical
Studies in Business and Economics, University of Chicago.

Brock, W. and J, Scheinkman (1974b), “Some Results on Global Asymptotic Stability of
Control Systems,” Report 7422, Center for Mathematical Studies in Business and
Economics, University of Chicago.

Brock, W. and J. Scheinkman (forthcoming), “On The Long Run Behavior of a Competitive
Firm,” 1974 Vienna Conference Volume on Equilibrium and Disequilibrium in Economic
Theory.

Burmeister, E. and D. Graham (1973), “Price Expectations and Stability in Descriptive and
Optimally Controlled Macro-Economic Models,” J.E.E. Conference Publication No. 101,
Institute of Electrical Engineers, London. :

Cass, D. and K. Shell (1976), “The Structure and Stability of Competitive Dynamical
Systems,” Journal of Economic Theory, 12, 31-70.

Dasgupta, S. (1975), “On the Stability of Capital Stock Structure of a Competitive Firm,”
University of Rochester,

Flaherty, M. (1974), “Industry Structure and R and D,” Carnegie-Mellon University
Working Paper.

Friedmnan, J. (1971), “A Noncooperative Equilibrium for Supergames,” Review of Economic
Studies, 38, 1-21.

Hartman, P. (1964), Ordinary Differential Equations, John Wiley, New York.

Kwakernaak, H. and R. Sivan (1972), Linear Optimal Control Systems, Wiley-Interscience,
New York.

Lee, E. and L. Markus (1967), Foundations of Optimal Control Theory, John Wiley, New
York.

Stability of optimal control 237

Magill, Michael J.P, (1972), “‘Capital Accumulation Under Random Disturbances,” Univer-
sity of Indiana. )

Magill, Michael J.P. (1974), “A Local Analysis of N-Sector Capital Accumulation Under
Uncertainty,” paper presented at European Meeting of the Econometric Society, Greno-
ble, France.

Magill, Michael J.P. (1975), “Some New Results on the Local Stability of the Process of
Capital Accumulation,” Department of Economics, University of Indiana, Bloomington,
IN. To appear in the Journal of Economic Theory.

Morténsen, D. (1973), “Generalized Costs of Adjustment and Dynamic Factor Demand
Theory,” Econometrica, 41, 657—665.

Nadiri, I. and S. Rosen (1969), “Interrelated Factor Demand Functions,” American
Economic Review, 59, 457-471.

Nadiri, I. and S. Rosen (1973), A Disequilibrium Model of Demand for Factors of
Production, Nationa! Bureau of Economic Research, New York.

Prescott, E. (1973), “Market Structure and Monopoly Profits: A Dynamic Theory,” Journal
of Economic Theory, 6, 546-557.

Rockafellar, R.T. (1976), “Saddle Points of Hamiltonian Systems in Convex Lagrange
Problems Having a Nonzero Discount Rate,” Journal of Economic Theory, 12, 71-113.

Samuelson, P. ( 1972), “The General Saddle Point Property of Optimal Control Motions,”
Journal of Economic Theory, 5.

Scheinkman, J. (1975), “'Stability of Separable Hamiltonians and Investment Theory,”
University of Chicago.

Scheinkman, J. (1976), *On Optimal Steady States of n-Sector Growth Models When Utility is
Discounted,” Journal of Economic Theory, 12, 11-30, Also, Report 7357, Center for
Mathematical Studies in Business and Economics, University of Chicago.



