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DYNAMIC INVESTMENT STRATEGIES FOR A RISKY R AND D PROJECT

1. TINTRODUCTION

A significant feature of a research and development (R and D) project as
compared to other investment activities is the considerable amount of uncertainty
associated with it. The amount of time and effort required to achieve progress
as well as the final outcome of the project and its value are all uncertain.

The sources of these uncertainties are usually classified into (i) technological
factors, that cause the effectiveness of resource allocations to be uncertain
due to the intrinsically stochastic nature of the R and D process, and (ii)
market conditions, that cause the value of the project outcome to be uncertain
due to random changes in consumer tastes, competitors' actions, etc. (see, for
example, Mansfield [ 17], and Marschak, Glennan and Summers [ 18]}). 1In presence
of these uncertainties the R and D manager is faced with the following three
interrelated decisions: (1) determine whether it is at all worthwhile under-
taking the project in the first place, (2) once it is undertaken, determine an
allocation strategy for financing the project through time, and (3) given that
the project is on its way, determine the point a& which it should be discon-
tinued, whereupon a terminal reward is obtained as a function of the final out-
come. In this paper we consider these problems within the context of a firm
attempting to develop an improved quality product before marketing it, so as

to maximize the profit net of R and D expenditures., These problems of optimally
undertaking, financing and terminating an R and D project in presence of the
technological and market uncertainties are unified into the single problem of
determining an optimal stochastic dynamic resource allocation strategy, which

will be shown to have economically meaningful characterization.
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In the area of dynamic resource allocation in an R and D project, Kamien and

Schwartz [ 11, 127 and Lucas [15] have obtained forms of optimal expenditures as

functions of time using control theory, while Aldrich and ﬁorton [ 1] have
obtained similar results using a dynamic programming model. The corresponding
problem of optimally distributing resources among several projects has been
considered by Gittins [ 6, 7, 8 and Laska, Meisner and Siegel [ 13]. 1In these
and other related models (such as Hess [97]), the state of the project at any
time is classified as either being (completely) successful or not, where "success"
is precisely defined a priori and "partial success' achieved during the condict
of the project is meaningless and inconsequential. 1In such models, success may
occur instantaneously at any point in time and the conditional probability den-
sity of the project completion time (i.e. the hazard rate) is a function of the
total effort accumulated till that time, thereby reflecting the (internal tech-
nological) uncertainty regarding the total effort required for successful com-
pletion of the project. Similarly, project "failure' (premature termination)
may occur due to a rival's introduction of a similar competing product, the
(external market) uncertainty regarding the time of such an event being repre-
sented by the corresponding hazard rate function. Such a model may realisti-
cally represent, for example, the development of a specific chemical compound
or a cure for a disease or,more frivolously, the activity of participating in a
jig~saw puzzle competition, where the binary description of the project may be

appropriate,

On the other hand, during the course of an R and D project, it is often
meaningful and possible to assess its progress up to any point in time (see, for

example, Radner and Rothschild [ 197, where the progress of an activity is



represented by a scalar, denoting its worth). The project resource allocation may
then be based on its current progress. Moreover, the level of progress achieved at
which the project is to be declared successfully completed is often not pre-
specified, so that the project goal itself is a decision variable., Specifically,
in this paper we consider a development project aimed at improving the quality

of a product relative to that of other competing products of the same generic type
in the market, so that the progress of the project is represented by the relative
quality achieved so far. Such a relative product quality may be perceived by the
manager in terms of, for example, the potential rating of the product by a con-
sumer research organization or the potential profit obtainable if the product
developed so far was marketed. The amount of resources to be allocated at any
time during the course of such an R and D project then becomes a function of the
relative quality of the product developed so far. 1In addition to determining

such a strategy for financing the project through time, the R and D manager must
also select the target quality to be achieved before introducing the developed
product into the market and collecting the resulting profit.

The progress of the project up to any point in time, as measured by the rela-
tive quality of the product developed by then, is a cumulative result of all the
past partial successes and failures of possibly differing degrees. A partial
success is due to a technological advance by our firm, which occurs at random
times that depend on the development expenditures and results in an improvement
in the quality of our product relative to the competitors. On the other hand, a
partial failure is assumed to be due to a competitor's introduction of an improved
product, occurring at random times that are beyond our firm's control and results
in making our firm's product relatively inferior. Thus the relative quality of

the product developed up to any point in time represents the current project
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status and summarizes the net effectiveness of the past resource allocations that
have resulted in a series of partial successes (improvements) and failures
(reductions). The optimal resource allocation strategy for financing the R and D
project through time then turns out to be a function of the current quality, so
that we have an adaptive feedback control strategy instead of a time expenditure
plan which has to bé revised every time the project status changes during its
conduct. Along with the characterization of such an allocation strategy, our
model also yields the optimum goal quality that the R and D manager must strive

to develop. As the project progresses through time, it may be optimal to dis~-
continue its further development and market the product, either because the goal
quality has been attained, or because the currently attained quality is so inferior
in comparison with the goal quality that the expected expenditure of resources
required to reach the goal is greater than the associated expected reward incentive.
The decision as to whether to undertake the development of the product of a given
initial quality at all is then a special case of the above problem.

The mathematical model presented in the next section makes precise the problems
qualitatively outlined above and is analyzed, using the semi-Markov decision theory.
In section 3, we establish the structures of the optimal strategies for undertaking,
financing and terminating decisions and characterize'their dependence on the
parameters of the problem, The final section concludes with a summary of the
salient features of the model and the results.

2. THE SEMI-MARKOV DECISTON MODEL

The total revenues from the R and D project completion date onwards depend
upon the quality of the end product developed, in terms of its ability to satisfy
the existing and latent customer preferences, and the actions of rivals, in terms

of their current and future introduction of competing products (see Scherer [20]



and Mansfield [17], p. 129). The terminal reward from the product development
project is then the expected value of the resulting profit stream, discounted to
the project completion date, and is a function of the final product quality
developed relative to that of the competing products in the market on that date.
This relative quality rating may be looked upon as a shift parameter in the
demand function of that product (as in Dorfman and Steiner [4]), and will be

denoted by q € Q, where, for convenience, we take the quality space Q to be the

set of all integers, a higher value of q corresponding to a better quality pro-
duct in comparison with other similar products currently in the market. Each
unit of improvement in the rating of the’product quality relative to the com-
petition will be assumed to be worth B > 0, as a result of the increased sales
due to the introduction of the better product. Thus, greater improvements over
existing competing products bring in proportionately higher rewards, reflecting
the consumers' ability in discriminating among products on the basis of their
relative qualities and in selecting a superior product proportionately more often
at a given price. Such an assumption of constant returns to scale in carrying
out the activity of improving the product quality and marketing it corresponds
to the linearity assumption made in the economic activity analysis and is, in
fact, automatically satisfied with 8 = 1 if the quality itself is measured in
terms of the potential profit obtainable upon marketing the product as in [19].
Let q be the minimum quality our product must have relative to competing products
available in the market in order to induce sufficient demand necessary to cover
the fixed costs of production and distribution; a product of quality worse than
q is not worth commercial production. Thus, if the product of relative quality

q is introduced into the market, the reward collected summarizes its worth and

is given by



for all i, so that the average time interval between successive advances of mag-

nitude i, which is 'is non-increasing in a, (conforming to the above

1
Ai(a) ?
mentioned time-cost tradeoff relationship) and that a positive effort is necessary

[ee]

for advancing in the competitive environment. We also assume that jz A.(B) is
i
i=1
finite, to be denoted by A(B), to ensure that in a finite amount of time only an

advance of a finite magnitude and only a finite number of such advances are

possible for any resource allocation., Furthermore, suppose that iXi(B) < o,

~1s

]

i=1
so that the expected magnitude of an advance during any stage of the development
process is also finite.

As the product development proceeds, an arrival of a better competing pro-
duct in the market will result in lowering the relative quality ranking of, and
thereby adversely affecting the demand for, our product. Such a deterioration in
the relative quality may be looked upon as a partial failure, whose magnitude de-
pends upon the extent of advance achieved by the rivals. The arrivals of these
competing innovations into the market may also be assumed to be generated by Poisson
processes as above, which, however, are beyond the control of our firm. Let uk >0
denote the Poisson rate at which a partial failure of magnitude k occurs, where

ke {1, 2,....}, so that the time intervals between successive partial failures

of magnitude k are exponentially distributed with mean —l— . Such an assumption
My

is reasonable if there is a large number of competing innovators, whose behavior

pattern is stationary in time and, independent of one another. As before, we

@

o]

will assume that u = ;Z My <= and that 2J k 4 < o implying that
k=1 k=1

only a finite number and magnitude of rival innovations are possible in a finite

amount of time and that the expected amount of reduction caused by each such

innovation is finite.
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Blq - q) if q

v
0

(2.1) R(q) =
10 if 949,

~

This terminal reward to be received upon the completion of the development
project serves as the incentive for investing capital and labor resources during
its conduct. An allocation of resources may be aggregated into the monetary
expenditure a € [ 0, B], where the upper bound B corresponds to the maximum amount
of resources at the firm's disposal. The interest rate will be denoted by r > O,
so that one dollar at time t has the present value e'rt.

At any point in time during the conduct of the project, the relative product
quality achieved summarizes the cumulative result of past successes and failures
due to past allocations., As the project proceeds, the product quality changes
stochastically through time. A partial success corresponds to an improvement
in the product quality as a result of a research finding or a scientific discovery
or a technological breakthrough by our firm, where such an advance is assumed to
take place according to a Poisson process (as in Gaver and Srimivasan [5}). The
Poisson rate at which an improvement in the product quality takes place is con-
trolled by the current resource allocation, where a greater allocation will
be assumed to stochastically reduce the time required for an improvement, (a

stochastic analog of the time-cost tradeoff relationship in R and D studied by
Scherer [ 20]). Furthermore, such an improvement may be of differing magnitudes
depending upon the degree of technical advance achieved, Given an allocation

a € [0, B], the uncertainty regarding the time of the next partial success may
then be represented by the independent Poisson processes of rates xi(a) =0
where i is the magnitude of the improvement taking values in {1, 23500000}

Suppose that for each i, ki(a) is continuous and increasing in a with Xi(O) =0
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Let Xi(a)(Yk) be the exponential random variable denoting the time interval

between successive quality improvements (reductions) of magnitude i =1,2,....
(k =1,2,,...). Then X(a) = Inf {Xl(a), Xz(a),...} denotes the time interval

between successive improvements and is exponentially distributed with parameter

[00]
2.2) A@ = ) A @.
i=1
Similarly, Y = Inf {Yl, Y2;...} is the time interval between successive reductions

and has the exponential distribution with parameter

[o<]

(2.3) u = z My
k=1

Consequently, the time interval between successive changes in the product
quality q is a random variable 2z(a) = Min {X(a), Y} with exponential distri-

bution with parameter

(2.4) MA(a) =A(a) +u

Now the evolution of the project through time, in terms of the product
quality developed, may be described as follows. Suppose that the project starts
at time t0 = 0 with the initial quality 1 = 4 of the product on hand. The
immediate decision to be made is whether to develop this product further before
marketing it or to market it as it is, to be denoted by actions ¢ (continue) and
s (stop) respectively. TIf the stopping action s is taken, the development process
ends (i.e. the project is not undertaken) and the product is marketed as it is,
yielding R(qo). If the continuation action:c is taken, the manager must, in addition,
determine the resource allocation a, €10,B] at time 0. The product quality changes
at a random time as a combined result of such an allocation, the internal uncer-

tainties regarding the time of the next improvement (as summarized in k(ao)), and the
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external uncertainties regarding the time of the next deterioration (as summarized
in y). Thus, the time Z(ao) =t, at which such a change in the project status occurs
is selected according to the exponential distribution with parameter A(ao).

Given that such a change occurs at time t., the new product quality is therefore

1
_ A (ag)
q0'+1 with probability ,i=1, 2,....
- A(ao)
q =
1
K {th probabili K k=1, 2
qQp with probability A(ao) , =1, 2,....

In general, at the nth decision epoch at time tn (n =0, 1, 2,....)'the state

of the project in terms of the currently developed quality q, is observed and

a stop (s) or continue (c¢) decision is made. The stop decision terminates the
process, taken to mean technically that the process instantaneously goes to = @
so that tn+1 = tn and Qg ="~ with a final reward R(qn), thereby rendering any
further resource allocation fruitless and unnecessary. The continue decision

on the other hand, necessitates the choice of a further resource allocation. If
the allocation a, € [0, B] is chosen then the time interval until the next

transition, t - tn’ has the exponential distribution with parameter A(an),

n+l
at the end of which the new product quality is

AgCa)
q, + i with probability K?E;T_— , 1 =1, 2,....
(2.5) 9.1 = .
. ‘1 k -
q, - k with probability K?;js- , k=1, 2,...

n

The above birth and death process dynamics resemble the discrete time random walk
model proposed by Radner and Rothschild [19] to represent the progress of any
activity. They, however, consider the implications of following certain reasonable
behavioral rules, rather than determining optimal strategies for controlling such

a process.
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In order to control the evolution of the project through time, the R and D
manager uses a strategy for making the stop or continue decisions together with

resource allocations at the decision epochs. A development strategy T is a

sequence of (possibly randomized) decision rules {Wn :n=20,1, 2,....}.

Here T specifies at the decision epoch n whether to stop the development process
together with an expenditure a € [0, B] in case of continuation, as a function
of the past history, i.e. ﬂn(nlhn) is a probability measure on the decision
space D = {s, ¢} x[0, B], conditional on the past history h = (4, dO"""qn)
of states and decisions. A strategy is said to be (non randomized) Markov if

T = {6n: n=20,1, 2,....}, where 6n: Q - D, specifies a decision 6n(qn) if

the product quality at the nth decision epoch is q, € Q. A (non randomized)

stationary strategy is given by a single function §: Q = D, so that at any

decision epoch, if the product quality is q, the decision §(q) is specified,

thereby eliminating the need for remembering the past progress and allocations.
Starting with an initial quality 94y = 4 and following a development

strategy m, let |

(2.6) N =N(q, ) =1Inf {n : dne {s} x[0,B]}

be the random stopping time (possibly infinite) at which the development process

is terminated, thereby yielding the reward R(qN). The net expected discounted
return, starting with quality q and following strategy 7 may then be written as

-rt N ~rt

2.7 W, m =E[e "Rl - ) e "ala;=q]

n=0
The optimal return function is then denoted by

(2.8) V(q) = s:p W(q, m™) ,q9€Q

which may be called the project value function. It is the worth of the project

if the product of initial relative quality q is developed optimally. A strategy

5t

i* is said to be optimal at q if W(q,m*) = V(q) and is said to be optimal if it

is optimal at every q € Q.
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Our objective is to characterize the project value function and the optimal
development strategy, so as to determine whether it is worthwhile undertaking
the project; if so, how best to finance it through time; and finally, the point
at which it is best to terminate the project. 1In the next section we establish
the existence and the structure of the project value function and the existence
of an optimal (stationary) strategy, using the methods developed by Lippman [ 14]
and Ross [20], based on the fundamental works by Blackwell [ 2], Strauch [227] and

Maitra [ 16].

3. THE PROJECT VALUE FUNCTION

In order to establish the existence of an optimal stationary strategy and
the functional equation satisfied by the project value function, we invoke the
results of Lippman [14], upon verifying that his conditions are met in our prob-
lem. An upper bound on the expected discount factor between successive decision

epochs is given by

Sup J e-rt ACa) e“A(a)t

(C:a)ED 0

=_M_B_L
dt A (B) <1

so that Lippman's assumption 1 is satisfied. Next, in our problem,the immediate

return function is

(3.1) R(q) - a if d
r(q,d) =
-a if d = (c,a)

(s,a)

By taking m = 1, and defining

(3.2) w(gq) = (1 + %%%%) max {R(q),1}1 and
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@ A, (B)
(3.3) b =8(1 + Al(g)l Ei Ty » ve find that
|sup  r(q,d)| )
A(B .
2‘;5 @ S Y@@ <
and that, for each q € Q,
X (a)
Sup ? (qti) A( ) y w(q-k) /\L(lk—a) <w(q) +b
e 5 b

while  Sup [w(-*)] < w(q) < w(q) + b, so that Lippman's assumptions 2 and 3
(s,a)eD

also hold in our problem. Furthermore, the quality space Q and the decision space

D are clearly complete, separable metric spaces, and D is, in addition, compact.

Finally, the expected discount factor ;%ﬁ%%y, the immediate return function
Xi(a) ol

r(q,d) and the transition probabilities are all continuous in

SIVT o ko
A(a) Aa)
d. Therefore, applying Lippman's theorem 1 to our problem yields the following

Proposition 1 (Existence and uniqueness)

The project value function V:Q -+ R as defined in (2.8) is the solution of

the optimality equation (3.4) and (3.5) below, for all q € Q,

(3.4) V(q) = Max {R(q); U(q)} where

. (a) ®

“Sup -a + V(g+i) V(q-k)
a€l0,B] 121 +A( rH(2) z +A(a)

(3.5) U(q)

which is unique in the Banach space

B = {u:Q- R| sup M<w},

qeq "



-13 -
where w(q) is as in (3.2). Furthermore, there exists an optimal stationary

deve lopment strategy 6*:Q — D, which, whenever the project is in state q, selects
a decision 5*(q) maximizing the right-hand side of (3.4).

An immediate consequence of the result that there exists an optimal develop-
ment strategy that is statiomary, is that during the course of the project, the
optimal investment decision depends only on the current status of the project
which summarizes the effectiveness of past investments and progress history.

The project value V(q) is the net expected discounted return from the pro-

ject, starting with an initial product of quality gq and optimally stopping or
continuing its further development. Similarly, U(q) is the optimal return if
we are forced to continue for one stage and if we follow an optimal policy

then on. The next proposition characterizes the structure of the project value

function V(*).

Proposition 2 (Properties of V(-))

For all q, 9> 99 € Q with 94 <q< 9, we have

(3.6) V(g) >0 (nonnegativity),
(3.7) V(qz) > V(ql) (monotonicity),
9,-9
(3.8) v(g) < AV(q,) + (1-)\) V(q,), where A = 2 €[0,1] (convexity)
- ! 2 179
Proof:

From (3.4) we have V(q) > R(q) > O for all q i.e. (3.6) holds. To prove (3.7)

and (3.8) let

{R(q)
(3.9) V ,,(q) = Ma , _ =0,1,2,...,9 € Q
n+l U @ v
where
B 'y (a)

i= 1
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with Vo(q) = R(q), q € Q be the usual finite stage versions of (3.4) and (3.5).
Clearly, Vo(q) is nondecreasing and convex, from (2.1). Suppose that Vn(') is
nondecreasing and convex. Then, for each a ¢ [0,B], the bracketed quantity in
(3.10) is nondecreasing and convex, so that Un+1(-) also has these properties and
hence, from (3.9), so does Vn+1(‘), completing the induction argument. Thus,
each Vn(-) is nondecreasing and convex, and, since for some J, VnJ(o) converges
to V(-) (by the usual J-stage contraction property), these properties are pre-
served in the limit. QEQ.

By combining this proposition with the definition (3.5) we get

Corollary: U(*) is also nonnegative, nondecreasing and convex.

Thus, optimal product development never results in losses in the long run,
while starting the project with a better quality product on hand always yields
a higher net return and, furthermore, this marginal advantage from starting with
a better product increases with its -quality.

In the next section, using the above results, we establish the structure of
an optimal stationary investment strategy as a function of the (current) quality

attained.

4, THE OPTIMAL INVESTMENT STRATEGY

Define the maps V:Q x D - R and E:Q x [0,B] - R, by

(s,a)

[ R(q) ~a if d
v(q,d) —

U(q,a) if d = (c,a)
(4.1) {

© [oe]

(@, = -a + ey | ) V@D A @) +Y V@K

" _{:1 k=1
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so that (3.4) and (3.5) can be written compactly as

4.2) v(q) = Sup V(q,d) , q€Q
deD

By Proposition 1, the optimal development strategy 6“:Q - D has the property

(4.3) V(q,8%(q)) = Sup V(q,d) = V(q)
debd

In case of more than one d's attaining the supremum in (4.3), 6*(q) will be
understood to specify stopping rather than continuation and less expenditure
rather than more, thus implying a risk-averting and thrifty behavior.

The optimal development strategy 6*:Q - D may be decomposed into the optimal

stopping strategy 61:Q - {s,c} and the optimal allocation strategy 6;:Q - [0,B],

L5

X * *
so that & = (61, 62). The next two propositions establish the structure of

ala

61 and 6;, respectively.

Proposition 3 (Optimal stopping region)

There exist dgs qs € Q such that q <q< q° < ® and éi(q) = g if and only

if q<q_ orqxzq’.

Proof:

Define
(4.4) q, = sup{q € Q:V(q) = 0.

Then, from (2.1) and (3.4), q < q. If q < g then using nonnegativity and mono-

s
tonicity of Proposition 2 and its corollary, we have
0 = v(q) = R(Q) = U(q)

so that 6i(q) = s, since in the case of a tie 8" specifies stopping. Similarly,

if dq < q < q, then V(g) > 0 = R(g), implying 61(q) = c.
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Next, we show that there is a unique point qS of intersection of R(q) and U(q)
with ¢ > ¢ having the desired properties. Suppose that there does not exist such
a point, so that for all q > q we have U(q) > R(q) and therefore 6i(q) = ¢, for
all q > qq- Then V(q) = U(q) > R(q) > O for all q > q. Now, for each q > qq

define the stopping time

N =N(q,6) =1Inf {n :q <ql

S

so that,
-r

* N _
V(@) = W(g,8) SELle TRy |y = al

Since on {N < »} we have R(qN) = 0 and on {N = =} we have e-rtN = 0 (since
A(B) < @), and since V(q) > 0, it follows that V(q) = O for all q > q , yielding

a contradiction. Hence U(q) > R(q) for all q > q is impossible and we may

define
(4.5) q° = min{q : q > q and U(q) < R(Q)}.

Next we claim that U(gq) < R(q) for all q > q . Otherwise, let
q = Min{q :q > q° and U(®) > R(@}.

Then, by convexity of U(+) and linearity of R(-), we have U(q) > R(q) for
all q > g, so that 6i(q) = ¢ for all q > q and éi(q) = s for all q such that

~ ~ -
q° < q <q. Again, starting in q > q, define, under § ,

N=1Inf {n:q°<q <Torq <q]

yielding

V(q) < R(G-1) = v(g-1) for all q > q

which contradicts convexity of V(.). Therefore, U(q) < R(g) for all q > qs, $0
* s
that 61(q) = s whenever q > q .
%
Finally, by the definition of qS we have 51(q) = c whenever ¢ < q < qs,
which, together with the fact (shown in the first paragraph of this proof) that
6I(q) = ¢ whenever 9 < q £ q, characterizes the convex continuation region

(a,,9%). QED.
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We may interpret qs as the "optimum goal' the development manager should
strive for. Thus, as soon as the relative product quality exceeds qS, it is
best to stop the development and market the product, because the immediate reward
from doing so exceeds the maximum expected return from continuing the development
further. Similarly, q  may be interpreted as the minimum acceptable quality level
necessary to justify further development. As soon as the relative product
quality drops below > it is best to abandon the project, because our per-
formance has been too unsatisfactory (in relation to that of the competitors)
to justify further investments.

The problem of determining whether to undertake a project or not becomes a
special case of the problem of determining the optimal stopping strategy. Thus,
if the product initially on hand is so inferior that 99 < 4 then it is not
worthwhile to undertake the project, while, if the product is so superior initially
itself that 90 > qS, then its further development is unnecessary. »

An intermediate quality q, 9 < qg< qS, represents a promising product worth im-
proving through Rand D expenditures. The following proposition shows that, in the
continuation region (qs,qs) specified by the optimal stopping strategy 5?, it
is optimal to pursue a vigorous and aggressive allocation strategy 6;, which is

strictly positive and increasing in the current progress.

Proposition 4 (Optimal allocation strategy)

With q and qS as in Proposition 3, the optimal allocation strategy 6;

satisfies
(4.6)  b,(q) =0 if ¢<q oraqazq,
4.7 6;(q) >0 if dq < qg< qs, and

x x . S
(4.8) 8,(q5) 2 6,(qy) if q <gq; <q,<q
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Proof:

Statement (4.6) is immediate from (4.1) and (4.2).

If 9, = 9 then from the proof of Proposition 3 it follows that qS =4, =9

so that (4.7) and (4.8) follow vacuously. Hence it suffices to consider the

case in which qq <

[[fal

Suppose 6;(q) 0 for some q € (qs,qs). Then

V@ = 0 = T8 @) =Y g
q q q,8,(q ) V@k) T
k=1
using the definition of (qs,qs), (4.1), (4.3) and the assumption Xi(O) =0 for

all i. Hence, from monotonicity of V(-), as in (3.7), we have V(q) > V(q-k) for

all k > 1, so that the above implies that

V@) < F7 V@,

which together with nonnegativity of V() implies that V(q) = 0. But this contra-
dicts (4.4), since q > qgs completing the proof of (4.7).
To show monotonicity of 6;(-) in the continuation region, note that, if

4, < g < q°, then

V(@) = U(a) = U(q,65(a)),

so that
A (2) >
V@ = sw (e z V(eH) e z Va0 s )
? i=1
which can be seen to be equivalent to
(4.9) rv(q) = Sup {-alt+A(a)] + Z[V(q+i) - V(@] A (@)
a€[0,B] o

+ ) V@) - V@) 1)
k=1
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Now define

F(g,a) = -alr + AGa)] + T'l [V(q+i) - V()Th, (a) + zl[wq-k) - V(@) iy,
k=

I~

i

so that (4.9) becomes

Sup {F(%a)}
a€[0,B]

rV(q)

* s
=F(,6,(@) , 4g9,<qg<g

. s ,
Now, if dq < qq f_q2<iq » then by convexity of V(:) and monotonicity of Xi(-) for
each i, it follows that, [F(qz,a) - F(ql,a)] is nondecreasing in a. But this

implies that 6;(q2) > 5;(q1)’ because otherwise we get
F(a,,8,(qp)) - Flay,8,(a))) > Fla,,6,(q,)) - F(ql,éz(qz))

ontradicti i i *.
c radicting optimality of 62 QED.

5. REMARKS

The economically meaningful characterization of the entire stationary optimal

b

development strategy 6“:Q - D, given in Propositions 3 and 4, may now be summarized

by
. (s,0) if q<q orqxq
(5.1) 6 (q) =

(c;8,(@)) if q_<q<gq

X,

where the expenditure 5;(q) is positive and nondecreasing over the convex continua-
. . s s ‘s
tion region (qs,q ), and the optimum critical levels dq and qS are given by (4.4)

and (4.5).

This problem of characterizing 8 may be viewed as a generalization of the optimal
stopping problem (see e.g. Breiman [3]). In our problem, in addition to the usual
stop or continue decisions, we have allowed for the choice of intensity with

which to continue (searching), which in turn also affects the future "offers". The
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control limit policy form of the optimal stopping region established here resembles
that of Wald's sequential hypothesis testing procedure (e.g. see Ross [20] Ch. 6),
the intensity of sampling in the continuation region being the additional decision

variable.

The effect of varying the parameters of the problem on the control limits
dq and qS may be easily investigated. From the definitions (3.5), (4.4) and (4.5)
of U(qg), dq and qs, respectively, the continuation region (qs,qs) may be easily
seen to be nonincreasing in (4 and r and nondecreasing in A(+) and B. Thus a
lesser competition, a lower interest rate, and a greater technological or financial
capability induce us to pursue a higher goal and not give up too soon.

The structure of the optimal strategy 5~ summarized in (5.1) enables us to

write, analogous to (2.6), (2.7) and (2.8),

(5.2) v(g) = Sw Sup _ W(q,8,)
S
(q459%)€Q 6,er(q,,q7)
S
9, <4
where

s ,
A(qs,qs) = {SZ:Q-*[O,B]: 6,(q) =0 if ¢ < q or if ¢ > q , and 6,(q) is
positive and nondecreasing in q € (qs,qs)}
is the set of stationary allocation strategies in a project with prespecified goals

9 and qs, while

N-1
— 'rtN -rt, _ .
5.3 W@e) TEle TRGy - ) e "8y ag = g wieh
n=0 B
= . S
(5.4) N = Inf{n : q,<aq, or q 24 1

The entire project planning problem may be thought of as that of determining optimal
* 3 .
goals q and q°® and an optimal adaptive allocation strategy 52'for attaining these
s

goals. Equation (5.2) suggests an iterative method for arriving at a desired plan,

which may be heuristically described as follows, and which has an obvious be-
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havioral interpretation. Given an initial project status, a set of reasonable goal

levels is selected and the corresponding optimal strategy for attaining these

goals is determined (by using, say, the policy improvement routine of Howard [10]).

The goals are then appropriately modified and the process is repeated until a

satisfactory combination of the goals and the allocation strategy is found.



(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

_22_
References
Aldrich, C. and Morton, T. E., "Optimal Funding Paths for a Class of Risky

R&D Projects," Management Science, Vol. 21, No. 5, pp. 491-500 (1975).

Blackwell, D., "Discounted Dynamic Programming," Annals of Mathematical Statistics,

Vvol. 36, pp. 226-235, (1965),

Breiman, L., "Stopping Rule Problems,'" Ch. 10 in Applied Combinatorial Mathe-

matics, E. F. Beckenbach (Editor), Wiley (1964).

Dorfman, R. and Steiner, P. 0., "Optimal Advertising and Optimal Quality,"”

American Economic Review, 1954 (pp. 826-836)

Gaver, D. P. and Srinivasan, V., "Allocating Resources Between Research and

Development: A Macro Analysis,'" Management Science, Vol. 18, pp. 492-501

(1972).

Gittins, J. C., "Optimal Resource Allocation in Chemical Research,'" Advances in

Applied Probability, Vol. 1, pp. 238-270 (1969).

Gittins, J. C., "Some Problems of Stochastic Resource Allocation,'" Journal of

Applied Probability, Vol. 9, pp. 360-369 (1972).

Gittins, J. C., "Resource Allocation in Speculative Chemical Research,'" Journal

of Applied Probability, Vol. 11, pp. 255-265 (1974).

Hess, S. W., "A Dynamic Programming Approach to R&D Budgeting and Project Selection,"

IRE Transactions on Engineering Management, Vol. EM 9, pp. 170-178 (1962).

Howard, R. A., Dynamic Programming and Markov Processes, Technology Press and

Wiley (1960).

Kamien, M., I., and Schwartz, N, L,, "Expenditure Patterns for Risky R&D Projects,"

Journal of Applied Probability, Vol. 8, pp. 60-73 (1971).




