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Discussion Paper No. 194

COUNTERFACTUALS AND TWO KINDS
OF EXPECTED UTILITY

by

ALLAN GIBBARD and WILLIA¥ L. HARPER

January, 1976*

Departments of Philosophy, University of Pittsburgh and Uni-

versity of Western Ontario respectively

*This is a preliminary draft based on discussions between the
authors, and there is no guarantee that both authors agree
with everything in it. A much shorter version was presented
to the 5th Intermational Congress of Logic, Methodology, and
Philosophy of Science, London, Ontario, August 1975. There,
and at the earlier University of Western Ontario research
collogquium on Foundations and Applications of Decision Theory,
we benefited from discussions with many people; in particular
we should mention Richard Jeffrey, Isaac Levi, and Barry
O'Neill.



1. INTRODUCTION

We begin with a rough theory of rational decision-making.
In the first place, rational decision-making involves condi-
tional propositions: when a person weighsa major decision,
it is rational for him to ask, for each act he considers,
what would happen if he performed that act. It is ratioral,
then, for him to consider propositions of the form "If I were
to do a, then ¢ would happen.” Such a proposition we

shall call a counterfactual, and we shall form counterfactuals

with a connective '@?' on this pattern: "If I were to do a,

then ¢ would happen" is to be written 'I do a [* ¢ happens.”

Now ordinarily, of course, a person does not know every-
thing that would happen if he performed a given act. He must
resort to probabilities: he must ascribe a probability to each
pertinent counterfactual "I do a [ c¢ happens." He can
then use these probabilities, along with the desirabilities
he ascribes to the various things that might happen if he did
a given act, to reckon the expected utility of a. If a has

possible outcomes Oqs « =+ 40 the expected utility of a 1is

n’

the weighted sum
Zi prob(I do a [P o4 obtains)dﬁoi,

where A@oi is the desirability of 0. On the view we are
sketching, then, the probabilities to be used in calculating

expected utility are the probabilities of certain counterfactuals.



That is not the story told in familiar Bayesian accounts
of rational decision; those accounts make no overt mention of
counterfactuals., We shall discuss later how Savage's account
(1972) does without counterfactuals; consider first an account

given by Jeffrey (1965, pp. 5-6).

A formal Bayesian decision problem is specified by two
rectangular arrays (matrices) of numbers which represent prob-
ability and desirability assignments to the act-condition pairs.
The columns represent a set of incompatible conditions, an
unknown one of which actually obtains. Each row of the desira-

bility matrix,

2 . . L] dn

represents the desirabilities that the agent attributes to
the n conditions described by the column headings, on the
assumption that he is about to perform the act described by
the row heading; and the corresponding row of the probability

nmatrix,

Py Py R Py

represents the probvabilities that the agent attributes to
the same n conditions, still on the assumption that he is
about to perform the act described by the row heading. To
compute the expected desirability of the act, multiply the

corresponding probabilities and desirabilities, and add:

p1d1 + p2d2 + .. . 4+ pndn



Cn the Bayesian model as presented by Jeffrey, then, the
probabilities to be used in calculating "expected desirability"
are "probabilities that the agent attributés" to certain
conditions "on the assumption that he is about to perform"

a given act. These, then, are conditional probabilities;

they take the form EEEP(S/A), where A is the proposition

that the agent is about to perform a given act and S5 is the

proposition that a given condition holds.

On the account Jeffrey gives, then, the probabilities
to be used in decision problems are not the unconditional
probabilities of certain counterfactuals, but are instead
certain conditional probabilities. They take the form
EEEP(S//A)’ whereas on the view we sketched at the outset,
they should take the form EEQP(A.Dés). Now perhaps, for all
we have said so far, the difference between these accounts
is merely one of presentation. Perhaps for every appropriate

A and S, we have
prob(ADP S) = prob(S/ 4); (1)

the probability of a counterfactual AD» S always equals

the corresponding conditional probability. That would be so

if (1) is a logical truth. David Lewis, however, has shown
(1975) that on certain very weak and plausible assumptions,

(1) is not a logical truth: it does not hold in general for
arbitrary propositions A and S. That leaves the possibility
that (1) holds at least in zll decision contexts: that it

holds whenever A 1is an act an agent can perform and prob

gives that agent's probability ascriptions at the time.
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In Section 3, we shall state a condition that guarantees
the truth of (1) in decision contexts. We shall argue, however,
that there are decision contexts in which this condition is
violated. The context we shall use as an example 1s patterned
after one given by Stalnaker. We shall follow Stalnaker in
arguing that in such contexts, (1) indeed fails, and it is
probabllities of counterfactuals rather than conditional pro-
babilities that should be used in calculations of expected
utility. The rest of the paper takes up the ramifications for
decision theory of the two ways of calculating expected utility.
In particular, the two opposing answers to Newcomb's problem
(Nozick, 1969) are supported respectively by the two kinds of
expected utility maximization we are discussing.

We are working in this paper within the Bayesian tradi-
tion in decision theory, in that the probabilities we are using
are subjJective probablilities, and we suppose an agent to ascribe
values to all probabilities needed in calculations of expected
utilities. It is not our purpose here to defend this general
tradition, but rather to work within it, and to consider two

divergent ways of developing it.

2. COUNTERFACTUALS
What we shall be saying requires little in the way of an
elaborate theory of counterfactuals. We do suppose that counter-
factuals are genuine propositions. For a proposition to be a
counterfactual, we do not require that its antecedant be false:

on the view we are considering, a rational agent entertains
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counterfactuals of fhe form "I do a O» S" both for the act he

willl turn out to perform and for acts he will turn out not to
perform. To say AD» S is not to say that A's holding would bring
about S's holding: A» S is indeed true if A's holding would
bring about S's holding, but AR S 1s true also if S would
hold regardless of whether A held.

These comments by no means constitute a full theory of
counterfactuals. In what follows, we shall appeal not to a theory
of counterfactuals, but to the reader's intuitions about them—ask-
ing the reader to bear clearly in mind that "I do a®» S" is to
be read "If I were to do a, then S would hold."

It may nevertheless be useful to sketch a theory that would
support what we shall be saying; the theory we sketch here 1s
somewhat like that of Stalnaker and Thomason (Stalnaker, 1968;
Stalnaker and Thomason, 1970). Let a Dbe an act which I
might decide at time t to perform. An a-world will be a
possible world which 1s 1like the actual world before t, 1In
which I decide to do a at t and do it, and which obeys physi-
cal laws from time t on. Let wa be the a-world which, at ¢,
is most 1like the actual world at t. Thus wa 1s a possible world
which unfolds after t in accordance with physical law, and
whose 1nitial conditions at time t are minimally different from
conditions in the actual world at t in such a way that 'I do a'
is true 1in wa. The differences in initial conditions should be
entirely within the agent's decision-making apparatus. Then
"I do a 0O» S" is true iff S is true in wa.

Two axioms that hold on this theory will be useful in later

arguments. In the first place, if I actually do a, then the
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a-world which, at €, 1s most llike the actual world will be
the actual world itself. Thus "I do a® S" will be true iff S

is true in the actual world.

Axiom 1. A>[(ACP S)=S].

In the second place, since "I do ai{® S" is true #Hf S holds in
W, and "I do al® S" is true If S holds in W , we can say the

followling.

Axiom 2. (A» S)z= (AP J).

We shall invoke both these axioms, not because they follow
from the rough theory we have given, and not because we regard
them as intultively self-evident, but because they simplify
matters. The rationales just given for these two axioms are
shaky. The rationale we gave for Axiom 1 falils if the world is
indeterministic, so that a physically possible world exactly like
the actual world ét time t could later diverge from the actual
world. The rationale we gave for Axiom 2 fails i1f there 1s no
unique a-world which is closest at 't to the actual world. (See
Lewis, 1973, pp. 79-83). Circumstances 1in which these axioms may
fail, however, involve complications which 1t would be best %o
ignore in preliminary work. If the axioms fail, then what we are
saying should be regarded as an approximation which ignores these
complications: 1in accepting Axiom 1, we i1gnore complications that
would arise from physical Indeterminacy, and in accepting Axiom 2,
we 1gnore states of affairs that neilther definitely would hold

nor definitely would fall to hold if an act were performed.
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Our appeals to these Axioms will be rare and explicit.

For the most part in treating counterfactuals we shall simply

depend on a normal understanding of the way counterfactuals

apply to the situations we discuss.

3. TWO KINDS OF EXPECTED UTILITY

We have spoken on the one hand of expected utility calculated
from the probabilities of counterfactuals, and on the other hand
of expected utility calculated from conditional probabilities.

In what follows, we shall not distingulsh between an act an

agent can perform and the proposition that says that he is about
to perform it; acts will be expressed by capital letters early

in the alphabet. An outcome O of an act is a proposition which
may, for all the agent knows, express'all the consequences of

an act which he cares about. The agent, we shall assume, ascribes
a magnitude 0 to each outcome O. He knows that if he performed
the act, one and only one of its outcomes would obtain, although
he does not ordinarily know which of its outcomes that would be.

Let Ol’ RN Om be the outcomes of act A. The expected

utility of A calculated from probabilitlies of counterfactuals we

shall call U(A); it is given by the formula
U(A) = ZJ. prob (A » Oj)’&oj’

The expected utility of A calculated from conditional probabilities

we shall call 9%(A); it is given by the formula

¥Y(A) = Zﬁ prob(Oj/A)Jioj.

Perhaps the best mnemonic for distinguishing U from % 1is this:



we shall be advocating the use of counterfactuals in calculating
expected utility, and we shall claim that <@U(A) 1is the genuine
expected utility of A. %(A), we shall claim, measures instead the
welcomeness of the news that one is about to perform A.

Remember % (A), then, as the value of A as news, and remember

U(A) as what the authors regard as the genuine expected utility

of A.

Now clearly U(A) and Y(A) will be the same if
prob (AP Oj) = prob (Oj/A) (2)

for each outcome Oj' Unless (2) holds for every Oj such that
ﬁoj #Z 0, Y(A) and Y(A) will be the same only by coincidence.
We know from Lewis's work (1975) that (2) does not hold for all
propositions A and Oj5 can we expect that (2) will hold for
the appropriate propositions?

One assumption, together with the logical truth of Axiom
1, will guarantee that (2) holds for an act and its outcomes. Here
and throughout, we suppose that the function prob gives the
probability ascriptions of an agent who can immediately perform
the act in question, and that prob ¢ = lv for any loglcal truth P-

Condition 1 on act A and outcome Oi' The counterfactual

AD» O.l is stochastically independent of the act A. That is to
say,

prob (AP O,/A) = prob (AT O.).
Assertion 1. Suppose Axiom 1 is a logical truth. If A and O.l
satisfy Condition 1, and prob A > O,

prob (AD» 0.) = prob (Oi/A).l
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Proof: Since Axiom 1 is a logical truth, for any propositions
P and Q@Q ,
prob (P> [(PD» Q) = Q]) = 1.
Hence if prob P> 0, then

prob ([PEP Q] = Q/P) = 1 and

prob (PO®»Q/P) = prob (Q/P).

From this general truth we have

prob (Am» 0,/A) = prob (0;/4),
and from this and Condition 1, it follows that

prob (AG» O,) = prob (Oi/A).

That proves the Assertion.

Condition 1 is that the counterfactuals relevant to
decision be stochastically independent of the acts contemplated.
Stochastic independence 1s the same as epistemic independence.
For prob (A »0,/A) is the probability it would be rational for the
agent to ascribe to the counterfactual AP Oi on learning A and
nothing else—on learning that he was about to perform that act.
Thus to say that prob (A» Oi/A) = Q;gg_(Aljéoi) is to say
that learning that one was about to perform the act would not
change the probability one ascribes to the proposition that if
one were to perform the act, outcome Oi would obtain. We
shall use the terms 'stochastic independence' and 'epistemic
independence' interchangeably.

The two kinds of expected utility U and ¥ can also be
characterized in a way suggested by Jeffrey's account of the
Bayesian model. Let acts Al’ vy Am be open to the agent. Let

states S . Sn partition the possibilities in the following

l,
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sense. For any propositions Sl’ e s Sn’ the truth-function
aut (Sl, e Sn) will be their exclusive disjunction: aut

(3

15 s Sn) holds in and only in circumstances where exactly

one of S S_ 1s true. Let the agent know aut (Sl, ey S ).

1° "°°?° °n n
For each act Ai and state Sj’ let him know that if he did Ai
and Sj obtained, the outcome would be Oij’ Let him ascribe each

outcome Oij a desirability Doij' This will be a matrix formula-

tion of a decision problem; its defining features are that the
agent knows that Sl’ c .o Sn partition the possibillities, and 1n
each of these states Sl’ ooy Sn’ each act copen to the agent

has a unique outcome. A set {Sl, ces Sn} of states which satisfy

these conditions will be called the states of a matrix formulation

of the decisilon problem in question.
Both U and ¥ can be characterized in terms of a matrix
formulation:

*u(Ai) = ZJ. prob (AiCB Sj),f:oij;

‘Y(Ai) = ZJ. prob (Sj/Ai) ’Doij'

If‘poij can be regarded as the desirability the agent attributes
to Sj "on the assumption that" he will do A;, then W(Ai)
is the desirability of Ai as characterized in the account we
quoted from Jeffrey.

On the basis of these matrix characterizations of AU and
¥, we can state another sufficient condition for the U-utility
and %¥-utility of an act to be the same.

Condition 2 on act A., states S.,, ..., 3_, and the function
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prob. For each Ai and Sj’
prob (AiEP Sj/Ai) = prob (AiE% Sj)'

Assertion 2. Suppose Axiom 1 1s a loglcal truth. If a decision
problem satisfies Condition 2 for act Ai’ then ﬂ(Ai) = V(Ai).

The proof 1s 1like that of Assertion 1.
4,  ACT-DEPENDENT STATES IN THE SAVAGE FRAMEWORK

Savage's representation of decision problems (1972) is
roughtly the matrix formulation just discussed. Ignorance is
represented as ignorance about which of a number of states of
the world obtains. These states are mutually exclusive, and as
specific as the problem requires (p. 15). The agent ascribes
desirability to "consequences," or what we are calling outcomes.
For each act open to the agent, he knows what outcome obtalns
for each state of the world; if he does not, the problem must be
reformulated so that he does. Savage indeed defines an act
as a function from states to outcomes.

It 1s a consequence of the axioms Savage gives that a
rational agent is disposed to choose as if he ascribed a numerical
desirability to each outcome and a numerical probabllity to each
state, and then acted to maximize expected utlility, where the

expected utility of an act A dis
Zg prob (8) £LO(A,S). (3)

(Here 0(A,S) is the outcome of act A in state S ). Another

consequence of Savage's axioms i1s the principle of dominance: If
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for every state S, the outcome of act A in S 1s more desir-

able than the outcome of B 1in S, then A 1s preferable to B.
Consider this milsuse of the Savage apparatus; it is of a

kind discussed by Jeffrey (1965, pp. 8-10).

Case 1. David wants Bathsheba, but since she is the wife of

Uriah, he fears that summoning her to him would provoke a revolt.
He reasons to himself as follows: "There are two possibilities:
R, that there will be a revolt, and R, that there

won't be. The outcomes and their

R R
desirablilities are given in Matrix 1,
where B 1s that I take Bathsheba and A |RB(O) TB(9)
B | RB(1) RB(10)
A 1s that I abstain from her. Whether
Matrix 1

or not there is a revolt, I prefer
having Bathsheba to not having her, and
so taking Bathsheba dominates over abstalining from her.

This argument is of course fallacious: dominance requires
that the stafes in question be 1ndependent of the acts contemplated,
whereas taklng Bathsheba may provoke revolt. To apply the
Savage framework to a decilislon problem, one must find states of
the world which are in some sense act-independent.

We now pursue a suggestion by Jeffrey2 on how to deal with
states that are act-dependent. Construct four new states:

S There would be no revolt whatever I did.

00°
SOl: A would not elicit revolt, whereas B would.
SlO: A would elicit revolt, whereas B would not.
S..: There would be a revolt whatever I did.

11
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S S S S
These 00 01 10 11
states A |RB(9) RB(9) RB(0) RB(0)
hold B |RB(10) RB(1) RB(10) RB(1)
Matrix 2

independently

of A and B,

and so we can work from Matrix 2 without fallacy. Since in

Matrix 2 neilther row dominates, the decision must be made on

the basis of probabilities ascribed to the states 3 S

00”0 Sqq-
What should the probabilities of these states be? One
possible answer would be this: Each of the four states SOO’ ]

can be expressed as a conjunction of counterfactuals. SOl’ for
instance, 1s the proposition (AP R) & (BIIPR). The probability

of SOl’ then, is simply the probablility of this proposi-

tion, prob ([ADO+* R] & [BEPR]).

The expected utllity of an act can now be calculated in the stand-
ard way given by (3). The expected utility of A, for instance,

will be

= prob (S)A0(4,S), (4)
S

where the summation 1s over the new states S, and O0(A,3) is the
outcome of A 1in state 3.

Does this procedure give the correct expected utlility for
the act? What it gives as the expected utility of A, we can show,
is U(A) —at least that is what 1t gives 1if Axiom 2 1is part of

the logic of counterfactuals. For (4) expands to
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prob (SOO)£O(A,SOO) + prob (SOl)ﬁO(A,SOI) + prob (Slo)£O(A,SlO

prob (Sll)QO(A,Sll).

We have
O(A,SOO) = O(A’801) = RB;
O(A,Slo) = O(A,Sll) = RB.

Thus since SOO and SO1 are mutually exclusive, (4) becomes
prob (SOOVSOl)ﬁRB + prob (SlOVSll)ﬂRB.

Now S,4,8,; s ([AR] &[BPR]), (AP R] & [BCPRI),

and in virtue of the logical truth of Axiom 2, this is AC» R.

Similarly, Slovsll is A R. Thus (4) becomes

prob (A Dk R)CRB + prob (A[®R) LRB,

which is U(A). This proof can of course be generalized.
We have considered one way to construct act-independent
states from act-dependent states; 1t 1s a way that makes use of
counterfactuals. Suppose, though, we want to avold the use of
counterfactuals and rely instead on conditional probabilities.
Jeffrey, as we understand him, suggests the following: ascribe
to each new, act-independent state the product of the pertinent
conditional probabilities. We shall call this probabllity
prob¥*; thus, for instance,
QEQQ*(SOI) = prob (R/A) prob (R/B),
and corresponding formulas hold for the other new states S

00°?

S and S;-.

10°? 11

Using prob¥*, we can again calculate expected utility in the

standard way given by (3). The expected utility of A, for instance,

)y +
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will be

I, prob* (8) £O(A,S), (5)
where again the summation 1is over the new states SOO’ SOl’
SlO’ and Sll' Now (5), it can be shown, has the value Y(J).

For (5) i1s the sum of terms

prob*(Soo)ﬁO(A,S prob (R/A) prob (R/B)ORE,

00’
prob* (S, )00(A,S,7)

*
prob (Slo)ﬁo(A,S

prob (R/A) prob (R/B)ARE,

prob (R/A) prob (E/B)ARE,

1l

lO)

prob*(sll;ﬂo(A,s prob (R/A) prob (R/B)DRBE.

ll)
Thus (5) equals

[prob(R/B) + prob (R/B)] prob(R/A)ORB

+ [prob(R/B) + prob (R/B)] prob (R/A)ORB

= prob (R/A)ORE + prob (R/A)BRE,
and this 1s ¢(4).

Where, then, a decision problem is misformulated in the
Savage framework with act-dependent states, we now have two ways
of reformulating the problem with act-independent states. The
first way is to express each act-independent state as a con-
Junction of counterfactuals. If the expected utility of an act A
is then calculated in the standard manner and Axiom 2 holds,
the result is Y(A). The second way to reformulate the problem
is to ascribe to each new act-independent state the product of
the pertinent conditioned probabilities. If the expected utility
of an act A is then calculated in the standard manner, the result
is %Y(A). If Axiom 2 holds, then, the two reformulations yield
respectively the two kinds of expected utility we have been dis-

cussing.
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S0 far we have given the two reformulations only for an
example. Here 1s the way the two methods of reformulation work
in general. Let acts Al’ ey Am be open to the agent, let states
Sl"”’Sn not all be act-independent, and for each Ai and.Sj,
let the outcome of act Ai in Sj be Oij’ For each possible se-

quence T Tm consisting of states in{Sl,...SnL there will

12000
be a new, act-independent state S(Tl,...,Tm). The outcome of an
act Ai in the new state S(Tl,...,Tm) will simply be the outcome
of Ai in the old state Ti' What has been sald so far applies

to both methods. Now, according to the first method of reformu-
lation, this new state S(Tl,...,Tm) will be

(AID%'Tl) & ... & (Amt}>Tm),
and hence, of course, its probability will be the probabillity of
this proposition. According to the second method of reformula-
tion, the probability of new state S(Tl,...,Tm) will be

prob (T,/A ) X ... X prob (T /A ).

Once the problem 1s reformulated, expected utility 1s to be cal-
culated in the standard way by formula (3).

Are these two ways of reformulating a decision problem
equivalent or distinct? They are, of course, equivalent 1f Axliom
2 holds and U(Ai) =‘V(Ai) for each act Ai’ since the first
vmethod yields U(Ai) if Axiom 2 holds and the second method
yields V(Ai). We already know that Condition 2 and the logical
truth of Axiom 1 guarantee that U(Ai) = V(Ai). Therefore, we
may conclude that if Condition 2 holds and Axioms 1 and 2 are
logical truths, the two reformulations are equivalent. Condition

2, recall, is that the counterfactuals AiD+ Sj are epistemically
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act-independent: that for each of the 0ld, act-dependent

states in ferms of which the problem 1s formulated, learning that
one 1is about to perform a given act will not change the probability
one ascribes to the proposition that if one were to perform that
act, that state would obtain.

The upshot of the discussion is this. For the Savage
apparatus to apply to a declsion problem, the states of the decision
matrix must be independent of the acts. We have considered two
ways of dealing with a problem stated in terms of act-dependent
states; both ways involve reformulating the problem in terms of
new states which are act-independent. Given the logical truth of
Axioms 1 and 2, a sufficient condition for the equivalence of the
two reformulations is that the counterfactuals Ai[}>sj be episteml-

cally act-independent.

5. ACT-DEPENDENT COUNTERFACTUALS

Should we expect Condition 2 to hold? In the case of
David, it seems that we should. Suppose David somehow learned
that he was about to send for Bathsheba; that would give him no
reason to change the probability he ascribes to the proposition
"If I were to send for Bathsheba, there would be a revolt."
Similarly, if David learned that he was about to abstain from
Bathsheba, that would give him no reason to change the probabllity
he ascribes to the proposition "If I were to abstain from Bath-
sheba, there would be a revolt." In the case of David, it seems,
the pertinent counterfactuals are epistemically act-independent,
and hence for each act he can perform, the U-utility and the ¥-

utility are the same.
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When, however, a common factor 1s believed to affect both
behavior and outcome, Condition 2 may fail, and U-utility
may diverge from ¥-utility. The following case is patterned
after an example used by Stalmaker to make the same point.3
Ciii 2. Solomon faces a situation 1like David's, but he, unlike
David, has studied works on psychology and political science
which teach him the following: Kings have two basic personality
types, charismatic and uncharismatic. A kings degree of charisma
depends on his genetic make-up and early childhood experiences,
and cannot be changed in adulthood. Now charistmatic kings tend
to act Justly and uncharismatic kings unjustly. Successful
revolts against charismatic kings are rare, whereas successful
revolts against uncharismatic kings are freguent. UnJust acts
themselves, though, do not cause successful revolts; the reason
that uncharismatic kings are prone to successful revolts 1s that
they have a sneaky, ignoble bearing. Solomon does not know
whether or not he is charismatic; he does know that it is unjust
to send for another man's wife.

Now in this case, Condition 2 fails for states R and R.
The counterfactual B[P R is not epistemically independent
of B: we have

prob (Bf¥» R/B)>prob (BCPR).
For the conditional probability of anything on B is the probability
Solomon would rationally ascribe to it if he learned that B. Since
he knows that B's holding would in no way tend to bring about R's
holding, he always ascribes the same probability to BO?»R aé
to R. Hence both prob (BIP R) = prob (R) and prob (BIF R/B) =

prob (R/B). Now if Solomon learned that B, he would have reason
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to think that he was uncharismatic, and thus revolt-prone.
Hence prob (R/B)=>prob (R), and therefore
QEQQ(BEB R/B) = EEEE(R/B):>EEEP(R) = prob (BO®» R). (6)
Here, then, the counterfactual is not epistemically act-independent.
(6) states also that prob (BI®» R)<prob (R/B), so that in
this case, the probabllity of the counterfactual does not equal
the corresponding conditional probability. By a similar
argument we could show that prob (AP R)>prob (R/A). Indeed
in this case a %Y-maximizer will choose to send for his neighbor's
wife whereas a Y-maximizer will choose to abstain from her—al-
though we shall need to stipulate the case in more detail to
prove the latter.
Consider first U-maxmization. We have that
U(B)
UCA)

prob (B> R)£LRB + prob (B> R)LRB;

prob (A» R)LRB + prob (AC® R)LRE.

We have argued that prob (B R) = prob (R). Similarly, prob
(AC» R) = prob (R),,aﬁd so prob(A (» R) = prob(B b R);
Likewisie @ (AP R) = w' (BC» R).

Wé know thétvgﬁﬁé>£ﬁﬁ éhd @RB>>ﬂéE. Therefore ﬂ(Bj>’ﬂ(A).
This is in effect an argument from dominance, as we shall dis-
cuss in Section 8.

Now consider ¥-maximization. Learning that A would glve
Solomon reason to think he was charismatic and thus not-revolt
prone, whereas learning that B would give him reason to think
that he was uncharismatic and revolt-prone. Thus prob (R/B5>>Q£99
(R/A). Suppose the difference between these probabilities
is greater than 1/9, so that where prob (R/A) = @ and prob (R/B)

= g + €, we have €~>1/9. From Matrix 1, we have
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an act may be welcome or unwelcome: an act may be welcome because
its being performed is an indication that the world is in a
desired state. Solomon, for instance, would welcome the
news that he was about to abstain from his neighbor's wife, but
he would welcome 1t not because he thought just acts anﬂmore likely
to have desirable consequences than unjust acts, but because
he takes Just acts to be a sign of charisma, and he thinks that
charisma may bring about a desired ocutcome.

U-utility, in contrast, i1s a measure of the expected efficacy
of an act in bringing about states of affairs the agent desires;
1t measures the expected value of the consequences of an act. That
can be seen 1n the case of Solomon. The U-utility of sending for
his neighbor's wife is greater than that of abstaining, and that
is because he knows that sending for her will bring about a con-
sequence he desires—having the woman-—and he knows that 1t will
not bring about any consequences he wishes to avoid: 1n parti-
cular, he knows that 1t will not bring about a revolt.

What is it for an act to bring about a consequence? Here
are two possible answers, both formulated in ferms of counter-
factuals.

In the first place, roughly following Sobel (1970, p. 400)
we may say that act A brings about state S if AP S holds, and

for some alternative A¥ to A, A¥D»S does not hold. (An alternative

A is another act open to the agent on the same occasion). Now
on this analysis, the U-utility of an act as we have defined

it is the sum of the expected value of 1ts consequences plus a
term which is the same for all acts open to the agent on the oc-

casion in question; this latter term 1s the expected value of un-

to
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avoidable outcomes. A state S 1s unavoidable ¥f for every act

A¥ open to the agent, A¥» S holds. Thus AP S holds iff S is
a consequence of A or S 1s unavoidable. Hence in particular,
for any outcome O,

prob (A O» 0O)

prob (0 is a consequence of A)
+ prob (0 1s unavoidable),

and so we have

U(A) L, prob (AO» 0) HO

Zoprob (O is a consequence of A) RO

-+

'ZO prob (O is unavoidable) £0.

The first term is the expected value of the conseqguences of A,

and the second term is the same for all acts open to the agent.
Therefore on this analysis of fthe term 'consequence,' U-utility
1s maximal for the act or acts whose consequences have maximal

expected value.

Here is a second possible way of analyzing what it 1s to
be a consequence. When an agent chooses between two acts A and
B, what he really needs to know 1s not what the consequences of
A are and what the consequences of B are, but rather what the

consequences are of A as opposed to B and vice versa. Thus

for purposes of decision-making, we can do without an analysis of
the clause 'S is a consequence of A', and analyze instead the
clause 'S is a consequence of A as opposed to B.' This we can
analyze as

(A0 S) & ~(BOHS).

Now on this analysis, U(A)=>=U(B) If the expected value of
the consequences of A as opposed to B exceeds the expected value

of the consequences of B
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as opposed to A, For for any state 3, AQ+® S holds iff either S
1s a consequence of A as opposed to

B or (ADO®»S) & (BO®» S) holds. Thus

U(A) = Z, prob (A»0) RO
= ZO prob (O is a consequence of A as opposed to B) 20
+ 5, prob ([Ao» O] & [BO» 0]) L0

U®B) = P3N prob (0 is a consequence of B as opposed to A) 40O

+ZO prob ([AQ» O] & [BO®O]) LO
The second term is the same in both cases, and so Y(A)=Y(B) iff
Eo prob (O is a consequence of A as opposed to B) Do =
ZO prob (O is a consequence of B as opposed to A) B0.
The left side is the expected value of the consequences of A
as opposed toc B; the right side is the expected value of the
consequences of B as opposed to A. Thus for any pair of
alternatives, to prefer the one with the higher U-utility is
to prefer the one the consequences of which as opposed to the
other have the greater expected value.

We can now ask whether U or ¥ is more properly called the
"utility" of an act. The answer seems clearly to be Y. The
"utility" of an act should be its expected genuilne efficacy in
bringing about states of affalrs the agent wants, not the degree
to which news of the act ought to cheer the agent. Since U-
utility is a matter of what the act can be expected to bring about
whereas ¥-utility is a matter of the welcomeness of news, U-
utility seems best to capture the notion of utility.

Jeffrey (1965, pp. 73-4) writes, "If the agent i1s deliberat-

ing about performing act A or act B, and if AB 1s impossible, there
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is no effective difference between asking whether he prefers A

to B as a news item or as an act, for he makes the news." It
should now be clear why it may sometimes be rational for an

agent to choose an act B instead of an act A, even though he

would welcome the news of A more than that of B. The news of an
act may furnish evidence of a state of the world which the act
itself is known not to produce. In that case, though the agent
indeed makes the news of hls act, he does not make all the news his

act bespeaks.

7. TWO SURE THING PRINCIPLES

C

i

se 3. Upon his accession to the throne, Reoboam

wonders whether to announce that he will reign severely or to
announce that he will reign leniently. He will be bound by what
he announces. He slightly prefers a short severe reign to a
short lenlent reign, and he slightly prefers a long severe

relgn to a long lenient reign. He strongly prefers a long reign
of any kind to a short reign of any kind. Where L 1s that he is

lenient and D, that he is deposed early, his utilities are

as in the Matrix 3. D D
L 0 80

L 10 100

Matrix 3

The wise men of the kingdom give him these findings of
behavioral science: There is no correlation between a king's
severity and the length of his reign. Severity, nevertheless,

often causes early deposition. The reason for the lack of cor-
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relation between severity and early deposition is that on the
one hand, charismatic kings tend to be severe, and on the other
hand, lack of charisma tends to elicit revolts. A kingé degree
of charisma cannot be changed in adulthood. There is at present
no indication of whether Reoboam is charismatic or not.

These findings were based on a sample of 100 kings, 48
of whom had their reigns cut short by revolt. On post mortem
examination of the pineal gland, 50 were found to have been
charismatic and 50 uncharismatic. 80% of the charismatic
kings had been severe and 80% of the uncharismatic kings had been
lenient. Of the charismatic kings, 40% of those who were severe
were deposed whereas only 20% of those who were lenient were
deposed. Of the uncharismatic kings, 80% of those who were severe
were deposed whereas only 55% of those who were lenient were
deposed. The totals were as in Table 1. This is Reoboam's
total evidence on the subject.

TABLE 1

Charismatic Uncharismatic Total

16 deposed (40%)| 8 deposed (80%) 24 deposed (48%)
2l long-reigned 2 long-reigned 26 long reigned

severe

2 deposed (20%) |22 deposed (55%) 24 deposed (48%)
8 long-reigned 18 long-reigned 26 long reigned

lenient

Reoboam's older advisors argue from a sure thing principle.
There are two possibilities, they say: that Reoboam 1s charismatic

and that he 1s uncharismatic; what he does now will not affect
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his degree of charisma. On the assumption that he is charismatic,
it 1s rational to prefer lenience. TFor since L40% of severe
charismatic kings are deposed, the expected utility of severity
in that case would be

JUBSD + .60SD = .4 X 10 + .6 X 80 = 52,
whereas since only 20% of lenient charistmatic kings are deposed,
the expected utility of lenience 1n that case would be

.2PLD + .80LD = .2 X 0 + .8 X 10 = 64.
On the assumption that he 1s uncharismatic, it is again rational
to prefer lenience. For since 80% of severe uncharismatic kings
are deposed, the expected utility of severity in this case would
be

.89SD + .2 /SD = .8 X 10 + .2 X 100 = 28,
whereas since only 55% of lenient uncharismatic kings are deposed,
the expected utility of lenlence 1n this case would be

.550LD + .45 QLD = .55 X 0 + .45 X 80 = 36.
Thus 1n either case, lenlence is to be preferred, and so by a
sure thing principle, i1t is rational to prefer lenience in the
actual case.

Reoboam's youthful friends argue that on the contrary,
sure thing considerations prescribe severity. Severity 1is indeed
the dominant strategy. There are two possibilities: D, that
Reoboam will be deposed, and D, that he will not be. These two
states are stochastically independent of the acts contemplated:
both prob (D/S) and prob (D/L) are .48. Therefore, his youth-

ful friends urge, one can without fallacy use the states D and D
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in an argument from dominance. On the assumption that he will
be deposed, he prefers to be severe, and likewise on the as-
sumption that he will not be deposed, he prefers to be severe.
Thus by dominance, it is rational for him to prefer severity.
Here, then, are two sure thing arguments which lead to
contrary prescriptions. One argument appeals to the finding
that charisma 1s causally independent of the acts contemplated;
the other appeals to the finding that being deposed is stochasti-
cally independent of the.acts. The o0ld advisors and youthful
companions are in effect appealing to different versions of a
sure thing principle, cne of which requires causal independence
and the other of which requires stochastic independence. The
two versions lead to incompatible conclusions.
The sure thing principle is this: if a rational agent knows
aut (Sl, cees Sn> and prefers A to B in each case, then he

prefers A to B. If the propositions S Sn are required to

15 e
be states in a matrix formulation of the decision problem, so that
each pair of state and act determine a unique outcome, the sure
thing principle becomes the principle of dominance to be dis-
cussed in Section 8; the principle of dominance is thus a

special case of the sure thing principle. Now the principle of
dominance, we have said, requires a proviso that the states 1in
question be act-independent. The sure thing principle should

presumably include the same proviso. The sure thing principle,

then, should be this: If a rational agent knows that precisely

one of the propositions Sl’ e e Sn holds and prefers act A to

act B in each case, and if in addition the propositions Sl’ ey O
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are independent of the acts A and B, then he prefers A to B.

The problem in the case of Reoboam is that his two groups
of advisors appeal to different kinds of independence to
reach opposing conclusions. The older advisors appeal to causal
independence; they cite the finding that a king's degree of
charisma 1s unaffected by hlis adult actions. His youthful
companions appeal to stochastic ihdependence; they cite the
finding that there is no correlation between severity in kings
and revolt. The two appeals yield opposilite conclusions.

It seems, then, that the sure thing principle comes in two
different versions, cne of which requires that the propositions
in question be causally independent of the acts, and the other
of which requires the propositions to be stochastically independent
of the acts.

The principle to which the youthful companions appeal can

be put as follows.

Definition. Act A 1s sure against act B with stochastic independence
of Sl’ .o Sn If the following hold. The agent knows that
independently of the cholce between A and B, propositions Sl’
., 8, partition the possibllities; that is to say, prob (aut
<Sl""’Sn)/A) = 1 and prob (aut <Sl""’Sn)/B) = 1. The proposi-

tions S .,Sn are epistemically independent of the choilce

15
between A and B, 1n the sense that for each, prob (Si/A) =
prob (Si/B). Finally, for each of these propositions Si it
would be rational to prefer A to B if it were known that Si

held.

Sure-thing with Stochastic Independence. If act A 1s sure against

act B with stochastic i1ndependence, then 1t is rational to
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prefer A to B.
The principle to which the older advisors appeal will take
longer to formulate. The proviso for this version will be that

the propositions S . Sn be causally independent of the

1>
cholce between A and B; this can be formulated in terms of
counterfactuals. To say that a state Si is causally

independent of the choice between A and B 1s to say that Si

would hold if A were performed iIff S; would hold if B were per-
formed: (AQk Si) = UBU»Si). We now want to suppose that for

each state Si’ A would be preferred to B given, in some sense,
knowledge of Si' This knowledge of Si should not simply be
knowledge that S.l holds, but knowledge that Si holds independently
of the choice between A and B: that (AEB-Si) & (B!J%Si). We

can now state the principle.

Definition. A 1s sure against B with causal independence of

S.y «.., 3 If the following hold. The agent knows
1 n

aut (Afk» S, s AP S ),

aut (BO® Sy, ..., BO»S ).

The states S Sn are each known to be causally independent

lJ
of the choice between A and B, in the sense that for each of

these Si's the agent knows that (AQ» Si)" UBDéé%). For each

Si’ it would be rational to prefer A to B if Si were known to hold
independently of the choice between A and B—if, that is, it

were known that (AO» S.l) & (Bg» Si).

Sure-thing with Causal Independence. If A is sure against B

with causal independence, then it 1s rational to prefer A to B.
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In the case of Reobcam, we have seen, Sure-thing with
Stochastic Independence prescribes severity and Sure-thing with
Causal Independence prescribes lenience. Now to us it seems
clear that the only rational action in this case is that pres-
cribed by Sure~thing with Causal Independence. It is rational for
Reoboam to prefer lenience because severity tends to bring about
deposition and he wants not to be deposed much more strongly
than he wants to be severe. To be guided by Sure-thing with
Stochastic Independence in this case 1s to ignore the finding
that severity tends to bring about revolt—to ignore that find-
ing simply because severity is not on balance a sign that revolt
will occur. To choose to be severe is to act in a way that tends
to bring about a dreaded consegquence, simply because the act is
not a sign of the consequence. That seems to us to be irrational.
The two versions of the sure thing principle we have dis-
cussed correspond to the two kinds of utility discussed earlier.
Sure Thing with Stochastic Independence follows from the principle
that an act is rationally preferred to another IHf it has greater
-utility, whereas Sure Thing with Causal Independence follows
from the principle that an act is rationally preferred to another
Hf it maximizes U-utility.
Assertion. Suppose that 1n any possible situation, 1t is rational
to prefer an act A to an act B #ff the U-utility of A is greater
than that of B. Then Sure Thing with Causal Independence holds.
Proof: Suppose A is sure against B with causal independence of

S Sn’ and that in any possible circumstance, it would be

12 >
rational to prefer A to B ¥f A's Y-utility were greater than B's.
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The Assertion will be proved 1f we show from these assumptions
that U(A)>U(B).
For each proposition Si’ let Si* be the proposition
(AP S.l) & (BU—>Si).
Now since A is sure against B with causal Iindependence of

S . Sn’ for each Si it would be rational to prefer A to

1°
B if Si* were known to hold. Therefore if Si* were known to
hold, the Y-utility of A would be greater than that of B. Now
the U-utility that A would have if Si* were known is

%, prob (AD» 0/3;%) BO.
Call this ﬂi*(A), and define ui*(B) in a like manner. We have
supposed that for each Si’ Ui*(A)>>ﬂi*(B).

Now by definition of the function U,

U(A) = T, prob (A0 0) LO;
Since A is sure against B with causal independence of Sl""’Sn’

it is known that aut(ADp» S R ACH‘Sn), and for each Si it is

15000
known that (AOH Si) = (B Si). Hence it is known that
aut (Sl*,..., Sn*) holds. By the probability calculus, then,
for each outcome O
prob(Ags 0) = %, prob (AD®0/S,*) prob S, *.
Therefore
U(R) = E,[E, prob(Am» 0/S,*) prob S,*%] 40
=£; prob S;*[T, prob (AO» 0/5;%) L0],
= Zi U, *(A) prob Si*.
By a like argument,
U(B) = &; U;*(B) prob S;*.
Since for each S., U *(A)> 4 *(B),it follows that U(A)>U(B),

and the Assertion is proved.
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Assertion. Suppose that in any possible circumstance, 1t 1is
rational to prefer an act A to an act B i#f the ¥-utility of A
is greater than that of B. Then Sure Thing with Stochastic
Independence holds.
Proof. Suppose A is sure against B with causal independence of
Sl’ e ey Sn’ and that in any possible circumstances, it would
be rational to prefer A to B iff A's ¥-utility is greater than
B's. The Assertion will be proved if we show from these as-
sumptions that Y(A)> ¥(B).

Now since A 1s sure against B with stochastic independence
of Sl’ .oy Sn’ for each Si 1t would be rational to prefer A to
B if Si were known to hold. Therefore, if Si were known to
hold, then the ¥-utlility of A would be greater than that of B.
Now the ¥-utility that A would have if Si were known to hold
is

%, prob (0/AS;) £0.
Call this ?&*(A), and define W&*(B) correspondingly. We have
that for each Si,‘Yi*(A)>’W&*(B).
Now by definition of the function ¥,

V(A) = £, prob (0/a) Ko,
Since A is sure against B with stochastic independence of Sl’ cee D
we have prob (aut (Sl, ey Sn)/A) = 1, and so by the probability
calculus, for each O,

prob (O/A) = Zi prob (O/ASi) prob (Si/A).

Hence

Y(A) = £4[E, prob (0/AS;) prob (si/A)]bo

Z, prob (Si/A)[ZO prob (O/ASi) Ho]

Zi prob (Si/A) W&*(A).
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Although these two principles are respective consequences
of two principles of expected utility maximization which may
conflict, they cannot themselves confliet. For suppose A
strongly dominates B with respect to some set of states Sl’ e S
Then the worst outcome of A is more desirable than some outcome
of B. For the worst outcome of A is the outcome of A in some
state Si’ and since A strongly dominates B with respect to
Sl’ ceey Sn’ the outcome of A in Si 1s more desirable than the
outcome of B in Si' Thus the worst outcome of A 1s more desir-
able than the worst outcome of B. It cannot be the case, then,
that B strongly dominates A with respect to some other set of
states Tl’ ey Tn‘ For if that indeed were the case, then, we
have seen, the worst outcome of B would be more desirable than
the worst outcome of A. We have seen that if A strongly domin-
ates B with respect to a set of states, then there is no set of

strongly
states with respect to whilch BAdominates A. Tor that reason, the
two principles of dominance we have stated will never yield
conflicting prescriptions for a simple decision problem.

In a weaker form, however, dominance indeed can be explcited
to yield conflicting prescriptions.

Definition. Let Sl’ ey Sn be the states of a standard decision

matrix, and let A and B be acts. A weakly dominates B with respect

to S,

at least as desirable as the outcome of B in Si’ and for some

.y Sn Hf for each state Si’ the outcome of A in Si is

state Si with prob (Si)>>0, the outcome of A in Si is more desir-
able than the outcome of B in Si‘
We now get two Principles of Weak Dominance by substituting

'weakly dominates' for 'strongly dominates' in the two Principles
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of two principles of expected utility maximization which may
conflict, they cannot themselves conflict. For suppose A
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have seen, the worst outcome of B wbuld be more desirable than
the worst outcome of A. We have seen that if A strongly domin-
ates B with respect to a set of states, then there is no set of
strongly
states with respect to which BAdominates A. TFor that reason, the
two principles of dominance we have stated will never yield
conflicting prescriptions for a simple decision problem.
In a weaker form, however, dominance indeed can be exploited
to yield conflicting prescriptions.

Definition. Let S Sn be the states of a standard decision

15 s

matrix, and let A and B be acts. A weakly dominates B with respect

to S ., S_ IHI for each state S;, the outcome of A in 3y is

1’ n

at least as desirable as the outcome of B in Si’ and for some
state S, with prob (Si)>>0, the outcome of A in S, is more desir-
able than the outcome of B in Si'

We now get two Principles of Weak Dominance by substituting

'weakly dominates' for 'strongly dominates' in the two Principles



of Dominance stated above.

Case 4. A subject 1s presented with two boxes, one to the left

and one to the right. He must choose between two acts:

AL Take the box on the left.

AR Take the box on the right.

The experimenter has already done one of the following.

Mll Place a million dollars in each box.

MOl Place a million dollars in the box on the right
and nothing in the box on the left.

MOO Place nothing in either box.

He has definitely not placed money in the left box without placing
money 1in the right box. Now the experimenter has predicted the
behavior of the subject, and before making his prediction, he

has used a random device to select one of the following three
strategies.

(i) Reward choice of left box: M 1 if AL is
predicted; MOO if AR is pred}cted.

(ii) Ensure payment: M if AL is predicted;
MOl if AR 1s predicted.

(iii) Ensure non-payment: MO1 if AL is predicted;
MOO if AR 1s predicted:

The subject knows all this, and believes in
the accuracy of the experimenter's predictions with complete
certainty.

The Principle of Weak Dominance with Causal Independence
prescribes taking the box on the right. The three states Mll’
M

and M are causally independent of the act the subject

01° 00

performs. The possible outcomes are shown in the table, where
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1 is getting the million dollars and 0 is not getting it.

Myq Miq Moo
A 1 0 0
Ap 1 1 0

MOl has non-zero probability, since 1if AL was predicted 1t
would result from the experimenter's using strategy (iii) and
if AR was predicted, it would result from the experimenter's
using strategy (ii). Thus AR weakly dominates A; with res-
pect to Mll’ MOl’ MOO’ and the Principle of Weak Dominance
with Causal Independence prescribes taking the box on the
right.
The Principle of Weak Dominance with Stochastic Independence,

in contrast, prescribes taking the box on the left.

The possibilities can be partitioned as follows:

Sl the experimenter predicts correctly and follows
strategy (1).

82 S, does not hold and the subject wins a million
dollars.

S3 Sl does not hold and the subject wins nothing.

The payoffs are given in the table.

Sl 82 83
AL 1 1 0
AR 0 1 0

Now prob (Sl)%(h and hence A; weakly dominates Ap with respect

R
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to Sl’ 82, 83. Moreover, the states Sl’ 82, and 83 are stochasti-
cally independent of AL and AR. For the subject knows that the
experimenter has selected his strategy independently of his
prediction, by means of a random devicej; hence learning that he
was about to perform AL, say, would not affect the probability

he ascribes to the experimenter's having had any given strategy.
By the subject's probability function, then, which strategy

the experimenter has used is stochastically independent of the
subject's act. Now the subject believes that the experimenter

has predicted correctly and used strategy (i), (ii), or

(iii). Hence he thinks that S1 holds iff the experimenter has

used strategy (i), that 82 holds iff the experimenter has used
strategy (ii), and that 83 holds iff the experimenter has used
strategy (iii). Hence under his probability function, states

S

and S, are stochastically independent of A, and A,.

10 5o 3 L R
Thus the Principle of Weak Dominance with Stochastic Independence
applies, and it prescribes taking the box on the left.

Some readers may object in Case 4 to the subject's complete
certainty that the experimenter has predicted Correctly._ It is
possible to construct a conflict between the two principles of
weak dominance without requiring such certainty, but the example

becomes more complicated.

Case 5. Same as Case U4, except for the following.

The subject ascribes a probability of .8 to the experimenter's
having predicted correctly, and this probability is independent of
the subject's choice of AL or AR. Thus where C is "The

experimenter has predicted correctly,”" prob (C/AL) = .8 and
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prob (C/AR) = .8.
The experimenter has chosen among the following three
strategies by means of a random device.
(1) M11 if AL is predicted; MOO if AR is predicted.

. s % . . . . § .

(1i¥%) My, if A; is predicted; My, or MOO’ with equal
probability, if AR is predicted.

is

(1ii¥) M, or MOl’ with equal probability, if Ap

predicted; MOO if AR is predicted.

He has followed (i) with a probability .5, (ii*) with a probability

.25, and (iii*) with a probability .25.

11° MOl’ and MOO are

and from the Principle

In Case 5, as in Case 4, the states M

causally independent of the acts A, and A

R L’

of Weak Dominance wilth Causal Independence and the facts of the

case, 1t follows that it is ratiocnal to prefer AR to AL.

Now let states Sl’ S2, and 83 be as before: S1 is that the

experimenter predicts correctly and follows strategy (1); S2

is that S1 does not hold and the subject receives a million

dollars; 83 is that S1 does not hold and the subject recelves

nothing. As in Case 4, if Sl’ S2, and 83 are stochastically

independent of AL and AR’ then from the Principle of Weak Dominance
with Stochastic Independence and the facts of the case, it

follows that it is rational to prefer AL to AR. 1t is clear that

S1 is stochastically independent of the acts AL and AR; we nNow

show that S, and S5 are as well: that prob (S,/A;) = prob

(82/AR) and prob (83/AL) = prob (83/AR).
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There are two possible acts, two possible experimenter's
predictions, and three possible experimenter's strategies, some
of which may involve the flip of a coin. Call a combination of
act, prediction, experimenter's strategy, and result of coin
flip if it matters, a case. For each case, the Table 2 shows.

(1) The state Mll’ MOl’ or MOO which would
hold in that case.

(2) The conditional probability of the case
given the act.

(3) The outcome in that case: 1 for getting
the million dollars, 0 for not.

(4) The state Sy5 82, or 83 which holds in

that case.
The conditional probability prob (SZ/AL) is then obtained by add-

ing up the conditional probabilities given A. of cases in which S

L
/AL), prob (Sg/AR), and

2
holds; a like procedure gives prob (S

3
prob (SB/AR)'

The conclusion of Table 2 is that the states S., S., and S

1> 722 3

are indeed epistemically independent of the acts AL and AR' Since

AL weakly dominates AR with respect to states Sl’ S2, and SB’ it

follows that A, weakly dominates AR with respect to stochastically

L
independent states. We already know that AR weakly dominates AL
with respect to causally independent states Mll’ MOl’ and MOO' In

Case 5, then, the two principles of weak domlinance are in con-

flict.
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Table 2
AL Performed AR Performed
A, Predicted| Ap Predicted | A, Predicted A Predicted
.8 .2 .2 -8
Str?tigy Mll vl MOO . Mll . MOO vl
i
1 S 0
5 1 83 1 S2 0 Sl
Strat |
€?ii%y ) 01 025 MOl .1
o5 11 2 o = M, .05 1 s,
1 S TSt TTTTTTTT T 1 1 S oo
2 MOO 025 2 MOO
S
0 3 0 83
Strategy
(iiix) M, 4 L1 M, 4 .025
.25 M 05
1 S2 00 1 S2 MOO .2
[Tt 0 Sz |TTTTTTTTTTTTTTTT T 0 S5
M .025
01
01 .1 1 g
0 S 2
3
Totals prob (SZ/AL) = .3 prob (82/AR) = .3
prob (83/AL) = .3 prob (SB/AR) = .3

9. ACT-INDEPENDENCE IN THE SAVAGE FORMULATION

In Section 4, we said that to apply the Savage framework
to a decision problem, one must find states of the world that are
in some sense act-independent. In the last section, we dis-
tinguished two kinds of independence, causal and epistemic. Which
kind is needed in the Savage formulation of decision problems?

The answer 1s that the Savage formulation has both a U-

maximizing interpretation and a Y-maximizing interpretation. On the
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Y-maximizing interpretation, the states must be causally independent
of the acts, whereas on the WLmaximiZing interpretation, the
states must be epistemically independent of the acts. That 1is to
say, 1f the states are causally act-independent, then utility as
calculated by the Savage method is U-utility, whereas if the
states are epilstemically act-independent, then utility as calcu-
lated by the Savage method is ¥Y-utility. If the states are both
causally and epistemically act-independent, then the U-utility of
each act equals its ¥-utility. Thus the Savage formulation
itself is not committed to either kind of utility: the kind of
utility it ylelds depends on the way it is applied to decision
problems.

The expected utility of an act A in the Savage theory is

ZS prob (S) HO(A,S). (3)

If the states S are all known to be causally independent of A,

so that for each state S, the agent knows that (AD» S) = S, then

for each S, we have prob (S) = prob (Ag» S). (3) thus becomes

S prob (AD*»S) DO0(A,S),
S

and this, we said in Section 3, is U(A). If, on the other hand,
the states S are stochastically independent of A, so that for each
S, prob (3) = prob (3/A), then (3) becomes

ZS prob (S/A) BDO(A,S) ,

which 1is ¥(A).
10. NEWCOMB'S PROBLEM

The Newcomb paradox discussed by Nozick (1969) has the same
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structure as the case of Solomon discussed in Section 3.

Nozick treats it as a conflict between the principle of expected
utlility maximization and the principle of dominance. On the views
we have propounded in this paper, the problem 1s rather a conflict
between two kinds of expected utility maximization. The problem
is this. There are two boxes, transparent and opaque; the trans-
parent.box contains a thousand dollars. The agent can perform Al’

taking just the contents of the opaque box, or A taking the con-

2’
tents of both boxes. A predictor has already placed a million
dollars 1n the opague box 1f he predicted Al and nothing il he

predicted A The agent knows all this, and he knows the predictor

5-
to be highly reliable in that both prob (he has predicted Al/Al)
and prob (he has predicted A,/A,) are close to one.

To show how the expected utility calculations work, we
must add detail to the specification of the situation. Suppose,
somewhat unrealistically, that getting no money has a utility of
zero, getting $1000 a utility of 10, that getting $1,000,000 has
a utility of 100, and that getting $1,001,000 has a utility of
101. Let M be "there are a million dollars in the opaque box,"

and suppose prob (M/Al) = .9 and prob (M/Ag) = .1. The calculation

of WKAl) and V(Ag) is familiar.

Y(A;) = prob (M/Al)b$1,ooo,ooo + prob (M/Al)wo
= .9(100) + .1(0) = 90.
Y(A,) = prob (M/A2)40$1,001,OOO + prob (I\7I/A2)D$1000

.1(101) + .9(10) = 19.1.
Maximization of ¥, as is well known, prescribes taking only the

contents of the opaque box.5
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“U(Al) and ‘U(Az) depend on the probability of M, which in
turn depends on the probabilities of Al and Az. For any probability
of M, though, we have U(A2)>>U(Al). For let the probability of M
be M3 then since M is causally act-independent, prob (AlE}9 M) =

and prob (AZD%BD = p. Therefore

‘U(Al) = prob (Alu-) M)®$1,000,000 + prob (AlCP maso
= 100 + 0(1-m) = 100u.
‘U(Az) = prob (A2D-> M)2$1,001,000 + prob (A20-> M)#$1000

= 101y + 10(1-p) = 91p + 10.

Thus W(AZJ - u(Al) = 10 - 9u, and since A=1, this is always posi-
tive. Therefore whatever probability M may have, ﬂ(A2)>”U(Al), and
U-maximization prescribes taking both boxes.

To some people, this prescription seems irrational. One
possibie argument against it takes roughly the form "If you're
SO ratioﬁal and you want to be rich, why ain't you?"
¥Y-maximizers tend to leave the experiment millionaires whereas U-
maximizers do not. Both very much want to be millionaires, and the
¥-maximizers usually succeed; hence it must be the ¥-maximizers who
are making the rational choice. We take the moral of the paradox
to be something else: If someone 1is very good at predicting behavior
and rewards predicted irrationality richly; then irrationality will
be richly rewarded.

To see this, consider a variation on Newcomb's story: the
subject of the experiment 1s to take the contents of the opaque
box first and learn what 1t is; he then may choose either to take
the thousand dollars in the second box or not to take it. The
predictor has an excellent record, and a thoroughly accepted theory

to back 1t up. Most people find nothing in the first box and then
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take the contents of the second box. Of the million subjects
tested, 1% have found a million dollars in the first box, and
strangely enough only 1% of these—100 in 10000—have gone on to
take the thousand dollars they could each see in the second box.
When those who 1eavé the thousand dollars are later asked why they
do so, they say things 1like "If I were the sort of person who

would take the thousand dollars in that situation, I wouldn't be

a millionaire."

On both grounds of U-maximization and of ¥-maximization,
these new millionaires have acted irrationally in failing to
take the extra thousand dollars. They know for certain that they
have the million dollars; therefore the ¥-utility of taking the
thousand as well is 101, whereas the ¥-utility of not taking it is
100. Even on the view of ¥-maximizers, then, this experiment
will almost always make irrational people and only irrational people
millionaires. Everyone knows so at the outset.

Return now to the unmodified Newcomb situsion, where the
subject must take or pass up the thousand dollars before he sees
whether the opaque box is fﬁll or empty. What happens if the sub-
Ject knows not merely that the predictor is highly reliable, but
that he is infallible? The argument that the U-utility of taking
both boxes exceeds that of taking only one box goes through un-
changed. To some people, however, it seems especially apparent in
this case that it is rational to take only the opagque box and
irrational to take both. For in this case the subject is certain
that he will be a millionaire 1f and only if he takes only the

opague box. If in the case where the predictor is known to be
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infallible it is irrational to take both boxes, then, Y-maximiza-
tion 1s not always the rational policy.

We maintain that Y-maximization is rational even-in the
case where the predictor is known to be infalliable. True, where
R is "I become a millionaire," the agent knows in this case that R
holds iff Al holds; he knows the truth-functional proposition R = Al'
From this proposition, however, it does not follow that he would
be a millionaire if he did A,, or that he would be a non-millionaire
if he did A2.

If the subJect knows for sure that he will take Just the
opaque box, then he knows for sure that the million dollars 1s in
the opaque box, and so he knows for sure that he will be a million-
aire. But since he knows for sure that the million dollars is
already in the opagque box, he knows for sure that even if he were
to take both boxes, he would be a millionalre. If, on the other
hand, the subject knows for sure that he will take both boxes,
then he knows for sure that the opaque box is empty, and so he
knows for sure that he will be a non-millionaire. But since in
this case he knows for sure that the opaque box 1s empty, he knows
for sure that even if he were to take just the opaque box, he
would be a non-millionaire.

If the subject does not know what he will do, then what
he knows 1s this: either he will take Just the opagque box and be
a millionaire, or he will take both boxes and be a non-millionaire.
From this, however, it follows neither that (1) if he took just
the opaque box, he would be a millionaire, nor that (i1) 1f he took

both boxes he would be a non-millionaire. For (i), the subject

knows, 1s true iIff the opaque box 1s filled with a million dollars,
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and (ii1), the subject knows, is true iffthe opaque box is empty.
Thus, if (i) followed from what the agent knows, he could conclude
for certain that the opaque box contains a million dollars, and
if (ii) followed from what the agent knows, he could conclude that
the opaque box is empty. Since the subject, we have supposed, does
not know what he will do, he can conclude neither that the opaque
box contains a million dollars nor that it 1s empty. Therefore
neither (i) nor (ii) follows from what the subject knows.

Rational choice in Newcomb's situation, we maintain, depends
on a comparison of what would happen if one took both boxes with
what would happen if one took only the opague box. What the
agent knows for sure is this: 1f he took both boxes, he would get
a thousand dollars more than he would i1f he took only the opaque
box. That, on our view, makes 1t rational for someone who wants
as much money as he can get to take both boxes, and irrational to
take only one box.

Why, then, does it seem obvious to many people that if the
predictor is known to be infallible, it 1s rational to take only
the opaque box and irrational to take both boxes? We have three
possible explanations. The first is that a person may have a
tendency to want to bring about an indication of a desired state
of the world, even if it is known that the act that brings about
the indication in no way brings about the desired state 1tself.
Taking just the opague box would be a sure indication that it con-
tained a million dollars, even though ftaking just the opaque box
in no way brings 1t about that the box contains a million dollars.

The second possible explanation lies in the force of the

argument "If you're so rational and you want to be rich, why
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ain't you?" That argument, though, 1f i1t holds good, should
apply equally well to the modified Newcomb situation, with a
predictor who is known to be highly accurate but fallible. There
the conclusion of the argument seems absurd: according to the
argument, having already received the million dollars, one should
pass up the additional thousand dollars one is free to take, on
the grounds that those who are disposed to do so tend to end up
millionaires. Since the argument leads to an absurd conclusion in
one case, there must be something wrong with it.

The third possible explanation is a fallacious inference
from

Either I shall take one box and be a
millionaire, or I shall take both boxes

and be a non-millionaire
to the conclusion

If I were to take one box, I would be a
millionaire, and if I were to take both

boxes, I would be a non-millionaire.

If, to someone who is free of fallacies, 1t is still in-
tuitively apparent that the subject should take only the opaque
box, we have no further arguments to give him. If in addition he
thinks the subject should take only the opague box even in
the case where the predictor is known to be somewhat fallible, if
he also thinks that in the modified Newcomb situation the subject,
on receiving the extra million dollars, should take the extra
thousand, 1f he also thinks that it 1s rational for Reoboam to be
severe, and if he also thinks 1t is rational for Solomon to abstain

from his neighbor's wife, then he may genuinely have the intuitions
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of a ¥-maximizer: ¥-maximization then provides a systematic ac-
count of his intuitions. If he thinks some of these things but
not all of them, then we leave it toc him to provide a systematic
account of his views. Our own views are systematically accounted

for by U-maximization.

NOTES

1. This is stated by Lewis (1965, note 10).

2. This 1s our understanding of a proposal made by Jeffrey
at the colloquium on Foundations and Applications of Decision
Theory, University of Western Ontario, 1975.

3. Meeting of the Canadian Philosophical Association, 1972.
Nozick gives a similar example (1969, p. 125).

4, Nozick (1969) in effect endorses the Principle of
Dominance with Stochastic Independence (p. 127), but not ¥-
maximization: in cases of the kind we have been considering, he
considers the recommendations of ¥-maximization "perfectly wild"
(p. 126).

5. For ¥-maximizing treatments of Newcomb's problem, sece

Bar Hillel and Margalit (1972) and Levi (1975).
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