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AN ADMISSIBLE SET OCCURRING IN VARIOUS
BARGAINING SITUATIONS

by
E. Kalai and D. Schmeidler

December 1975

The research described here was initiated and most of the
results obtained at the International Workshop on basic problems
of Game Theory, held in Bad Salzuflen, September 1974.. It
was continued at Tel-Aviv University and completed at North-

western University and the University of Illinois at Champaign-

Urbana, respectively.



AN ADMISSIBLE SET OCCURRING IN VARIOUS
BARGAINING SITUATIONS

1. Introduction and a Definition.

Given a set of alternatives, S, we are interested in
finding the possible choices that a society, or a group of
individuals, would make from this set. We assume that there is
a binary relation, M on S, that describes the valid arguments
in the social bargaining process that leads to the final
choice. For example, in Social Choice Theory xMy may stand
for a majority of the individuals prefers alternative x to
alternative y. Let ﬁ denote the transitive closure of M(i.e. X&y
if there is a finite sequence of alternatives X=Xj, X1, 32,...,
X =y for which x; Mz, for i=1,2,...,n) then xﬁy means that
whenever the social bargaining process is at y it may shift
to x in a finite number of steps. This approach leads naturally
to the following definition.

The admissible set of the pair (S,M) is the set

A(S,M) = {x€S| yeS and yMx imply xMy}.
This concept was introduced in a paper by Kalai-Pazner-

Schmeidler and they proved the straightforward result:

Theorem 1: If S is finite and nonempty then A(S,M) is
| nonempty,

One may think of the pair (S,M) as a (bargaining)
Markov process where xMy if and only if there is a posifive
probability of transition from y to x when x # y. It was

shown in [K~P-S] that if S is finite then with probébility one



the bargaining process will enter to and stay in A(S,M) after
a finite number of steps. Furthermore A(S,M) is the smallest
subset of S with this property.

The purpose of this work is to study further the pro-
perties of the admissible set, and to include the cases where S
is infinite. We show that the admissible set is characterized
as the set of final outcomes in a qualitative (bargaining)
Markov process (Theorem 5). Two general existence theorems
are presented; these theorems are general enough to guarantee
existence in all the examples that we have considered. We
discuss examples where the admissible set is a new solution
concept and we show that the admissible set approach leads to
a unified treatment of cooperative and non-cooperative game
theory. More specifically, with the right interpretations, the
admissible set coincides with the core of an n-person cooperative
game without sidepayments, with the Nash equilibria of a game
in the normal form, and it contains the competitive equilibria
prices in the case of an exchange economy with finitely many

commodities and traders.

2. Existence and Characterization.

A straightforward extention of theorem 1 to the in-

finite case is

Theorem 2: If S is a nonempty compact topological space

and if for every x ¢ S the set {y e S[ xMy} is open, then

A(S,M) is nonempty.



Proof: 1If there exists a y ¢ S such that for no x ¢ S
xMy then y ¢ A(S,M) and the proof is completed. So
assume that this is not the case then the collection
{Ox}xes where 0 = {y ¢ S|xMy} is an open cover of S. There-

fore there exists a finite subset of S, X = {xl,xz,...,xn},

n

such that {OX ti=1 is a finite subcover. A(X,M) is not empty

and A(X,M) < A(X,M). Q.E.D.

In case that the binary relation is transitive, the
corresponding admissible set consists of the maximal elements
(i.e. those that are not strictly dominated). The special

continuity condition of the next theorem is useful for appli-
cations.

Theorem 3: TILet S b

a nonempty compact topological

space and let R be a transitive, reflexive, binary re-

lation such that for every x ¢ S the set {y ¢ S|yRx}

is closed, then A(S,R) is nonempty.

Proof: We have to show that S contains an R-maximal
element (i.e..an element y€S such that for every x ¢ S, xRy
implies yRx). By Zorn's lemma it suffices to show that every
R~chain, T, is bounded. For every x€T let Rx = {z€S:zRx}.
Clearly Rx # @ and if zRx then Rz — Rx. So by the finite

intersection property N Rx # @ and any element in the
x€eT '

intersection is a bound for T. Q.E.D.



An interesting mathematical question is whether the use
of Zorn's lemma can be omitted from this proof.

In the case of a finite S (as discussed in [K-P-S1)
A(S,M) has the property of "outer stability'" in the folloWing
sense. If y ¢ A(S,M) then there is an x ¢ A(S,M) such that
xﬁy This property is lost in the infinite case even when the
conditions of Theorem 2 are met. (As an example consider the
set of imputations of a symmetric, non convex, 0=-1 normalized,
3-person game with sidepayments and the domination relation.)
However if we deal with an admissible set A(S,R) where R satis~-

fies the conditions of Theorem 3 then it is true that:

Theorem 4: If y ¢ A(S,R) then there is an x ¢ A(S,R)

such that xRy (provided that R and S satisfy the‘conditions

of Theorem 3).

Proof: For every y ¢ S, Ry = {x ¢ S|xRy} is compact. So
A(Ry,R) # @ and, by the transitivity of R, A(Ry,R) < A(S,R).
Q.E.D.

Another property of A(S,M) which is carried over from the
finite case to the arbitrary S is that of A(S,M) being the union
of the minimally M-closed subsets of S. For anvarbitrary (s,M)
a subset T of S is said to be M-closed if it is nonempty -
and for every y ¢ T and every x ¢ T not yMx. T is minimally

M-closed if it is M-closed and no proper subset of T is M-~closed.

Theorem 5: A(S,M) is the union of the minimally M-closed

subsets of S.



Proof: Let T be a minimally M-closed subset of S, y ¢ T
and suppose, pef abéurdum, that y ¢ A(S,M). Then there is an
x ¢ T such that xﬁy and not yﬁx. Henée iﬁ follows that the
M-closed set {x} U {z ¢ SlzﬁX} is a proper subset of T, which
is the desired contradiction.

Conversely, it is shown that if y ¢ A(S,M) then y belongs
to some minimally M-closed subset. Specifically-the set
T = {y} w {xeS|xﬁy}. The set T is clearly M-closed. 1If for
some X # Y, xﬁy then yﬁx because y ¢ A(S,M). Hence, any M-closed

subset of T contains y and therefore T is minimally M-closed. Q.E.D.

The characterization of the admissible set given in
Theorem 5 shows that the admissible set is a union of pairwise
disjoint sets. The elements of each such set are symmetrically
connected by the relation ﬁ but two elements belonging to two

distinct sets are M-incomparable.

3. Applications to Games in Characteristic Function Form

Example 1: Let V be an n-person cooperative game
(without sidepayments). That is N = {1,2,...,n} is the set of
players and for each E c N, E # @, Vi is a closed nonempty
subset of RE,

Euclidian space. It is further assumed that if 0 g x =Y o VE

the nonnegative orthant of the n-dimensional

then x ¢ VE. (Inequalities in RN are assumed to hold coor-
dinatewise unless specified otherwise like in the self

explanatory notation §E.) Finally, VN is assumed to be compact.

In order to apply Theorem 2, let S = VN and M be the

dominance relation, i.e. =xMy if x ¢ VE for some E ¢ N and



y <g X-

Corollary 1: A(S,M) is nonempty.

Proof: It is easy to check that the domination relation
is open (in the sense of Theorem 2) in the relative topology

of Vg, thus by Theorem 2 A(S,M) # @§. Q.E.D.

The next proposition shows that under some weak assumptions
on the game the admissible set coincides with the core of the

game whenever the latter is not empty.

PROPOSITION 1: Let V be any game with a non-empty core

and in which for every E < N Ve

strictly positive coordinates. Then A(S,M) coincides with the

contains a point with

core of V.

Proof: Recall that the core of V. C(V) = {x ¢ VN|
for every y ¢ Vy not yMx}. Let y € Vy such that y ¢ C(V).
If there exists a z ¢ VN such that zMy through a subset E of N

for which E # N then we proceed in the following way: There

n
exists a positive number ¢ such that (¢,¢,...,¢)e( N V{i})nVN°
i=1i

There exists a u ¢ VN such that uMy through E and u:.L < ¢ for
every i ¢ E. There exists a w & VN such that wMu through some
{5} where j ¢ E= N - E and for which wr < ¢ for i = 1,2,...,0.
For every point x ¢ C(V) we have xMw and thus xﬁy. If the
M-domination on y can be done only through N and wMy then we
let x = w + t(w-y) where t = max {r:wtr(w-y) ¢ VN} thus x

is on the boundary of VN and all of its coordinates are greater

than these of y. It follows that x ¢ C(V) and that xMy. In
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either case we can find a point x ¢ C(V) such that xMy thus A(S,M) =
c(V). Q.E.D.

A probabilistic analogy of this result was presented in
[G] and later in [N]. It was shown there that if the transi-
‘tions between payoffs in VN are governed by a Markov process
compatible with the relation M, then each trajectory converges
to the core with probability one.

An interpretation of the relation M, relevant in this
context, is that of qualitative probability.. More specifically
we distinguish only between probable and improbable events.
xMy means that the transition from y to % is probable (has
a positive quantitative probability) and not xMy means that
the probability of transition from y to x is null. Proposition
1 shows that the qualitative approach suffices to obtain the

convergence to the core via the dominance relation.

4. Applications to Games in Normal Form.

Let S be the set of n-lists of strategies in an n-per-

n . .
i. X
son game in the normal form. S = X S* where S is the simplex
i=1
of mixed strategies of player i. We can define various re-
lations M on S, for the cooperative and non-cooperative cases,

which yield new and old solution concepts.

. i i

Example 2: Define xMy if every player i for whom T #y

gets a higher payoff at x than at y. The admissible set A(S,M)
is a new cooperative solution concept for n-person games in the

normal form. (It contains, of course, the strong Nash equilibria.)
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However, existence of A(S,M,) in this case is not implied by
either Theorem 2 or 3 and it is still an open question. On
the other hand A(S,M) may be very large for some games and may
even coincide with S(for example, in the prisoner's dilemma
game).

A natural way to extend the relation M is by considering
its closure. More precisely, define the relation R on S by
xRy if and only if x ¢ closure ({zeS]zﬁX} U {y}). 1In this case
R satisfies the conditions of Theorem 3 and A(S,R) # @. The
proof of this fact is similar to the proof of corollary 2

which follows.

Example 3: xMy if for some player j % # yj, xt = yi

for every i # j, and jth payoff at x is higher than his payoff
at y. In other words, we restrict the bargaining to be done
non-cooperatively.

With this definition A(S,M) may still be too large.
For example in the 2-person zero sum matching pennies game the
admissible set is identical to all of S. This example,
provided to us by R.J. Aumann, motivated the following definition
of the relation R. xRy if and only if x ¢ closure ({z65|zﬁy} u{y}.
With this new definition, the existence of the admissible set is
assured and the admissible set exhibits interesting properties

as demonstrated by the following corollary and proposition.

Corollary 2: The relation R fulfills the conditions of

Theorem 3 (Hence A(S,R) # 0).
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Proof: The only nontrivial step of the proof is to show
that R is transitive. Suppose that xRy and yRz. We want to
show that xRz. Let 0X be any neighborhood of x, we will show that
the set ﬁ'l(ox) = {we Slx'ﬁw for some x'¢0,} is a neighborkood
of y. This would mean that every neighborhood of x contains
a point which ﬁ dominates z, thus xRz and the proof would be
completed.

It suffices to show that if uﬁy and 0, is any neighborhood
of u then ﬁ'l(Ou) is a neighborhood of y. Since the M domination
is done by a finite number of M dominations it suffices to show
that if uMv and 0u is any neighborhood of u then

M-l(Ou) = {weS|u'Mw for some u'eOu} is a neighborhood of v.

So assume that uMv and 0u is a neighborhood of u and assume
further without loss of generality that the domination is done
through player 1 (i.e. ui=vi for i#l and lth payoff at u is
greater than his payoff at v). It can be easily shown by the
continuity of 1th payoff that M_l(Oun{t e S|t1=u1}) contains

a neighborhood of v. Q.E.D.

Proposition 2: In example 3, A(S,R) contains the Nash

equilibria and in the case of a 2-person zero sum game A(S,R)

coincides with the Nash equilibria (minimax strategies).

Proof: It is obvious that A(S,R) contains the Nash
equilibria since for every equilibrium point x there is no
y # x such that yRx. For the second part of the propositon we
assume that the game is a 2-person zero sum game and that

(xo,yo) is any pair of mixed strategies. We will show that
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there is a pair (xl,yl) of minimax strategies such that
(xl,yl)R(xo,yo). Let (u,v) be a fixed pair of minimax strategies.
), V(x

If the payoff to player I at (x ), equals V(u,v)

O’yO O’yO

then either (xo,yo) is a minimax pair or one of the players

can improve by changing his strategy. This will result in a
new point which R-dominates (xo,yo). So we assume without loss
of generality that V(xo,yo) > V(u,v). V(xo,v) < V(u,v) and if
strict inequaltiy holds then the proof is completed because then

(u,v)M(xo,v)M(x ). So we assume that V(xo,v) = V(u,v).

0*Yo
If (xo,v) is an equilibrium point then we can stop and if not,
then we can find a strategy y, close as we wish to v in which
V(xo,y) < V(u,v). Now exchanging the roles of the two players

we can either find an equilibrium point (x,y) such that

(x,y)R(xO,y), or we find a point (x,y) for which x is as close
to U as we wish and V(x,y) > V(uyv). Continuing to exchange
the roles of the two players we are either stopped by reaching
an equilibrium point (xl,yl) which R-dominates (xo,yo), or
we produce a sequence of points which converges to (u,v), and
then (u,v)R(xO,yo). In either case we find a minimax point
which R-dominates (xo,yo). Q.E.D.

A somewhat different relation, L, on the space of mixed

strategies, S, yields an admissible set which always coincides

with the Nash equilibria. We define L in the following Example.
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Example 4: For a given x ¢ S we define the set of

possible replies to x (PR(x)) as follows. Consider subsets of

S, B, which satisfy the following three conditions.

.th
i

n . . .
(1) B = X B where B < s* ( mixed strategies).

i=1
(2) x ¢ B

(3) 1If y ¢ B, 21 ¢ st and player ith

1 i-1 i i+
payoff at (y ,'-°3Yl s Zl, Yl 13

...sy") is higher
than his payoff at y then zi e Bi.
It is easy to check that intersections of sets satisfying (1),
(2), and (3) also satisfy these conditions. Also S itself
satisfies these three conditions thus we can and we do define
the PR(x) to be the minimal set satisfying (1), (2), and (3).
Intuitively one may think of a possible reply as a
list of strategies of the n-player's were each player can rationa-

lize his strategy by considering possible rationalizations of

the other players. (A constructive way of defining PR(x)

which may be more intuitive, is given in the proof of the next

lemma).

We define the relation L on S by y L x if y ¢ closure (PR(X)).

Proposition 3: For every game, A(S,L) consists of

precisely the Nash equilibrium strategies. Moreover for every

X e¢ S there is a Nash equilibrium point y such that y e PR(x).

Proof: We first observe that a point is an equilibrium
point if and only if it is the only possible reply to itself
or equivalently the only point that L dominates it is itself.

Thus it suffices to prove the second part of the proposition.
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Next we show that if y € S is an equilibrium point
"relative to" Lx = {z e S|z Lx}. (no player can improve his
payoff by changing the point y to a point z in Lx) then y is
an equilibrium point relative to all of S (or just an equili-
brium point). If y is an equilibrium point relative to Lx

and it is not an equilibrium point then there is a

L = y* for every i # j

z ¢ (S-Lx) and a player j such that =z
and jth payoff at z is higher than his payoff at y. But then

for every neighborhood of z, O the set {w ¢ S| for some

z
u ¢ Ozui = wt for i # j and jth payoff at u is higher than at w}
is a neighborhood of y. This implies that z ¢ Lx which is a
contradiction.

Now it suffices to show that Lx contains an equilibrium
point relative to Lx. We proceed by the method outlined by
Nash (1953). By the lemma that follows Lx is convex and
compact. For every y € Lx, let 2(y) = {z ¢ Lx|z is a best reply

to y in Lx} where z is a best reply to y in Lx if for every

AL

i i- i+1 . -
player i ith payoff at (y],‘...,yl 1, zt, y1+ ,...yn) is maximized,

over Lx, at zt = zY. It follows that for every y € Lx, a(y)
is convex, compact, and nonempty. Also ¢(y) is an upper semi-
continuous correspondence so by Kakutani's fixed point theorem

there is a y ¢ Lx such that y e #(y). But any point which is

a best reply to itself must be an equilibrium point, Q.E.D.
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Lemma 1: For every %xe¢ S PR(x) is convex.

Proof: We use the following alternative way of defining

PR(x).
n no_ .
PRy (x) = X PRy (x) =% {x7} = {x]
For j-1, 2, 3,.¢s; for i=1,2,...,n

h

PR§+1 (x) = {zie Silfor some y ¢ PRj(x) it payoff

at (y%...,yl—l, zt, yl+l,...,yn) is higher

than his payoff at y}

n .
= 1

It is clear thatj__Lf1 PRj(x) is a subset of PR(x) and that it
satisfies conditions (1),(2) and (3) in the definition of PR(x), hence

PR(x) = U PR, (x).
j=1

To show the convexity of PR(x), it suffices to show the

convexity of PR™(x) for i=1, 2,...4n (recall that PR(x) =

n .
X PRl(x)) and therefore it suffices to show that:
i=1

For j=1, 2, 3,...
for i=1, 2,...n Convex Hull (PR?(X)) < PR*(x).
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We use induction on j. For j=1, the statement is trivial
since PRi(x) = {x'}. 1In order to prove the statement for an

integer j > 1 we make the following claim.

i-1

1
th payoff at (yy...y s

If vy ¢ PR(x), (yl+6l)esi and i

yl+61,yl+l,...,yn) is higher than his payoff at y then

for every ziePRi(x) and every ) > 0 whenever zi+xgi€si
zi+}\§ie-'PRi(x)°

We leave the proof of this claim to the end and first complete

the inductive proof. Assuming that j > 1, i is any player,

yi,zlePR;(x), as, B >0 and ¢ + g = 1 we want to show that

ayl+szl € PRl(x)o There are u and w in PRj-l(X) such that

ith payoff at (u}..o,ui'l,yl,ul+l,...,un) is strictly better

than his payoff at u and similarly for zi and w.
ayl+szl = aul+awl+ a(yl-ul) + B(Zl-wl).
By induction hypothesis aui+5wiePRi(x). Also
aul+5wl+a(yl-u1)esl because it equals ayl+5wl.
So by our claim, with 5i being yl-ul, A being 4, y being u,

and z being aui+5wi, it follows that aul+5wi+a(yi-ui)€PRi(x).

Now applying the claim again, with 61 being zi-wl, yi being

wl, A being g and 2L being aui+5wl+a(yl-ul) we conclude that

ayl+szlePRl(x) which completes the inductive proof.

th

To prove our claim, we observe that i~ payoff at a

i-1 i i+l

vector of the type(yi,...,y WL,y
wi-V(yl,...,yi-l,yi¥l,...,yn) where V is a vector which does not

n .
se0esy ) 1s

depend on yi. Thus the hypothesis in the claim shows that

5L~V(y) > 0 which implies that xél-V(y) > 0 for every i > 0,
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t . . . .
h payoff at (yl,...,yl 1,zl+x51,y1+1,,,,,yn)
is higher than his payoff at (yl,-.-,Yi_l,zi,yi+l,...,yn)

which implies that zl+xalePRl(x) and completes the proof of

It follows that i

the claim, Q.E.D.

The complexity of the relation L points out that even
under assumptions of costless communication among players, the
solution concept of Nash equilibrium requires considerable

computational ability from the players.
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5. Concluding Remarks

Other solution concepts can be shown to coincide with
the admissible set that arises from natural definitions of S
and M. These include the w&-core and the g-core for games in the
normal form. For games with a continuum of players (with or
without sidepayments) there are several ways of defining S and M
so that we are assured of the existence of A(S,M) and so that
A(S,M) contains the cores of such games.

~ Another example which differs from those mentioned or

discussed previously is the Walrasian economy.

Example 5: Let S be the simplex of normalized price
vectors in an exchange economy with £ commodities and let
£: S -RY be the excess demand function in this economy.
Define pMq if: pi > qi if and only if fi(q) > 0 and pi < qi
if and only if fi(q) < 0. Under standard assumptions on excess
demand functions qi = 0 implies that fi(q) > 0 hence M is well
defined. The admissible set A(S,M) contains all the Walras
equilibria.

Defining the relation R by: xRy 1ff x ¢ closure
({z ¢ S}zﬁy}) leads to smaller admissible set, A(S,R), which
may still contain cycles in addition to Walras equilibria. It
seems an interesting problem té find a binary relation on S,
derived from M, so that the corresponding admissible set will
coincide with the Walras equilibria. (An analogue to Example 4
and Proposition 3 of Section 5.) This approach to stability may
prove to be less restrictive than the classical stability analy-

sis.



