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Abstract

For the problem of selecting the normal population having the
largest mean, the relative efficiency of Bechhofer's [2] single-stage
procedure is studied with respect to a permanent elimination type two-
stage procedure [1,6]; the relative efficiency being defined as the
ratio of the exéected total sample size required by the latter proce-
dure to that required by the former to guarantee a specified prob=-
ability requirement. The two-stage procedure is considered with two
different design criteria: a minimax criterion and a restricted mini-
max criterion. It is shown that the asymptotic (as P*, the specified
probability of a correct selection, tends to 1) relative efficiency
of the single-stage procedure wsrst. the minimag two-stage procedure
is 1 at the equal means configuration. It is also shown that the
asymptotic relative efficiency of the single-stage procedure wsrste the
restricted minimax two-stage procedure is 1/4 at the least favorable
configuration of means. The latter result implies that the unrestricted
minimax t&o-stage procedure asymptotically possesses a Wald-Wolfowitz

optimum property for the two population case.

Keywords: ranking and selection problems, single-stage and two-stage

procedures, asymptotic relative efficiency, normal means problem.

IMS Subject Classifications: 62F07, 62L05




1. INTRODUCTION

Consider the problem of selecting the population associated with the
largest mean from several normal populations wﬁich have a common known
variance and suppose that the problem is to be formulated using the so-
called indifference-zone approach. (All the wavy underlined terms are de-
fined precisely in Section 2). A single-stage procedure which guarantees a

specified requirement on the proBability of a correct selection was pro-

posed by Bechhofer {2]. A permanent elimination type two-stage procedure
was proposed by Alam [1] for the same problem. Alam suggested that the
design constants necessary to implement his two-stage procedure should be
chosen to minimize the maximum of the expected total sample size associ-
ated with it; the maximum being taken over a specified subset (the so-called
preference-zoqg) of the parameter space. In [6] we pointed out that if
the true paraméter configuration lies in the indifference-zone of the para--
meter space then Alam's suggestion might lead to an undesirabie situation
where the expected total sample size for the two-stage procedure exceeds the
fixed total sample size required by Bechhofer's single-stage procedure to
guarantee the same probability requirement. We recommended that the design
constants for the two-stage procedure should be chosen to minimize the maxi-
mum taken over the entire parameter space of the expected total sample size
associated with it. This ensures that for any parameter configuration, the
expected total sample size for the two-stage procedure does not exceed the
fixed total sample size required by Bechhofer's single-stage procedure to
guarantee the same probability requirement.

In the present paper we are concerned with the study of the relative
performances of the three procedures ([11,[21,[6)) discussed above. To

compare the performances of two competing procedures, say P1 and P_,, we

2
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consider the ratio of the expected total sample size required by P1 to

that required by P,, both guaranteeing a specified probability require-~

2!
ment. Here the expected total sample sizes associated with P1 and P2
are computed at some specified parameter configuration of interest.

This ratio is referred to as the relative efficiency (RE) of P w-roton.

1

We define the asymptotic relative efficiency (ARE) of P1 weTste P, as the

2
limit of the corresponding RE as P*, the specified probability of a cor-
rect selection, tends to 1.

A detailed study of the ARE of Bechhofer's single-stage procedure
werest the two-stage procedures proposed in [1l] and [6) is made in the
present paper. Some numerical results for the case of small samples are
also included. A very important result of our study is that the Alam's
two-stage procedure and the open-ended fully sequential procedure (BKS)
proposed by Bechhofer, Kiefer and Sobel [4] are asymptotically (as P* + 1)
equivalent in the sense that the RE of Alam's procedure wsret BKS
tends to 1, when the parameter configuration of interest is the so-
called least favorable configuration (LFC). 1In particular, we show that
for a two-population problem the two-stage procedure of Alam possesses a
Wald-Wolfowitz optimal property (see [7]) asymptotically as P* -+ 1.

Although our calculations indicate that in the indifference-zone, the
performance of Alam's procedure becomes gradually poorer compared to
Bechhofer's single-stage procedure as P* + 1, we could not obtain a defini-

tive result as obtained by Bechhofer {3) regarding a similar undesirable

property associated with the Wald sequential probability ratio test (WSPRT).



2. STATEMENT OF THE PROBLEM

Let Hl,Hz, + 0 ’Hk be k 2 2 normal populations with unknown means

ul,uz, St oy and a common known variance 02. We define the parameter

space {2 as the collection of all parameter vectors py = (ul,uz, LI ,uk)'.
= = ¢ s ¢ =
Let u[1] = ulz] = __u[k] denote the ordered values of the by and

let T be the population associated with . (1 £1 <k). We assume
")

(1)
that the experimenter has no prior knowledge concerning the correct pair-
ing between Hi and H(j)(l <i, j <k). If “[k] > u[k—l] then we regard
H(k) as the '"best'" population. The experimenter's goal is to select the

best population. The event of selection of the best population is referred

to as a correct selection and is denoted by CS.

In the indifference-zone approach to this selection problem, we assume

* % * *
that two constants {6 ,P } can be preassigned where 6§ > 0 and 1/k < P < 1.

* * *
The preference-zone (8 ) is defined by Q(§ ) = {E € Q'“[k] - u[k-l] =5 3.
The experimenter restricts consideration to only those procedures R which

guarantee the probability requirement

P&(CSIR) =P V€@ (2.1)

Bechhofer's single-stage procedure R0 consists of taking n, indepen-

dent observations Xij(l < j< nO) from each Hi, computing the sample means

max

X, and asserting that the population associated with l<ic<k

1 Xi is best.

To guarantee (2.1), the common sample size ng is chosen to be the smallest

*
integer é(doc/é )2 where d, is the solution to the equation

0

J e Lo + d,)ds(x) = P*, 2.2)

-0
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and where $(+) represents the standard normal cdf.
The basic two-stage permanent elimination type two-stage procedure
Ry proposed in [1) and [6] consists of the following steps:

( L)

1. 1In the first stage take n; independent observations X (l<j< nl)
and compute the sample means X( )(1 < i < k). Choose a subset I

c 1,2, « « « ,k} where

(¥ 2 max )y (2.3)

and h > 0.

2a. If I consists of a single population stop sampling and assert that,
that population is best.

2b. If not, go onto the second stage. Take n, additional independent

observations Xiﬁ)(l <js n2) from each Hi for i € I. Compute the cumula-

nj. n.
T o=(Y x4\ (2))
tive sample mgans X, ( ) ij Z» 13 /(n + n2) and assert that the
5=1 §=1
population associated with i € I E is best. In the above (nl,nz,h) are

determined prior to the experiment so as to guarantee (2.1).
Define T = 0 if ]II =1and T = |I| if IIJ > 1, where |I[ denotes the
cardinality of set I defined by (2.3). Then the total sample size N (random)

associated with Ry is given by

N = kn1 + Tnz.

For the selection of the désign constants (nl,nz,h) of Rl’ Alam

* %
essentially proposed the following design criterion: for specified {6 ,p}

e e sup .
choose (nl,nz,h) to minimize L € Q(a*) EE(N‘RI) subject to (2.1). We

refer to this as the restricted minimax or the R-minimax criterion. We

denote by (E&,Eé,ﬁﬁ a solution to the above optimization problem and the



corresponding R1 by ﬁi.
In [6] we pointed out certain drawbacks associated with the

R-minimax criterion and proposed that (nl,nz,h) be chosen to minimize

sup sup . :
€0 u € Q(a*) E&(NIRl) subject to (2.1). We refer

to this as the unrestricted minimax or simply as the minimax criterion.

E (NIR ) instead of
L 1

We denote by (dl,d},ﬁ) a solution to the above optimization problem and

the corresponding Ry by ﬁl'
We define the RE of RO Werste R1 by
S
RE&(é sP kiR /Ry) = E&(NlRl)/kno, (2.4)

where R0 and R1 both guarantee (2.1). We note that R, is a special case

0

* * a *
of R, for h = 0 and h = ». Hence REE(é ,P ,k;Rl/R 1Vy €Q( ) and

1 o) =
P IGR,/R) =1V €0
For & =z 0 we denote by 14 (§) any p such that u[l] = .. .= u[k-l] =

u[k] - 63 u(8) is referred to as a slippage configuration. In [6] it is

shown that for any Rl,E&(N|R1) is a non-increasing function of aki(l <i <

k - 1). Therefore for any R1 we have

*
EH(NIRl) = Eui(é*) (N|R1) Yu € Q6G),

and

E&(N[Rl) E&(O)(NlRl) Yu € Q.

. . %
Thus the parameter configurations that are of interest to us are w( )

and 4 (0). Our objective in the present paper is to study the RE as

e * ~ ~ * .
P -+ 1,8 and k being kept fixed, of R, and R; at u(s") and p(0). We define

ARE (a*k-R/R)= 14 "
L@ KR /Ry im REQ(a »P k3R /Ry) (2.5)



where (and hereafter in the present paper) it is understood that the
limiting operation is performed as P* -+ 1.

To evaluate the AREs we make the following assumptions:
Al: The conjecture (see{l)]) that for k> 2, Q(é*) is a least favorable

. . inf
i i 8., * = * .
configuration (LFC) for R1 is true, i.e P&(ﬁ )(CS[RI) b €06 %i(CS‘Rl)

It is known that this conjecture is true for k = 2.
A2: All the limits encountered in the present paper exist but may take
values * o.

It would appear that both the assumptions would be true in practice
although we could not prove them rigorously.

*
For the sake of simplicity we shall henceforth denote u(§ ) by LFC

and 41 (0) by EMC (the equal means configuration).
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3. PRELIMINARY RESULTS

For further analysis, we reparametrize the design constants associated

with R1 as follows:

> dy . d, . (3.1)

We shall regard c, dl’ d2 and also n, as nonnegative continuous variables.

It is known (see [6]) that the value of ﬂi(CSIRl) at the conjectufed LFC

o,

depends on 6ﬁ, g, 0y, D and h only through c, d1 and d,. We denote the

2
corresponding value of PLFC(CSIRI) by Y(c,dl,dz;k); an expression for V¥

2

involving multivariate normal integrals is given in [6]. The objective
functions for the optimization problems associated with finding the design

A

constants for R1 and ﬁi can also be written in terms of c, d1 and d2 as
indicated below in (3.5) and (3.6). Thus a major advantage of the repara-
metrization and regarding the variables defined in (3.1) as continuous is
that, the solutions in (c,dl,dz) of the optimization problems‘associated
with él and ﬁi do. not depend on 6* and g which facilitates the tabling of
these constants for the purpose: of implementation of the procedures.

In [6]) it is shown that an erpression for the RE of Ry wer«t+R, can

be written as follows:

k © k 5. .d
* % 1 2 2 P r ii"1
. = ——— + .1
RE, (67, ,kiRy/Ry) = = [kdl +d, z | {'_ 8 [x A3l +c]
0 =1 j=1 )
1 - YL
j#i
k
5. .d
- e [x+ A2 -c]}as 3.2)
j=1 8

J#i
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where 4 ; = OYRIR TP (1si#J<k), dj is given by (2.2), and

c, dl’ and d2 satisfy Y(c,dl,dz;k) = P*.

Remark: From (3.2) it may be noted that for any Rl’ the RE depends on
5" only through the ratios 5ij/5* (1<1i#3j<k). For the EMC all the
ratios equal 0 and for the LFC all the ratios equal O or 1. Thus the

*
REEMC and RELFC are independent of § . Further since Ro is always used

as a basis for comparison, we shall omit the dependence of the correspond-
* N
emc (F oX5Rp

* ’
and RELFC(P ,k;Rl), We write below the expressions for these two quantities

ing REs on Ry from the notation. Thus we shall simply write RE

for later reference:

\
a2 +da2 | {@k'l(x +c) - o5 lix - )| de(x)
2

4

3.3)

and

[+ ]
L fa?+a? [ I {@k‘l(x +d, +c)-5tx +a, - c)}d@(x)
2 U1 2 J 1 1
kd, Yo

%

oo

r _ !
+ (k-1) J_w {@k‘z(x +c¢) & (x -d +e) - & 2x - ) o (x - d, - C)} d‘i’(x)_llf

P

= 5 . (3.4)

* % ~
To obtain RE (6 ,P ,k;Rl) we substitute in (3.2) the values of
L

~

(E,&l,dz), the design constants associated with ﬁl' The values of (c,dl,dz)

are obtained by solving the following optimization problem:



*

A 2 sup
Minimize _ ( E“) u €0 E (NIR )

/ 6* \2
=5 EMC(N(R

= kd,” + kd22 jm {@k'l(x +c) - @k'l(x - ) }d@(x),

inf

Subject to L€ Q(5 )

P (CS|R;)

P oo (CSRY)

¥(e,d),d,5k) = (3.5)

N
To obtain REM( 67,P ,k;Rl) we substitute in (3.2) the values of

(Eﬂai,aé), the design constants associated with R The values of

1
(Eﬁai,aé) are obtained by solving the following optimization problem:

* 2

sup
> seaeh 5 ORY

Minimize (

Qlo’

2
5
( ??) Eype VIRY)

\
\

i

® - -
= kd12 + d22 [ J {@k 1(x + d1 +ec) - @k 1(x + 41 - c)}d@(x)_

-

k

+ (k - 1) J!“ {@k-z(x +e)B(x - d, +e) - 8 %(x - ¢)

1

X 8(x - d) - o) e |

Subject to ¥(c dl,dz;k) z P . (3.6)



-10-

Tt may be noted that the optimization problems (3.5) and (3.6)
remain unchanged if the corresponding objective functions are replaced

by (3.3) and (3.4), respectively.
The task of computing the AREs can be seen to be extremely formid-

able in view of the complicated nature of the nonlinear programming prob-

lems (3.5) and (3.6) associated with R1 and ﬁi, respectively. We have
been able to simplify this task somewhat by employing the following ap-
proach: consider, say, §1aand all the possible limiting values that ¢, 31

*
and aé can take as Pf -~ 1. It turns out that for the purpose of evaluating

the AREL we need to consider only few possibilities for the limiting

FC

values of (Zﬁal,aé). For each possible case the value of the ARELFC is

%* .
(P ,k;Rl) among all

~

evaluated. Since Rl is designed to minimize RELFC

*
R, guaranteeing (2.1) for each P, it is clear that the actual value

1

of the ARELFC would be the minimum of those obtained for all the possible

limiting values of (Exai,aé). A similar consideration holds true for

computing the AREEMC of ROw-r-t-Rl. A drawback of this approach is that

it does not facilitate the computation of the other AREs of interest,

~

namely the AREL c of Row-r-t-R1 and AREEMC of Row-r-t-Rl. We have not

F
been able to find any other method which would perform this task.

Now we state few preliminary lemmas which would be repeatedly used

in proving the main results of the next section.

Lemma 1: For any y € Q we have

o k-1 ¢, +h/ k-1 8, .vD
ki 1 j ki
C{T e e 1 e [+ 285 T aveo -
@ kel o (bt )Ry -
= PE(CS|R1) 3 j 3| x + > | dee), (3.7)
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where n = n, + n, .
Proof: For a proof see [6].

Corollary: For any Rl we have

-]

_ k-1
1 - PLFC(cslkl) = {1 - ‘L ¢ T(x +d + c)dd(x)}
[--]
r o k-1
tyv{l- | & 4—Vd12 + dzz)dé(x)], (3.8)
-co
where 0 sy =1
* 2 2
Lemma 2: For any Ry as P -+ 1 we have d1 + ¢ -+ » and d1 + d2 + o,
Proof: The proof is straightforward using (3.8).
® k-1
Lemma 3 (Bechhofer, Kiefer and Sobel [4]): Let H(u) =1 - J $ (x + udd(x).
2 -0
k-1)e ¥ /4
Then as u -+ ® we have H(u) A,ﬁ___lf_____ where a ~ b means a/b =+ 1 in the

u/m
limit.

*
Corollary: As P - 1 the solution in d0 to equation (2.2) is given by

2 _ k- 113 k - 1
dO = 41n< 1 - P*) - 21nln (1 - P*) = 2 1n 47 + o(1)
or
d %~ -41n@ - P

0

*
Lemma 4: For any Rl’ as P -+ 1 we have

@) @

@+ Y @2 177 ) 3.9)

1 - P* - (k - 12 {e
o + 4 2)
1 2

with 0 =y =1 and y = y(P*,k;Ri).



12~

Proof: Use (3.8) and Lemmas 2 and 3.

We remark here that a key step in the proofs of the main theorems in the
next section invloves determination of the dOminating term in (3.9) as
P* - 1 for the specified limiting values of (C’dl’dz)‘

Lemma 5: For any R, and Rl guaranteeing (2.1) we have

0

Proof: The proof is straightforward and is omitted.



-13-

4. MAIN RESULTS

We first prove a result concerning the AREEMC of Row-rotoﬁl in the

following theorem.
Theorem l: Under assumptions Al and A2, we have,
. - >
AREEMC(k,Rl) 1 for all k = 2.

*
Proof: By Lemma 4, as P - 1 we have

: a2 ~2.,02
1 - P* NLk-ll {e°(al+C) /4 +Ye'(d1 +d2 )/4 ’
/r @, +d) @2+ &22)1/2

1A

*A
where 0 = vy 1l and v = v(k,P ;Rl). Now we consider the following two

possibilities for the limiting values of c.

Case (1): lim ¢ = » : 1In this case we have
~o v 2 7 k-l - k-1 ~
N d, +d2’J{® x +tc) -3 (x-C)}ﬂhi(X)-1
AREEMC(k;Rl) = 1lim [ ) e J
2
do
d 2 + d 2
o1 1 2 )
= lim (——————~——
d 2
0

IV
=

The last step is obtained by using Lemma 5.

~

A
Case (ii): 1lim é < »: since d, + ¢ + o from Lemma 2, we have d) + =,
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(c/dl) -+ 0 and

* (k- 1) o414 -@1*+dz) /4
L-PF ~>7 {a M e e v
1 @2 +a%
~ 2
(k- DA ed1 /4
Jn a;

A %
where 1 = A = 2. Hence dl2 ~ =41n(l - P ) n;doz using Lemma 3 and therefore

- * ° %
AREEMC(k;Rl) = 1. But REEMC(ka Ry) = 1 for all P (see remark following

(2.4)) implies that AREEMC(k;Rl) = 1. Therefore ARE (k;Rl) = 1 and the

EMC
proof is complete. O

This theorem tells us that the AREE

-~

MC of Row'rot any R1 must be at

least 1 since R1 minimizes RE among all R1 guaranteeing (2.1) for

EMC

%
every P . In particular we have,
-N =
ARE (k3R ) = 1. 4.1)

In the next theorem we study ARELFC(k;Rl).

Theorem 2: Under assumptions Al and A2 we have,

£l

ARE (k;’ﬁ‘l) = for all k = 2.

Also as P* -+ 1, 31 -c = 0(31) -+ o and lim (3&/3&)2 = 3,

%
Proof: By Lemma 4, as P -+ 1 we have

2 ' 2,+2

Y — (4.2)
au (51 +3) (le +a,22)1/2 j
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* ~
where 0 =y =1 and v = vy (P ,k;Rl). The following proof proceeds by
considering all the limiting values that (8331,35) can take and evaluating
ARELFC(k;ii) in each case. The actual limiting value of (E;Hi,aé) would
be the one for which ARELFC (k;Rl) is minimum.
N .
Case (i): lim |31 - c} < e: In this case as P -+ 1 from (3.9) we have

2 2 2
L. g Gk - 1) {éai . ;(Ei + aé )/4
N Y 2 2.1/2

2?1”1 (a'l +a~2 )

(4.3)

Subcase (ia): Llim (3&/31)2 < 3: Then we have 312 >-(312 +-352)/4 for P
arbitrarily close to 1. If vy + 0 or if v + O but not at a rapid enough

rate then we can write

2(312+352)/4

1 - P* A’gk - DA

4.4)
Jm 2 2.1/2 (
@2 +3,%
where 0 < A < 2. However, if vy » 0 at a rapid enough rate then
4.2
p-pr - DB el .5)
J
za‘l

where 1 =B = 2. Suppose (4.5) holds then using Lemma 3 we have
312 ~ - In(1 - P*) A;d02/4 and 1lim (aé/do)z < 3/4. Therefore using (3.3)

and noting that in the present case ¢ = ® we obtain,

-

ARE_. (k:R =1,

= 4+
e 3R <

3
A

s

-This contradicts (4.1). Hencé (4.5) does not hold and therefore from (4.4)

we have Gflz +’322) ~ =4 In(1 - P*)v d02 using Lemma 3. Now since
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lim (35/31)2 < 3, it follows that 1lim (a'l/do)2 > 1/4 and consequently
ARE, . (k;ivtl) > 1/4.

*
Subcase (ib): lim (8’2/2(1)2 = 3: we have 3% = @’ + 8’22)/4 for P

arbitrarily close to 1. Therefore from (4.3) we can write

2
1-p Lk -Da Egl
/a 2?1’1’

' *
where 1 = A = 2. Therefore"a'l2 ~ - 1n(l - P) ~:d02/4 using Lemma 3 and

lim (aé/do)z = 3/4. Now lim |21 - EW < o implies that 31 + ©, ¢ = » and
0 < lim G(c,d;, ,3k) < 1, 4 .6)

where G is defined by (3.4). Therefore we have ARE (k;ﬁi) > 1/4.

LFC
Case (ii): 1lim (31 - ¢g) = o, 31 4 o, ¢ > ®, 631 - c)/31 -+ 0:
In this case also (4.3) holds and we have subcases (a) and (b) just
as in Case (i). The analysis of Subcase (iia) is the same as that of (ia)

and we obtain ARELFC(k;ﬁi) > 1/4. The analysis of Subcase (iib) is similar

to that of (ib) except now instead of (4.6) we have

lim c(a,a’l,a‘z;k) =0,

Further lim (&,/d)% = 1/4, lin @,/d )% = 3/4 and lim % 6@}, ,30)/d, = 0.
Therefore AREIFC(k;ﬁi) = 1/4,
Case (iii): 1lim (3i -¢) = and (ai - 33/31 + 0: Therefore 3731 + B
where 0 = B < 1. Also denote the limiting value of (35/31)2 by D. Then as
P* + 1 we have,

APam?in & aw

* (k- 1)
1-P ~ +y ) %.7)
/m { T, +B) T+ pyl/2
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Subcase (iffa): (1 + B)2 < (1 +D): From (4.7) we have

2 2
RN Y il

~ Jm 31(1+B) ’

%
where 1 = A = 2. Using Lemma 3 we have 312 ~ =4ln(l - P)/(1 + B)2 ~
2 2 ~ 2 2
. d = + > 1 .
d)"/(1 +B)". Therefore ARE, . (k;R)) 2 (@;/d))" = 1/(1 +B) /4

Subcase @diib): (1 + B)2 = (1 +D): In this case if v -+ 0 at a rapid

enough rate then the first term in (4.7) dominates and we are back to
Subcase (iiia). If v # 0 or if v + O but not at a rapid enough rate

then from (4.7) we have

)% () /4

1 - P*~££- l)A .

A ’

3“1(1 + D)

*
where 0 < A = 2. Using Lemma 3 we have 312 ~ =4In(l - P)/(1 +D) ~

1A

doz/(l + D). But D (1 + 13,)2 - 1< 3. Hence ARELFC(k;'fz’l) = 1/(1 + D) > 1/4.
Case (dv): 1lim (&"1 - ’E') = - ®: In this case lim G(E‘,a‘l,'d'z;k) = 1. Therefore
AN L s 2 2, ,4 2
using (3.4) we have ARELFC(k,Rl) lim (El + 3’2 )/d0 = 1.
From cases (i) - (iv) we note that Subcase (iib) yields the minimum

value = 1/4 for-ARE (k;'l\{'l). Hence the theorem is proved.  n]

LFC
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5. DISCUSSION

From [4) we know that for the fully sequential procedure BKS,
ARELFC(k;BKS/RO) = 1/4. Thus the ratio of the expected total sample
sizes in the LFC required by BKS and ﬁi to guafantee (2.1) tends to 1
as P* + 1. 1In particular, the WSPRT to test Hyt ul-- Koy = 6* against
Hyt gy -p, =- 6* is a special case of BKS for k = 2. The WSPRT is
known to possess the optimum property that if simultaneously wminimizes the
expected total sample size at all the parameter configurations y for which
u[z]- u[l] = 6* among all tests with specified probabilities of Type I and
Type II errors. If both the error probabilities are set equal to 1 - P*
and if P" ~ 1 then the ARE in the LFC of the "most economical single-
stage procedure which is known to be R0 (see [5]) werste the WSPRT is 1/4.
Thus for k = 2, we find that as P* -+ 1, the two-stage procedure ﬁi performs
as well as the WSPRT which is the optimum procedure for the given testing
problem. This ié a somewhat surprising, but a very important result.

The result of Theorem 1 indicafes that as P* -+ 1, no two-stage pro-
cedure of the form of R1 can have the expected total sample size in the

EMC less than the total sample size needed by R In particular, (4.1)

0
holds. OQur efforts to arrive at the exact value of AREEMC(k;ﬁi) were
fruitless. However the following table of values of the REs at the LFC
and the EMC for R1 and ﬁi throws some light on the behavior of these

quantities.
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© Table I .
Relative Efficiencies of ﬁl and ﬁi (k = 2)
* * - * A * *
P RELFC(P T H ) REEMC(P L H) RELFC(P kiR;) REEMC(P TH P
.9999 .74661 .90047 .53237 1.01811
.9995 .73470 .89442 .56079 .99273
.999 72786 .89137 .57593 .97828
.99 .72195 .87850 .64581 .92509
.95 .74574 . 86540 72127 .88560
.90 .77158 .85799 .76175 .86724
.85 .79026 .85319 .78641 | .85695
.80 -80587 . 84982 .80408 .85162
.75 .81764 .84719 .81689 ' .84795
From this table it appears that the rates of approach of REEMC(P*,;ﬁl)

* *
to 1 and that of RELFC(P sk3R;) to 1/4 as P -+ 1 are monotonic but are fairly

% * n R
slow. As P increases RELFC(P ,k;Rl) first decreases and then starts increas-

* A *
ing. We also notice that REEMC(P ,k;Rl) increases with P and is greater than

* ~
1 for P = .9999. At present we do not know the exact value of AREEMC(k;Rl).
N = 14 2 20,2 _ i 2
We only know that AREEMC(k,Rl) lim (c’fl + '&‘2 )/d0 1/4 + 1lim (d‘z/do) = 1.

But we conjecture that 1 < ARE (k;ﬁi) < o,

EMC
In [3] Bechhofer showed that for the testing problem described above the
ratio of the expected total sample size required by the WSPRT in the
*
EMC (ul = uz)'to the total sample size required by R0 tends to ® as P -+ 1.

Thus our conjecture is that ﬁi does not possess this extremely undesirable

property possessed by the WSPRT.
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6. SUGGESTIONS FOR FUTURE RESEARCH

Clearly it would be very useful to develop a general method to

evaluate the AREs for ﬁl and ﬁi at any y, and in particular at the LFC

and the EMC. Also because of the screening aspect of the two-stage

procedure R,, it is anticipated that the gains achieved by §1 and ﬁi

over that of R0 in terms of the expected total sample sizes would increase

substantially as k increases. Therefore it would be of some interest to

~ * . 7'€
and R, as k - «, § and P

study the limiting behavior of the RE for ﬁl 1

being kept fixed.
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