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1 Introduction

The purpose of this paper is to study the interplay between oil price shocks and
monetary policy. We evaluate the welfare effects of several monetary policy rules
in the presence of unanticipated and anticipated oil price shocks. Bhandari and
Turnovsky (1984) emphasize that most of the oil price increases in the 1970’s
and early 1980’s were anticipated. In our opinion this notion holds more than
ever for the sharp hike in oil prices during the last years because of the increasing
worldwide demand for this exhaustible resource. Therefore, it seems necessary
to analyze not only unpredictable but also anticipated oil price shocks.

In particular, we try to answer the following questions: i) Does the en-
dogenous monetary policy response to an oil price hike amplify or dampen the
destabilizing effects of this shock? ii) What is the optimal monetary policy
response to unanticipated and anticipated oil price shocks? iii) What are the
dynamic effects of unanticipated compared to anticipated oil shocks? iv) What
is the performance of optimal simple rules relative to the unrestricted opti-
mal rule under commitment? v) What are the properties of an optimal simple
interest rate rule?

We seek to answer these questions by employing a calibrated stylized New
Keynesian model of a small open economy which is dependent upon raw mate-
rials imports (like crude oil).

Our paper is related to different strands of the literature. The first strand
deals with the macroeconomic effects of oil price shocks. Bhandari and Turnov-
sky (1984) analyze anticipated and unanticipated as well as permanent and
temporary oil price increases in a traditional open economy framework. Kim
and Loungani (1992), Rotemberg and Woodford (1996) and Finn (2000) analyze
the effects of oil price shocks in dynamic general equilibrium models of closed
economies. Backus and Crucini (2000) consider an open-economy real business
cycle model to study the effects of oil on the economy. The latter studies are
based on the assumption of completely flexible prices. Hence, there is no role
for monetary policy.

A second strand of the literature studies the interaction between oil price
shocks and monetary policy. Among the numerous empirical studies see, for
example, Hamilton (1983), Hamilton and Herrera (2004), Bernanke et al. (1997,
2004) or Barsky and Kilian (2002). Theoretical contributions are for example,
Leduc and Sill (2004), Carlstrom and Fuerst (2006), and Blanchard and Gaĺı
(2007). They all consider a model of a closed economy and thus rule out the
potentially important impacts of changes in the nominal exchange rate and
the terms of trade. Leduc and Sill (2004) and Carlstrom and Fuerst (2006)
attempt to isolate the impacts of an oil price shock from the impacts of the
endogenous response of monetary policy to this oil price hike. In doing so,
they try to shed some light on the question whether monetary policy amplifies
or dampens the destabilizing effects of oil price shocks. Carlstrom and Fuerst
(2006) challenge the empirical work by Bernanke et al. (1997, 2004) by showing
that anticipation effects actually matter for the analysis of the interplay between
oil price shocks and monetary policy. We follow this line of thought and analyze
the consequences of anticipated oil price shocks under several monetary policy
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responses.
A further strand of the literature related to our paper deals with optimal

monetary policy in open economies. In particular, our paper contributes to
the ongoing discussion about the structure of simple interest rate rules for
open economies. Ball (1999), Svensson (2000), Taylor (2001), Leitemo and
Söderström (2005), and Adolfson (2007) find no or only a limited role for the
inclusion of an exchange rate term in non-optimized or optimized simple inter-
est rate rules. In contrast, Wollmershäuser (2006) finds a substantial welfare
improvement by adding an exchange rate term.

The performance of simple monetary policy rules in the presence of oil
price shocks is studied by Kamps and Pierdzioch (2002) and De Fiori et al.
(2006). The latter is the only paper we are aware of, that, as we do too,
studies optimal simple monetary policy rules in the presence of oil price shocks.
Whereas De Fiori et al. (2006) consider a three-country framework and study
simple optimized Taylor-type rules without a direct exchange rate term, we
analyze a broader range of possible interest rate policy rules in a model of a
small open economy. Moreover, they only deal with unpredictable oil shocks.
This paper, however, deals with unanticipated as well as anticipated oil price
increases.

From a methodological point of view our paper applies a method proposed
by Wohltmann and Winkler (2007), which generalizes the work of Söderlind
(1999) by allowing the analysis of optimal monetary policy in the presence of
anticipated shocks.

Our main results are the following: Standard calibrated interest rate rules
amplify the welfare loss compared to neutral monetary policies, namely a money
growth peg or an interest rate peg. The optimal unrestricted policy under
precommitment, by contrast, dampens the welfare loss of the oil price shock
compared to a neutral monetary policy. Optimized simple monetary policy
rules are able to replicate the outcome under the optimal unrestricted rule. This
holds for rules which contain both backward-looking elements and an exchange
rate term. In case of anticipated shocks an optimal simple rule should, in
addition, contains forward-looking elements. Thus, our findings are in favor
of an open-economy Taylor rule. Furthermore, we show that anticipated oil
shocks lead to higher welfare losses than unanticipated shocks irrespective of
the monetary policy response.

The remainder of the paper is organized as follows: Section 2 presents the
model. Section 3 derives the optimal monetary policy under commitment and
discusses the dynamic effects of anticipated as well as unanticipated oil price
shocks under this policy regime. Section 4 discusses non-optimized and opti-
mized simple monetary policy rules. Section 5 summarizes and concludes.
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2 The Model

We consider a stylized New Keynesian model of a small open economy which is
dependent upon imported intermediate inputs (like raw materials).1 We assume
forward-looking agents on the foreign exchange market and partially forward-
looking behavior on the part of consumers and price setters. The building blocks
of our rational expectations model are a hybrid IS equation, a hybrid Phillips
curve, where the rate of change of the domestic price of imported intermediate
goods enters the inflation equation, the uncovered interest parity condition and
a money demand equation. All variables, except for interest rates, are in logs.

The goods market equilibrium, or open economy IS curve, takes the follow-
ing form:

qt = φyb
yt−1 + φyf

Et yt+1 + φi(it − Et π
c
t+1) (1)

+ φm(mt − pc
t) − φyyt + φy∗y∗t − φττt.

q denotes domestic final output while y is domestic real income or gross do-
mestic product (GDP). The difference between q and y results from imports of
intermediate inputs. i is the nominal interest rate which serves as the operating
target of monetary policy. p is the domestic price of domestic output, while
pc = αp + (1 − α)(p∗ + e), 0 < α < 1, denotes the consumer price index (CPI)
and πc

t+1 the CPI inflation rate between period t and t + 1. The variable e
stands for the nominal exchange rate, while τ = p − (p∗ + e) are the terms of
trade which are the inverse of the real exchange rate. p∗ and y∗ denote the
foreign price and foreign income respectively. E is the expectations operator
where rational expectations are assumed.

Domestic final output qt depends on past and expected future income, the
real interest rate it−Et π

c
t+1 and net exports of final goods which are a function

of domestic and foreign income and price competitiveness (terms of trade). The
IS curve reflects the behavior of rational, intertemporally optimizing consumers
as well as the assumption of habit formation in consumption.2 Moreover, we
assume that the demand for goods depends directly on real money balances
mt − pc

t , where the nominal money stock is deflated by the consumer price
index to allow for the fact that in open economies money is also used for the
purchase of imported goods.3

Money market equilibrium is given by a standard LM curve:

mt − pc
t = lqqt − liit. (2)

Money demand is assumed to depend on real output rather than on real income
which is considered as a more appropriate measure of the volume of transactions.

1Similar models are used by, for example, van Aarle et al. (2004), Svensson (2000) or Moons
et al. (2007).

2For a detailed derivation of a microfounded IS curve with habit formation in consumption see,
for example, McCallum and Nelson (1999).

3The presence of the real money stock in the IS curve reflects the implicit assumption that the
utility function of the representative household is non-separable.
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The nominal exchange rate is modeled as a forward-looking and expectations
determined asset price. It adjusts in such a manner that the uncovered interest
parity (UIP) condition holds throughout:

Et et+1 − et = it − i∗t . (3)

The UIP condition implies that the domestic interest rate may only deviate
from the exogenously given foreign interest rate i∗ by the rationally expected
depreciation rate between period t and t+ 1.

The difference between domestic production of final goods and national
income or gross domestic product is described by the following equation:

qt = yt + ψ(p∗in,t + et − pt). (4)

p∗in denotes the foreign price of imported intermediate goods (like raw mate-
rials). Such goods are used in the domestic production process. Imports of
intermediate inputs depend on the respective real factor price. We assume
that imported inputs are denominated in terms of foreign currency so that the
domestic real factor price p∗in + e− p depends on the nominal exchange rate.4

The dynamics of inflation are given by a hybrid Phillips curve which contains
both forward- and backward-looking price setting behavior:5

πt = γπb
πt−1 + γπf

Et πt+1 + γq(qt − q) + γdpin
(∆p∗in,t + ∆et). (5)

Domestic inflation between period t − 1 and t depends on past and expected
future inflation, the current value of the output gap qt − q and the inflation
of imported intermediate inputs ∆(p∗in,t + et). It is assumed that the pass-
trough of exchange rate changes on domestic inflation is instantaneous. Since
the domestic economy is assumed to be small relative to the rest of the world,
the foreign input price p∗in is exogenously given.

In the following we will discuss the dynamic effects of anticipated input
price shocks following a stationary AR(1) process p∗in,t = β∗p∗in,t−1 + κt, where
0 ≤ β∗ < 1 and κt is a one-unit price shock. We assume that at time t = 0
the public and the policy maker anticipate a one-unit shock in the foreign
price of imported intermediate goods to take effect at some future date T > 0.
This implies κt = 1 for t = T and κt = 0 for t 6= T . If the initial value
of p∗in is normalized to zero (p∗in,0 = 0), then p∗in,t = 0 for 0 ≤ t < T and

p∗in,t = β∗ t−T for t ≥ T . For example, we can imagine that in t = 0 the
OPEC credibly announces a temporary price increase in crude oil to occur at
the future date T > 0. Although commodity shocks are generally of permanent
nature, we will only discuss temporary input price increases (β∗ < 1). In
case of permanent price shocks it is impossible to distinguish how much of the
persistence of endogenous variables results from the persistence of the shock

4The constant ψ can be derived from a profit maximizing approach with a CES production
technology which allows for factor substitution between labor and raw materials imports
(Bhandari and Turnovsky, 1984).

5This assumption is in line with empirical evidence provided by, for example, Gaĺı and Gertler
(1999) or Gaĺı et al. (2001, 2005).
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itself and how much is intrinsic to the model. In case of temporary price shocks
no steady state effects occur so that the domestic variables return to their initial
steady state values which are normalized to zero.

We will further assume that a one-unit increase in the foreign nominal price
of the imported input is accompanied by a less than proportional increase in
the price of the imported final good p∗, i.e., p∗ = (1 − µ∗)p∗in with 0 < µ∗ ≤ 1.
Then the nominal price shock also leads to a change in the real foreign price of
imported intermediate inputs, p∗in − p∗ = µ∗p∗in.

In case of anticipated price shocks the one-unit price shock κt is not white
noise, but known to the public before the shock actually occurs. The adjustment
dynamics therefore involve two phases: the time span between the anticipation
and implementation of the input price increase (anticipation phase) and the
time span after the realization of the shock. A further implication of anticipated
shocks is that rational expectations are equivalent to perfect foresight. We can
therefore omit the expectations operator E in (1), (3) and (5).

The dynamics of the New Keynesian model (1) - (5) can be represented in
state space form:

Bkt+1 = Ckt + χit + εκt+1, (6)

where the state vector

kt =

(
wt

vt

)
(7)

can be partitioned into a vector of predetermined variables

wt = (p∗in,t, yt−1, πt−1, τt−1, p
∗
in,t−1)

′

(8)

and a vector of forward-looking variables

vt = (yt, πt, τt)
′

. (9)

The nominal interest rate is the policy instrument. The 8×8 matrices B and C
are defined in the mathematical appendix; B is non-singular while det C = 0.
χ and ε are 8 × 1 unit vectors.

3 Optimal Monetary Policy under Commitment

The optimal monetary policy response to anticipated input price shocks follows
from minimizing an intertemporal loss function given the state space represen-
tation of the model. We assume the following quadratic loss criterion reflecting
the objective of flexible domestic inflation targeting (Svensson, 2000):

Jt = Et

∞∑

i=0

λi{d1π
2
t+i + d2(yt+i − y)2 + d3τ

2
t+i + d4(it+i − i∗)2}, (10)

where 0 < λ ≤ 1 is the central bank’s discount factor and d1, d2, d3 and d4 are
nonnegative parameters measuring the weights on stabilizing inflation, income,
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terms of trade and interest rate movements. Normalizing the steady state value
y and the foreign interest rate i∗ to zero the objective function of the policy
maker can be rewritten as

min
it
Et

∞∑

i=0

λi{k′t+iDkt+i + i′t+iRit+i} s.t. (6), (11)

whereD = diag(0, 0, 0, 0, 0, d2 , d1, d3) and R = (d4). The central bank optimizes
the loss function under precommitment at the beginning of the planning period.
It adopts this optimal monetary policy and sticks to it during the entire planning
period. We assume that the beginning of the central bank’s planning period
coincides with the date of anticipation of the input price shock, t = 0. Since
the total loss over the anticipation interval is non-negligible, it is reasonable to
start the optimization at the date of anticipation (t = 0) rather than the date
of implementation (t = T ). The loss function of the central bank is then given
by

J0 =

∞∑

i=0

λi{k′iDki + i′iRii}. (12)

In the following we will solve the optimization problem (11) using the meth-
ods outlined in Levine (1988), Söderlind (1999), Klein (2000), and Wohltmann
and Winkler (2007).

From the Lagrangian

L0 =

∞∑

t=0

λt[k′tDkt + i′tRit + 2̺′t+1(Ckt + χit + εκt+1 −Bkt+1)] (13)

with the Lagrange multiplier ̺t+1 we get the first-order conditions with respect
to the new costate vector pt+1 = λ−1̺t+1, the state vector kt and the control
variable it:



B 0 0
0 0 λC ′

0 0 −λχ′





kt+1

it+1

pt+1


 =



C χ 0
−D 0 B′

0 R 0





kt

it
pt


+



ε

0
0


κt+1. (14)

(14) consists of 17 equations in the unknowns k, i and p. To solve (14), ex-
pand the state and costate vector k and p as (w′, v′) and (p′w, p

′
v) respectively

and reorder the columns by placing the predetermined costate vector pv after
the predetermined state vector w. The reordered first-order conditions can be
written as

F

(
w̃t+1

ṽt+1

)
= G

(
w̃t

ṽt

)
+



ε

0
0


κt+1, (15)

where F and G are 17 × 17 matrices resulting from the reordering of (14), and
w̃ and ṽ are the vectors

w̃ =

(
w

pv

)
, ṽ =



v

i

pw


 . (16)
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w̃ is 8×1 and contains the ’backward-looking’ or predetermined variables (with
the initial value w̃′

0 = (w′
0, p

′
v,0) = (w′

0, 0
′)) while the 9 × 1 vector ṽ consists of

’forward-looking’ variables.
The matrices F and G are singular. To solve (15) we apply the complex

generalized Schur decomposition (Klein, 2000). The decomposition gives square

matrices of complex numbers Q,Z, S and T , where Q and Z are unitary (QQ
′
=

Q
′
Q = ZZ

′
= Z

′
Z = I), S and T are upper triangular such that

F = Q
′
SZ

′
, G = Q

′
TZ

′
. (17)

Z
′
is non-singular and denotes the transpose of Z which is the complex conju-

gate of Z. Q
′
is the transpose of the complex conjugate of Q. Premultiply both

sides of (15) with Q and define the auxiliary variables

(
z̃

x̃

)
= Z

′
(
w̃

ṽ

)
, (18)

where z̃ is an 8 × 1 vector and x̃ is 9 × 1. Partition the triangular matrices S
and T conformably with z̃ and x̃ and define

Q



ε

0
0


 =

(
q1
q2

)
. (19)

We then obtain the equivalent system

(
S11 S12

0 S22

)(
z̃t+1

x̃t+1

)
=

(
T11 T12

0 T22

)(
z̃t
x̃t

)
+

(
q1
q2

)
κt+1, (20)

where the square matrices S11 and T22 are invertible while S22 is singular.
The lower block of the triangular system (20) contains the unstable generalized
eigenvalues and must be solved forward. Since

x̃t+s = T−1
22 S22x̃t+s+1 − T−1

22 q2κt+s+1 (s = 0, 1, 2, . . .), (21)

where the eigenvalues of T−1
22 S22 are stable, we get the unique stable solution

x̃t = −

∞∑

s=0

(T−1
22 S22)

sT−1
22 q2κt+s+1 =

{
−(T−1

22 S22)
T−1−tT−1

22 q2 for 0 ≤ t < T

0 for t ≥ T.

(22)

The last equation follows from the definition of the unit price shock κt. During
the anticipation phase the auxiliary vector x̃t is a function of the anticipated
future input price shock while for t ≥ T it is equal to zero.

The upper block of the decomposed system (20) contains the stable gener-
alized eigenvalues and can be solved backward. Since

z̃t+1 = S−1
11 T11z̃t + S−1

11 (T12x̃t − S12x̃t+1) + S−1
11 q1κt+1, (23)
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the general solution is given by

z̃t = (S−1
11 T11)

tK +

t−1∑

s=0

(S−1
11 T11)

t−s−1S−1
11 (T12x̃s − S12x̃s+1 + q1κs+1)

=





(S−1
11 T11)

tK +
∑t−1

s=0(S
−1
11 T11)

t−s−1S−1
11 (T12x̃s − S12x̃s+1) for 0 ≤ t < T

(S−1
11 T11)

tK +
∑T−1

s=0 (S−1
11 T11)

t−s−1S−1
11 (T12x̃s − S12x̃s+1)

+ (S−1
11 T11)

t−TS−1
11 q1 for t ≥ T,

(24)

where K is an arbitrary vector of constants and x̃ given by (22). The constant
K can be uniquely determined using the initial condition of the predetermined
vector x̃. Premultiply both sides of equation (18) with Z and partition the
matrix Z conformably with the auxiliary variables z̃ and x̃. We then obtain

(
w̃

ṽ

)
=

(
Z11 Z12

Z21 Z22

)(
z̃

x̃

)
. (25)

Since z̃0 = K, w̃0 = 0 (in case T > 0), and

x̃0 = −(T−1
22 S22)

T−1T−1
22 q2, (26)

we get from (25)

K = Z−1
11 w̃0 − Z−1

11 Z12x̃0 = Z−1
11 Z12(T

−1
22 S22)

T−1T−1
22 q2 if T > 0. (27)

In the special case T = 0 (unanticipated oil price shocks) we have x̃t = 0 for all
t and

z̃t = (S−1
11 T11)

tK + (S−1
11 T11)

tS−1
11 q1 for t ≥ 0 (28)

implying z̃0 = K + S−1
11 q1. If T = 0, the initial value of w̃ is given by

w̃′
0 = (w′

0, p
′
v,0) = (1, 0, 0, 0, 0, 0, 0, 0)′ . (29)

From (25) we obtain w̃0 = Z11z̃0 so that

K = Z−1
11 w̃0 − S−1

11 q1 if T = 0. (30)

In order to get a unique solution for z̃ we must assume that the square matrix
Z11 is invertible (Klein, 2000). The unique stable time path of the original
state vector (w̃′, ṽ′) then follows from equation (25). Assuming the invertibility
of Z11 equation (25) also implies the following relationship between the state
vectors ṽ an w̃:

ṽ = Z21Z
−1
11 w̃ + (Z22 − Z21Z

−1
11 Z12)x̃. (31)

Let N = Z21Z
−1
11 , Ẑ = (Z22 − Z21Z

−1
11 Z12) and partition the matrices N =

(nij)1≤i≤9,1≤j≤8 and Ẑ = (ẑij)1≤i,j≤9 conformably with the components of ṽ′ =
(v′, i, p′w), i.e.

N =



N11 N12

n41 · · · n48

N21 N22


 , Ẑ =




Ẑ1

ẑ41 · · · ẑ49
Ẑ2


 , (32)
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where the matrices N11, N12, N21, N22, Ẑ1 and Ẑ2 are 3× 5, 3× 3, 5× 5, 5× 3,
3 × 9 and 5 × 9 respectively.6 Equation (31) can be written as

v = N11w +N12pv + Ẑ1x̃, (33)

i = (n41, . . . , n45)w + (n46, . . . , n48)pv + (ẑ41, . . . , ẑ49)x̃, (34)

pw = N21w +N22pv + Ẑ2x̃. (35)

Assume the invertibility of the square matrixN12 and solve equation (33) for the
predetermined costate vector pv. Inserting this expression into (34) yields the
following expression for the optimal unrestricted control rule under commitment

it = (n46, . . . , n48)N
−1
12 vt +

[
(n41, . . . , n45) − (n46, . . . , n48)N

−1
12 N11

]
wt (36)

+
[
(ẑ41, . . . , ẑ49) − (n46, . . . , n48)N

−1
12 Ẑ1

]
x̃t (t = 0, 1, 2, . . .),

where the auxiliary vector x̃t is defined in (22). The optimal policy rule can
be expressed as a linear feedback on the current state vector k = (w′, v′)′ and
the auxiliary vector x̃. In the special case of unanticipated input price shocks
(T = 0) stability requires x̃t = 0 for all t. In this case it only depends on kt. In
particular it is a linear function of the current and lagged values of the forward-
looking variables (i.e., πt, πt−1, yt, yt−1, τt, τt−1). It is well known that the
optimal unrestricted rule may also be expressed as a feedback on the current
value of the vector w of predetermined state variables plus a discounted linear
combination of past values of w (Levine, 1988).

Figure 1 illustrates the impulse response functions that represent the dy-
namic adjustments resulting from the input price shock in the case of the op-
timal monetary policy rule under commitment. Underlying the simulations is
a set of baseline model parameters (see Table 1) that appear plausible from
empirical studies.7

Table 1: Baseline parameters

ψ α β∗ φyb
φyf

φi φτ φm φy φy∗ γπb
γπf

γq γdpin
lq li µ∗

0.175 0.75 0.8 0.4 0.6 0.3 0.25 0.03 0.25 0.25 0.32 0.56 0.1 0.2 1 1 0.95

It is assumed that the parameters showing the forward-looking behavior
of consumers and price setters are greater than the corresponding ’backward-
looking’ parameters. We consider both an unanticipated and anticipated input
price shock which takes place at time T = 2. In the unanticipated case we get
short-term stagflationary results and thereafter hump-shaped adjustments of
domestic income and inflation. In the case of an anticipated commodity price
increase domestic income rises on impact. The temporary increase in domestic
GDP can be traced back to a simultaneous decrease in the terms of trade τ

6If the unitary matrix Z
′

is partitioned via Z
′

=

(
Z

′

11 Z
′

12

Z
′

21 Z
′

22

)
then the identity Z ·Z

′

= I17×17

implies Ẑ · Z
′

22 = I9×9 so that Ẑ = Z
′−1

22 .
7See, for example, Moons et al. (2007) and the references therein.
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Figure 1: Economy’s response to an increase in the price of imported inputs. Solid
lines with triangles are responses to an anticipated shock taking place in period T =
2; solid lines with circles are responses to an unanticipated shock taking place in
period T = 2. Note that in this case the variables remain at their steady state values
(normalized to zero) until T = 2.

and the real interest rate and a slight increase in the domestic real commodity
price (p∗in + e− p).8 At the time of implementation of the input price increase

8The identity equation p∗in + e− p = (p∗in − p∗) − τ implies that during the anticipation phase
the development of p∗in + e− p is equivalent to the adjustment of the domestic real exchange
rate −τ .
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Figure 2: Total loss and variances for different lengths of anticipation period. Solid
lines with circles show the baseline case; solid lines with squares show the more forward-
looking case φyb

= 0.05, φyf
= 0.95, γπb

= 0.04, γπf
= 0.76; solid lines with triangles

show the more backward-looking case φyb
= 0.95, φyf

= 0.05, γπb
= 0.76, γπf

= 0.04.

the fall in domestic income is stronger than in the unanticipated case which
can be explained by the rise in the real interest rate and the terms of trade.
On the other hand, the producer price inflation is weaker than in the case of
an unanticipated commodity price shock. In any case the domestic nominal
interest rate falls on impact although the domestic real commodity price lies
above its initial steady state level during the whole course of adjustment.

Comparing the total loss J0 in the unanticipated and anticipated case (Fig-
ure 2) we get the surprising result that – given the baseline calibration of our
New Keynesian model – J0 is an increasing function in the length of the antic-
ipation phase (T ).

The total loss in case of anticipated input price shocks is always greater
than the total loss resulting from an unanticipated commodity price increase.9

In Figure 2 the development of the intertemporal quadratic loss function J0

is based on the following parameter set representing the objective of flexible

9The determination of the value of the loss function is presented in the mathematical appendix.
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domestic inflation targeting:

d1 = 1 > d2 = 0.5 > d4 = 0.1 > d3 = 0.

In a setting of perfect capital mobility where the uncovered interest parity
condition (3) holds, interest rate stability and stability of the real exchange
rate are intrinsically linked. We therefore assume d3 = 0. Flexible inflation
targeting implies that inflation is the most important objective of the central
bank but that it is also concerned about output and interest rate stability
(Svensson, 2000).

To explain the loss puzzle consider the volatility or total variance of the tar-
get variables y, π and i (Figure 2). Obviously, the variance of GDP (VAR(y))
dominates the variance of the inflation rate and the nominal interest rate. More-
over, VAR(y) is an increasing function in the length of the anticipation phase
T . This can be traced back to the strong GDP contraction at the date of imple-
mentation (T ) which is not independent of T .10 Instead, the income contraction
increases with rising T , since the opposing effects of the contractionary input
price shock, i.e. the fall in the domestic terms of trade and the real interest rate,
get weaker the longer the time span between the anticipation and realization of
the commodity price increase.

Similar results hold if the degree of forward-looking behavior is increased.
It is well-known that the volatility of output and inflation decreases if the part
of forward-looking consumers and price setters increases. Therefore, the total
loss in the more forward-looking case runs below the J0 curve in the baseline
scenario, but it also increases in T (Figure 2). In the more backward-looking
case, J0 lies above the loss function in the baseline calibration. Its development
is now hump-shaped. However, as long as T is not too large (i.e. T ≤ 5), J0

again increases if T becomes larger.

4 Simple Monetary Policy Rules

In this section, we evaluate the performance of several monetary policy rules in
the presence of both unanticipated and anticipated oil price shocks. In particu-
lar, we study the performance of simple rules relative to the optimal unrestricted
policy under commitment. The optimal unrestricted control rule (36) can not
be implemented as an instrument rule for two reasons. First, it leads to an in-
determinacy problem with respect to the original system (6) since the number
of unstable eigenvalues would be smaller than the number of forward-looking
state variables (Blanchard and Kahn, 1980). Second, the rule is rather compli-
cated because it depends on all forward- and backward-looking state variables
including the exogenous shock variable. We therefore analyze calibrated and
optimized simple monetary policy rules which guarantee saddle path stability
of the original system (6). In doing so, we search for simple rules that are good
approximations of the fully optimal policy.

10The opposite result, i.e., the independence of the output jump from T can be found in the
literature to traditional Dornbusch-type models (Turnovsky, 1986; 2000).
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Table 2: Coefficients of monetary policy rules in case of unanticipated (T = 0) and
anticipated (T = 2) commodity price shocks

Rule T πt+1 πt πt−1 yt+1 yt yt−1 τt+1 τt τt−1 p∗in,t p
∗

in,t−1

Com 0/2 - −0.82 0.80 - −19.67 8.28 - −5.80 0.50 −6.95 −0.48

Non-optimized rules

Mpeg 0/2 - 2.00 - - 1.00 −1.00 - −1.43 −1.43 0.12 −0.12

Ipeg 0/2 - 1.01 - - - - - −0.99 0.99 −0.05 0.05

TR 0/2 - 1.50 - - 0.50 - - - - - -

TRS 0/2 - 1.10 - - 0.10 - - −0.80 0.80 −0.04 0.04

Optimized rules

0 - 1.91 −0.25 - 0.55 0.02 - −0.88 1.23 −0.93 1.23
R1

2 - 1.69 −0.31 - 1.74 −1.29 - 1.07 −0.41 0.30 0.44

0 - −0.59 2.11 - 2.93 −1.89 - −2.02 2.09 - -
R2

2 - −0.17 0.99 - 1.18 −1.27 - 0.10 0.01 - -

0 - 2.62 1.36 - 2.77 −3.00 - - - - -
R3

2 - 0.53 2.64 - 2.66 −3.00 - - - - -

0 - 0.87 - - −0.37 - - 0.04 - - -
R4

2 - 3.00 - - −0.62 - - −0.28 - - -

0 - 1.22 - - −0.38 - - - - - -
TRopt

2 - 3.00 - - −0.56 - - - - - -

0 - 1.28 - - 0.01 - - −0.86 0.86 −0.04 0.04
TRSopt

2 - 1.02 - - 0.03 - - −0.99 0.99 −0.05 0.05

0 - 3.00 - - 2.47 −2.47 - - - - -
SL

2 - 3.00 - - 2.57 −2.57 - - - - -

0 - - - - - - - - - - -
R5

2 0.05 0.12 0.53 1.73 −1.77 −0.09 0.68 −0.45 −0.05 - -

Notes: The rows display interest rate rules which depend linearly on the variables in the

columns. The first row presents the coefficients of the unrestricted optimal policy rule (36)

with respect to the whole vector of state variables kt (cf. equation (7)). The coefficients in

this case and in case of the non-optimized rules are based on our calibration and are therefore

identical for T = 0 and T = 2. The rows in the lower part of the table display the set of

optimized rules for both the case of unanticipated shocks T = 0 and anticipated shocks T = 2.

Non-optimized simple rules

We analyze four types of simple non-optimized monetary policy rules discussed
in the literature, namely a money growth peg (Mpeg), an interest rate peg
(Ipeg), a standard Taylor rule (TR), and a Taylor rule with smoothing (TRS).

Under a money growth peg, the growth rate of the money supply is kept
constant by the central bank (∆mt = 0). Combining the condition ∆mt = 0,
the money demand equation (4) (which is assumed to be stable), the interest
parity condition (3) and the definition of the consumer price index we can
represent a money growth peg in terms of an interest rate rule. Mpeg is then a
linear function of πt, yt, yt−1, τt, τt−1, p

∗
in,t, and p∗in,t−1, where the corresponding

coefficients are presented in the row of Table 2 belonging to the rule Mpeg.
Under an interest rate peg, the central bank targets the nominal interest

rate. To achieve a constant interest rate without an indeterminacy problem we
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specify an interest rate peg as follows:

it = ρit−1 + (1 − ρ)v1πt (37)

with ρ = 0.999 and v1 = 1.001 implying ∆it ≈ 0 (Collard and Dellas, 2005).
By using the interest parity condition (3) we get the rule presented in Table 2.
We follow Leduc and Sill (2004) and Carlstrom and Fuerst (2006) and define
both a money growth peg and an interest peg as neutral monetary policies.

Furthermore, we consider two types of Taylor-type interest rate rules. TR
is a rule originally proposed by Taylor (1993) with the standard coefficients 1.5
for inflation and 0.5 for GDP. TRS is an instrument rule with smoothing of the
form

it = ρit−1 + (1 − ρ)(v1πt + v2yt) (38)

with ρ = 0.8, v1 = 1.5 and v2 = 0.5 (Clarida et al., 1998; 2000). By using the
interest parity condition (3) we get the rule presented in Table 2.

Table 3 shows the absolute and relative loss resulting from unanticipated
(T = 0) and anticipated shocks (T = 2) under the monetary policy rules dis-
cussed above. The relative loss expresses the loss in percent of the loss under
the optimal unrestricted monetary policy under commitment (Com). Two re-
sults should be emphasized. First, the standard Taylor rule (TR) as well as
the Taylor rule with smoothing (TRS) perform worse than the neutral mone-
tary policies (Mpeg, Ipeg). This result holds for unanticipated as well as for
anticipated oil price hikes. Second, a Taylor rule with smoothing performs
considerably better than a Taylor rule without smoothing.

The rationale behind these results is the following: The neutral monetary
policies as well as the Taylor rule with smoothing exhibit one of the main
characteristics of the optimal unrestricted monetary policy under commitment,
namely its history-dependence (see equation (36) as well as Levine, 1988; Wood-
ford, 1999). Both a money growth peg, an interest rate peg and the Taylor rule
with smoothing respond to lagged variables, in particular yt−1 and τt−1 respec-
tively (see Table 2). This conclusion offers an alternative perception of the
discussion about active versus passive monetary policy rules in the presence of
oil price shocks and questions the appropriateness of characterizing money or
interest rate pegs as neutral monetary policies.11

Optimized simple rules

We now consider a set of possible simple interest rate rules and minimize the
objective function (10) of the central bank with respect to the coefficients of the
given structure of the rule. The question arises whether a restricted optimal
monetary policy can lead to the same or nearly the same welfare loss as the
optimal unrestricted policy (where in both cases commitment is assumed).

The rules we consider are presented in Table 2.12 The optimized rule R1,
as well as the optimal unrestricted rule, depends on the whole vector of state
variables kt. By subtracting from this rule the actual and lagged price of oil,

11See, for example, Leduc and Sill (2004) or Carlstrom and Fuerst (2006).
12We have done numerical optimizations for a much larger set of possible interest rate rules.

Qualitatively, the results are similar to those reported and are available upon request.
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Table 3: Performance of monetary policy rules in case of unanticipated and anticipated
commodity price shocks

Unanticipated shock Anticipated shock

Rule Absolute Loss Relative Loss Absolute Loss Relative Loss
Com 0.2805 100.00 0.4044 100.00

Non-optimized rules

Mpeg 0.3421 121.94 0.4889 120.89
Ipeg 0.3792 135.17 0.5087 125.79
TR 2.5935 924.48 3.5352 874.15
TRS 0.5210 185.72 0.6946 171.75

Optimized rules

R1 0.2805 100.00 0.4050 100.14
R2 0.2811 100.20 0.4204 103.95
R3 0.3041 108.41 0.4547 112.43
R4 0.3914 139.52 0.7549 186.66
TRopt 0.4303 153.38 0.8197 202.69
TRSopt 0.3446 122.85 0.4956 122.55
SL 0.3337 118.93 0.5829 144.13
R5 - - 0.4052 100.19

Note: The relative loss is the percentage of the loss from the simple rule relative to the loss

from the optimal unrestricted monetary policy (Com).

p∗in,t and p∗in,t−1 respectively, we get the rule R2. R3 is a history-dependent
closed economy interest rate rule implying that it responds only to the actual
and lagged values of domestic inflation and GDP. The interest rate rule R4,
however, reacts to the actual but not the lagged values of inflation, GDP and the
terms of trade τ . TRopt and TRSopt are optimized standard Taylor rules with
and without smoothing respectively. SL is a so called speed limit policy which
reacts to actual inflation and the growth rate of GDP ∆yt = yt − yt−1 (Walsh,
2003; Stracca, 2007). R5 is an open economy rule which is both forward- and
backward-looking.

Table 2 displays the optimized parameter values of the rules both for the
case of an unanticipated rise in the price of oil (T = 0) and for the case of an
anticipated oil price hike (T = 2).13 The corresponding values of the absolute
and relative loss are shown in Table 3.

Three results are worth mentioning. First, there exists optimized simple
rules which are able to replicate the outcome under the optimal unrestricted
rule (in particular R1 and R2 in case T = 0 and R1 and R5 in case T = 2).
These rules must exhibit a similar structure as the unrestricted policy rule.
For unanticipated shocks the rule R1 has exactly the same structure as the
optimal unrestricted rule (36) and attains virtually the same level of welfare.
In case of unanticipated oil price increases the simplified rule R2 (which does
not react directly to the shock itself) performs only 0.2% worse than the best
simple or the optimal unrestricted rule. Therefore, this more simple rule is
superior to the rule R1. In the case of anticipated shocks this result does not

13We restrict the coefficients to lie between −3 and 3 (Schmitt-Grohé and Uribe, 2007).
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hold. As emphasized above, the unrestricted optimal control rule (36) in case
of anticipated shocks is a linear feedback rule on the current state vector kt and

the auxiliary vector x̃t. Since the latter can be approximated by the forward-
looking elements Et πt+1, Et yt+1 and Et τt+1, the forward-looking rule R5 leads
to the second-best results and is superior to R1 for the same reason as explained
above. We conclude that anticipated shocks provide a theoretical justification
for forward-looking simple monetary policy rules.

The next two results follow directly from the rationale about the structure
of optimal simple rules discussed above. First, welfare-enhancing interest rate
rules should react to an exchange rate term.14 This result can be demonstrated
by comparing the rules R2 and R3 as well as R4 and TRopt. By adding the
actual terms of trade to the Taylor rule TRopt or by adding the actual and
lagged terms of trade to the rule R3 the loss decreases for both anticipated and
unanticipated shocks. Second, welfare enhancing interest rate rules should be
history-dependent, a point already emphasized in the context of non-optimized
simple rules. An interest rule which reacts not only to actual inflation and GDP
but also to their lagged values (compare TRopt with R3) performs remarkably
better. The same holds if we compare the optimized Taylor rule (TRopt) with
the history-dependent speed limit policy SL or the optimized Taylor rule with
and without smoothing (TRopt and TRSopt respectively).

A final but important issue that should be mentioned is the somewhat puzz-
ling result that anticipated shocks lead to a higher welfare loss than unantici-
pated shocks irrespective of the monetary policy response. This loss puzzle has
already been discussed in the context of the optimal unrestricted policy rule.
An implication of this result is that it would be socially optimal to disregard the
information about a future oil price hike. However, a rationale agent will use
the knowledge about future interest rate and exchange rate changes to make
risk-free profits. Thus, the no-arbitrage condition reflected in the uncovered in-
terest parity condition (3) leads necessarily to changes in the non-predetermined
variables at the date of anticipation.

5 Summary and Conclusion

This paper evaluates the welfare effects of several monetary policy rules in the
presence of anticipated and unanticipated oil price shocks. The analysis shows
that calibrated Taylor-type interest rate rules amplify the welfare loss of an
increase in the price of oil compared to neutral monetary policy rules. By con-
trast, the unrestricted optimal monetary policy under commitment dampens
the welfare loss of the oil price shock compared to neutral monetary policy
rules. Optimal simple rules are welfare-enhancing if they have a similar struc-
ture as the optimal unrestricted policy under commitment, namely history-
dependence and the inclusion of an exchange rate term. In case of anticipated
shocks the optimal unrestricted policy rule is also forward-looking. Optimal
simple rules which are very good approximations of the optimal unrestricted

14This result is in line with the study of Wollmershäuser (2006). For an opposite result, see
Adolfson (2007) or Leitemo and Söderström (2005).
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rule should therefore also contain forward-looking elements. These conclusions
offer an alternative perception of the discussion about Taylor rules versus neu-
tral monetary policy. We show that the structure of a money growth peg as
well as an interest rate peg is more similar to the optimal policy under commit-
ment than to the policy rule proposed by Taylor (1993). A further somewhat
puzzling result is that anticipated oil shocks lead to higher welfare losses than
unanticipated shocks irrespective of the monetary policy response.

Of course, there are some limitations to our analysis. In future research it
would be desirable i) to employ a fully microfounded model of an oil-dependent
economy, ii) to relax the assumption of an exogenously given oil price, iii) to
extend the analysis to the case of large open economies and to iv) estimate the
model parameters.

Mathematical Appendix

State Space Representation

The matrices B and C and the vectors χ and ε of the state-space representation
(6) are given by

B =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
b61 0 0 0 0 φyf

−φmli b68
µ∗ − 1 0 0 0 0 0 1 −1

0 0 0 0 0 0 γπf
0




(A1)

with

b61 = (φi + φmli)(1 − µ∗) , b68 = φiα+ φmli,

C =




β∗ 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
c61 −φyb

0 0 0 c66 0 c68
µ∗ − 1 0 0 0 0 0 0 −1
c81 0 −γπb

−γdpin
γdpin

µ∗ −γq 1 − γdpin
c88




(A2)

with

c61 = (1 − φmlq)ψµ
∗ + (φi + φmli)(1 − µ∗), c66 = 1 + φy − φmlq,

c68 = φiα+ φmli + φτ − (1 − φmlq)ψ, c81 = −(γqψ + γdpin
)µ∗,

c88 = γdpin
+ γqψ,

17



χ = (0, 0, 0, 0, 0, 0, 1, 0)′ , (A3)

ε = (1, 0, 0, 0, 0, 0, 0, 0)′ . (A4)

The first five state equations define the predetermined state variables (8). The
sixth state equation is a combination of the model equations (1), (2), (3) and (4);
the seventh state equation results from the uncovered interest parity condition
(3), while the last state equation follows from the Phillips curve (5). Without
loss of generality the exogenous variables i∗t and y∗t as well as the initial steady
state values of the endogenous variables are set equal to zero.

If the time span between the anticipation and the implementation of the for-
eign price shock is positive (T > 0), the initial value of the vector of backward-
looking variables w is zero (w0 = 0). In the special case T = 0 w0 is equal to
the unit vector (1, 0, 0, 0, 0)′ .

Total Loss under Commitment

To determine the minimum value of the loss function (10) first consider the case
T = 0. Let D̃ be the diagonal matrix

D̃ = diag(d2, d1, d3, d4, 0, 0, 0, 0, 0). (A5)

Since ṽ = Nw̃ (N = Z21Z
−1
11 ), we get

Jt = Et

∞∑

i=0

λiṽ′t+iD̃ṽ
′
t+i = Et

∞∑

i=0

λiw̃t+1N
′D̃Nw̃′

t+i. (A6)

From (25), (28) and (30) we obtain

w̃t = Z11z̃t = Z11(S
−1
11 T11)

tZ−1
11 w̃0 =

(
Z11(S

−1
11 T11)Z

−1
11

)t
w̃0 = Γtw̃0, (A7)

where

Γ = Z11(S
−1
11 T11)Z

−1
11 . (A8)

Define

ϕt = Γtw̃0 (A9)

and

P = N ′D̃N. (A10)

Then the policy maker’s welfare loss at time t can be rewritten as

Jt =

∞∑

i=0

λiw̃′
t+iPw̃

′
t+i =

∞∑

i=0

λi(Γt+iw̃0)
′P (Γt+iw̃0)

= (Γtw̃0)
′

(
∞∑

i=0

λiΓi′PΓi

)
Γtw̃0 = ϕ′

tV ϕt, (A11)
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where V is the geometric sum of matrices

V =

∞∑

i=0

λiΓi′PΓi. (A12)

Since the matrix S−1
11 T11 is stable by construction, we have

lim
i→∞

λiΓi′PΓi = 0 for all 0 < λ ≤ 1. (A13)

The definition of V implies

V = P +

∞∑

i=1

λiΓi′PΓi = P +

∞∑

i=0

λi+1Γi+1′PΓi+1

= P + λΓ′

(
∞∑

i=0

λiΓi′PΓi

)
Γ = P + λΓ′V Γ. (A14)

Since P = N ′D̃N , the matrix V = (vij)1≤i,j≤8 satisfies the matrix equation

V = N ′D̃N + λΓ′V Γ (A15)

with the solution

vec(V ) = [I − λΓ′ ⊗ Γ′]−1 · (N ′ ⊗N ′) vec(D̃), (A16)

where vec(V ) denotes the vector of stacked column vectors of V and ⊗ de-
notes the Kronecker product of matrices (Klein, 2000; Rudebusch and Svensson,
1999).

The optimal unrestricted policy under commitment yields a loss given by
(Currie and Levine, 1993)

J0 = ϕ′
0V ϕ0 = w̃0V w̃0 = trace(V w̃0w̃

′
0) = v11 if T = 0. (A17)

Next consider the case T > 0. Partition the loss function Jt via

Jt = J
(1)
t + J

(2)
t = Et

T−1∑

i=0

λiṽ′t+iD̃ṽt+i + Et

∞∑

i=T

λiṽ′t+iD̃ṽt+i. (A18)

We will derive a formula for J
(2)
t which is similar to (A11). For t ≥ T we have

w̃t = Z11z̃t = −Z11(S
−1
11 T11)

tZ−1
11 Z12x̃0

+ Z11

T−1∑

s=0

(S−1
11 T11)

t−s−1S−1
11 (T12x̃s − S12x̃s+1) + Z11(S

−1
11 T11)

t−TS−1
11 q1

= Z11(S
−1
11 T11)

t−T

(
S−1

11 q1 − (S−1
11 T11)

TZ−1
11 Z12x̃0

+

T−1∑

s=0

(S−1
11 T11)

T−s−1S−1
11 (T12x̃s − S12x̃s+1)

)

= Z11M
t−T K̃, (A19)
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where

M = S−1
11 T11 (A20)

and

K̃ = S−1
11 q1 −MTZ−1

11 Z12x̃0 +

T−1∑

s=0

MT−s−1S−1
11 (T12x̃s − S12x̃s+1). (A21)

Then

J
(2)
t =

∞∑

i=T

λiw̃′
i+tPw̃i+t =

∞∑

i=T

λi(Z11M
i+t−T K̃)′P (Z11M

i+t−T K̃)

= (M tK̃)′λT

(
∞∑

i=T

λi−T (Z11M
i−T )′P (Z11M

i−T )

)
(M tK̃)

= λT ϕ̃′
tṼ ϕ̃t, (A22)

where

ϕ̃t = M tK̃ (A23)

and

Ṽ =

∞∑

i=T

λi−T (Z11M
i−T )′P (Z11M

i−T ). (A24)

Since M = S−1
11 T11 is a stable matrix, Ṽ is well-defined. We get the matrix

equation

Ṽ = Z ′
11PZ11 +

∞∑

i=T+1

λi−T (Z11M
i−T )′P (Z11M

i−T )

= Z ′
11PZ11 +

∞∑

i=T

λi+1−T (Z11M
i+1−T )′P (Z11M

i+1−T )

= Z ′
11PZ11 + λM ′Ṽ M. (A25)

Since

Z ′
11PZ11 = Z ′

11N
′D̃NZ11 = Z ′

11Z
−1 ′

11 Z ′
21D̃Z21Z

−1
11 Z11 = Z ′

21D̃Z21, (A26)

the matrix Ṽ satisfies the equation

Ṽ = Z ′
21D̃Z21 + λM ′Ṽ M (A27)

with the solution

vec(Ṽ ) = [I − λM ′ ⊗M ′]−1 · (Z ′
21 ⊗ Z ′

21)vec(D̃). (A28)
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(A22) and (A23) imply

J
(2)
0 = λT ϕ̃′

0Ṽ ϕ̃0 = λT K̃ ′Ṽ K̃ = λT trace(Ṽ K̃K̃ ′) (A29)

with K̃ given by (A21), where

x̃s = −(T−1
22 S22)

T−1−sT−1
22 q2 for s < T. (A30)

Next consider the finite sum J
(1)
0 . Since

ṽi = Z21z̃i + Z22x̃i for i < T, (A31)

we obtain

J
(1)
0 =

T−1∑

i=0

λiṽ′iD̃ṽi =

T−1∑

i=0

λi(Z21z̃i + Z22x̃i)
′D̃(Z21z̃i + Z22x̃i)

=

T−1∑

i=0

λiz̃′i(Z
′
21D̃Z21)z̃i +

T−1∑

i=0

λix̃′i(Z
′
22D̃Z22)x̃i + 2

T−1∑

i=0

λiz̃′i(Z
′
21D̃Z22)x̃i.

(A32)

In case T > 0 the optimal unrestricted policy under commitment yields a total

loss given by J
(1)
0 + J

(2)
0 where J

(1)
0 and J

(2)
0 can be determined with the help

of (A32) and (A29).
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