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ABSTRACT

We construct a continuous utility indicator for a

subclass of continuous preference relations, including some

with thick indifference classes, using a measure theoretic

technique related to that of Neuefeind {11]. This indicator

is not continuous on the full class of continuous preferences

endowed with the closed convergence topology. It appears that
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has established that one exists. A finer topology for preferences

seems appropriate.
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CONSTRUCTION OF A CONTINUOUS UTILITY FUNCTION FOR A CLASS OF PREFERENCES

by

K. R. Mount and S. Reiter

Section 1.

In certain economic models preferences of economic agents are allowed
to vary. In sucﬁ situations it is convenient to be able to represent
preferences by a numerical utility indicator which is jointly continuous in
preferences and commodities. This situation arises in the study of resource
allocation mechanisms where one is interested in how a mechanism functions
over a class of economic environments (see, for example [9]). If a suitably
continuous representation of preferences is available, it is possible to
represent a class of environments continuously by the set of utility alloca-
tions feasible for each economy. One important motivation for the study of
resource allocation mechanisms is to find mechanisms that function well in
economies in which preferences do not have the 'classical' properties essen-
tial to the optimal functioning of price mechanisms. 1In particular, convexity,
local non-satiation of preferences, or monotonicity assumptions may not be
appropriate. An example of such é situation is provided by [5 p. 202] where
in order to incorporate producers into the B-process in a decentralized way a
producer is represented as a consumer whose admissible consuﬁption set is his
production possibility set, and whose preferences are '"flat" over that set,
i.e. he is indifferent between any two feasible input-output vectors. No
continuous representation of preferences has been constructed for a class including

sach flat agents as well as, say, monotone ones.
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Y. Kannai [ 6 ] first introduced a topology on the set of preference

relations. He considered continuous and monotone preferences defined on

L

the positive orthant of R (4 -dimensional euclidean space). He con-

structed a utility indicator for that class of preferences which is
jointly continuous in preferences and commodities. G. Debreu [2] introduced
the topology of Hausdorff distance on the space of the graphs of

preference relations. W. Hildenbrand [ 4 ] introduced the topology of

closed convergence, and constructed a utility function which represents

the class of agents whose consumption sets are Eg

o (the non-negative

orthant of E@ ) and whose preferences are continuous and monotone. His
utility function is jointly continuous in Preferences and commodities, using
the topology of closed convergence for preferences and the usual euclidean
metric for commodities [ 4, Appendix B. p. 183].

Subsequently, Neuefeind [11l], constructed a wutility function
for the class of agents whose consumption set is a connected subset
of R@ and is the closure of 1its interior, and whose
preferences are continuous, with indifference
classes of Lebesgue measure 0. In an unpublished paper [ 10 ] the present
authors constructed a jointly continuous utility for the class of agents
whose preferences are continuous on a closed convex consumption set

1
(in E& ) and satisfy local non-satiation. =/ We also showed that the

existence of a continuous utility function for the full class of continuous

L The original proof of this result contained an error. We are grateful
to B. Grodal for pointing it out and suggesting a correction. We are
also grateful to Y. Kannai for several useful comments on that paper

and for stimulating discussions of problems of representing preferences.
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preferences is equivalent to the lower hemi continuity of the correspondence
Q-l which associ;tes with each preference relation the set of all its
continuous utility representations. This equivalence follows from a
theorem of Michaels on the existence of a continuous selection from a

correspondence [ 8 ].

A. Mas-Colell [7] has made use of this theorem of Michael's to
establish the existence of a continuous utility function for the class
of continuous preferences on a second countable, locally compact topologi-
cal space. Mas-Colell does not construct the utility function from the
data of preference relations and commodities, but establishes the conditions
which according to Michael's theorem ensure that there is a continuous
selection from the correspondence mentioned above.

In this paper we present a method, related to that of Neuefeind in
that it relies on measure, for constructing a utility function for a class
of continuous preferences. We take the consumption set X to be a convex
subset of Iiz; we make use of certain measures, related to each other, on
X, and X x X. We define the utility of the point x ¢ X, when the pre-
ference relation is a, denoted U(w,x), by the measure of the set of points

(u,v) in

Il
<

X such that v < u < x, less the measure of those pairs
a a

(u,v) 1in that set which lie over the interior of the indifference relation.
This is related intuitively to the idea of taking the measure of the lower

contour set of x (in the consumption set) acording to a, and subtracting
the measure of all "thick" indifference classes below x in preference. A

precise definition of this utility function is given in Definition 1 of

Section 2. We then study the joint continuity of the function U on the class



of continuous agents endowed with the topology of closed convergence.

OQur results are as follows. Theorem 1 of Section 2 establishes the
equivalence between the joint continuity of U and certain properties
given in Definition 2 of Section 2, involving the interior of the graph

of the indifference correspondence. These conditions are discussed in
Section 2. 1In Section 3 further conditions are given which characterize

a class of agents on which U 1is a continuous utility. It is shown that,
while there is no largest class of agents in which U 1is continuous, there
is a class which includes the monotone agents and the flat agent. Theorem
2 in Section 3 establishes this result.

It is clear from Examples 1 and 2 given below, as well as from the
theorems, that the closed convergence topology counts as neighboring agents,
some who are widely different in terms of the utility function U. One may
interpret this situation as raising the question whether the closed con-
vergence topology is the natural one for the class of continuous agents.
1t is possible to give the class of agents a finer topology in which the
function Uy 1is jointly continuous on the full class of continuous agents.
First, note that the function F defined in Definition 2, Section 2 below,
induces a psuedo-metric on the class of agents; which, in turn induces a
topology. The common refinement of this topology and the elosed convergence
topology is a topology in which the function U is jointly continuous on
‘the full class of continuous agents. Moreover, since it is a refinement of

the closed convergence topology, all mappings which are continuous in that
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2/
topology remain continuous in the finer one. —

The question whether it is possible to construct a jointly continuous
utility indicator for the full class of continuous preferences endowed with

R \ L
the topology of closed convergence with constant consumption set R

remains.
+ .

To pose this question in a precise way one must indicate what would be
allowed as a method of construction. We discuss briefly one such notion,
namely construction via a "measurement process', in Section 4 below and give

examples of utility functions so constructed.

2/

—" Chichilnisky has introduced a topology on preferences based on the

order topology induced by the (set) inclusion relation applied to graphs

of strict preference relations. It appears that the function U is jointly
continuous on the full class of continuous agents in that topology.



Section 2.

4

. . 4
We shall assume that the commodity space is R~ where R
denotes euclidean g-dimensional space, and that the conmsumption set X

is a convex subset of RL.QKWe shall adopt the following conventions and notations:
L 3
R+={(x1,...,x£)A1xi>O 1<i<}

| denotes the norm in RY (and in R)
) 4
im0 denotes the norm in R” x R
d(:,.) will denote the Hausdorff metric on r? X rY U=l
which we shall assume is bounded above by 1. 1If
A, BcrR? x Y, then d(A, B) =d(A U {=}, B U {=}).

v will denote a measure on X which assigns positive measure

to sets open in 'Z and assigns a finite value to X .

L =y xy will denote the product measure on X x X .

A will denote the diagonal of Z % Z .
C will denote the measure on :A which assigns to each subset
of A the measure of its projection into g .
é will denote the class of agents with continuous preferences
on z
A° will denote the interior of the set A, for AcX ¥ X (or X).
A will denote the closure of A in Xy X (or X).
c - - - -
A »will denote the complement of A in X x. X (or X).

T@ cX¥ X foracegd, will denote the graph of the preference relation «,

ie. T@ ={@, v |u >av} . )

E/It would be possible to allow X to be infinite dimensional as long as
there is a suitable measure defined on it; e.g., a Hilbert measure for
X a convex subset of Hilbert space. Generalizations which allow X to
vary with the agent are also possible.
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I () will denote the image of the indifference correspondence at o,
ie. I(x) = {(u, v) ] u -~ vi}.
I(x, y) will demote the set {z | z . y}.

L) will denote the set Ui I(x, y)° . (We write I(a,y) for [I(x,y)] .)
yea

8(a, x) will denote the set {(u, v) |v < gu< ]

A®B " for sets A, BcC X x }_"( will deﬁote the symmetric difference
ansHuanse.

Lim A, denotes the topological limit infimum of ¢ sequence of
sets Aj’ i.e. x e Lim Aj iff for each open neighborhood
U of x, Aj NU#¢Q for all but a finite number of j.
Similarly Lim Aj denotes the topological limit supremum.

lim A, denotes the set theoretic limit infimum of the sequence of

sets A,.
]

Definition 1:U(x, x) = p[S(x, x) N @@ x Z)]=u[5(a,x)] -ulS@,x)N W@)xX)]

Lemma 1 4(a) = 1221 I(OL)O = prl(I(a) N A) where PT, denotes the

function from Zx 2 which carries (u, v) to wu.

Proof: First L(a) pry I(a)o, because if u ¢ 4(a), then

u e I(on,z)o for some z, and hence (u,2z) ¢ I(a,z)o xI(oo,z)oc_—_ I(OL)O,
Assume now that u ¢ PT; I(a)®. There exists V ¢ z such that

(u, v) ¢ Bx B' c I(a)® , where B and B' are nonempty open sets in
i{-. We claim that B C g(a). It will suffice to show that if u' ¢ B,
then u' " U Now (u, v) and (u', v) are both elements of

B x B'  I(a). Hence, by transitivity of indifference, u ~~ V7 "o u';

thus u ~, 4 Finally, if y e 4(a), then y ¢ I(a, y)° and

(v, y) € I(@, y)° N 4. Thus £(@) € pry(L@)° N4y,

Lemma 2: If B and B' are subsets of X such that for o ¢ 4§,

Bx B'ci(ax), then (BUB'Y x (B U B") < I(a).



Proof: If (p, q) € I(a), then p ~.4 and hence (p, p),

(¢, p) and (q, q) are also in I(a).
Lemma 3:If «, B ¢ & such that d(I'(a), T'(B)) < €, then d(I(a), I(B)) < e.

Proof: Suppose (u, v) ¢ I(a). Because d(I'(a), T'(B)) < e, there

exist (u', v') and (u", v") in z X Z such that u' » 8 v' and

ull < 1"

BV

The existence of such a point (u', v') is immediate. That there is a

where d((u, v), (u', v')) < e and d(u, v), (u", ")) < ¢.

point (u"; v") with the required properties can be shown as follows.
Since (u, v) e I(a), it follows that (v, u) e I(a). Hence there exists
(v", u") e I'(B) such that d((v, u), (v, u")) < e. But

d((v, u), (v'", u")) < ¢ implies d((u, v), (u", v'")) < ¢, while

4
(v", u") e I'(B) dimplies u" g v'". Now on the line segment &/ from
(u', v') to (u", v") there is a point (u", vn) where u ~B vn, by

continuity of preference. Because the assertion is symmetric in o« and

B, this establishes the Lemma.

Definition 2:Denote by A the set of graphs of equivalence relations on

e

Thus I ¢ A iff I ={(u, v) | u ~, V} for some equivalence re-
lation « on X . We define a real valued function TF from
Ax A to R as follows: F(C, D) = G(Co Na®D N A). We consider A

as a topological space using as a metric on A the metriec d(., .).

A subspace B C A will be said to be an admissible class of in-

differences iff:

(1) for each I ¢ B, p(I) = u(I°%).

(2) for each x ¢ X, v {I(z, x) - I(a, x)°) =0.

(3) if @y e B and lim @, = o, then lim F(or,j,or,) = 0.
h| h|

4/ Convexity of X is used here .



Definition3: If B 1is an admissible class of indifferences, then

we shall denote by &(B) the subclass of agents in 4 which satisfy

the following conditions:

(i) 1if o ¢ £(B), then I(a) € B

(ii) (Cantor condition ) for each open set V in z and o ¢ §(B) such that

VxVEIQ@, pT@°N @@ D N (vx D] #0.

Lemma 4:I1f @ ¢ § and if a satisfies the Canter condition, then

1>l

U(a, » ) is monotone with respect to <, on

~

Proof: 1If x f g then S(a, x) € S(a, y) , and hence
pISCa, ) N @@ x D] <plS@, y) N @@ xX]. To complete
the proof of the Lemma we need only show that if x < o 7 then
LIS, ®) N W@ x D] <plsS@, y) N @@ xX]. However
S(a, v) =S, x) U {(u, v) | v < QU< Y and us> x}, thus

we need only show that

ulf(u, v) ‘ v< u <y and u > a,x} N W = Z)] #0.

Because x <. Y there are points p and ¢q such that
X< P <, 4 <, Y- Hence the set V = {u | x <, U <, y} is
both open and nonempty, and V ¥ V ¢:I(a) because (p, q) ¢ Vx V
where p <, ¢ Hence H[T(@)C N Cﬂ(a)c % Z) N (Vg Z)] # 0. How-
ever T N @@ x DN EXxD ={(u V) | v < u x < u<yuéL@}.
This completes the proof.
Theorem 1: If B 1is an admissible class of indifferences, if
{(B, y)} 1is an infinite sequence in &(B) x Z and (o, x) ¢ &(B) « Z

such that the sequence {(B, y)} converges to (a, x), then



-10-

11 U(B, = U(e, .
(b TE P T

Proof: We shall first show that lim  u[S(B, ¥y) N S(x, x)c] = 0.
{(B:Y)}

S(B, ¥) N S, 0 = {(u, V)‘VfBufo}ﬂ{(U, Vv _us x}U
{(u: V) \ v f 8 u < 8 Y} N {(u: V) \ vV os a u}' Hence M[S(B: y) N S(x, X)c] =
p,({(u,v)\ViBufo}ﬂ{(u,v)\V5Qu>ag1+

w({(u, v) |v

A

g Y Ip vin {( v |v> a'u}). We shall show that

lim {(u, v) | v < u < v} N {w v tve_ us_ x}
() "Po B me e

lim {(u, v) | v

LU >g ¥ =0,
{8} g

tA

u < y}ﬂ{(u,v)]v<
B =B ~

Thus assume (U,V) ¢ X x X. In the topology of closed convergence the

set T = {(y,2) \ E>,Y z} is open [4 , p. 18 1. 1If (B,y) ¢ T, then

u>gy - Hence (W,V) ¢ {(u,v) | v< g ¢ < 5 yin {v)|v < U >ax}, and
therefore (T,7) & 1im {(u,v) |v 53 u<.y}n {@w|v <L U OLx} . It
(BJY)} P ~

follows from Fatou's Lemma [3, p. 113 ], that

lim pl{@,v) |v< u<_v1 N {(u,v) |v< us>_x1] =0. Similarly
LB,y ~P B ~as o

lim p[{(u,v) \v <gu < yi N {(u,v) ]V> ul] = 0.
{(B:Y)} P P *

We shall now show that  lim p(S(@,x) N SB,MN° N W@ xX)) = 0.
{(BJY)} )
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To show this we shall begin by demonstrating that

Tim G@,x) N SB,»HYc [ Tim  S@x) N SE@,y))IN [T(a,x) xX] U
{ B, {B, 7N

[ Tim S(e,x) N S, INI(@). Indeed, 1f (T,¥) ¢ {(W,v) |v >, u} NS(x,x)
(@, P

infinitely often, then u ~ v and if (u,v) ¢ {(u,v)v < g ¢ >By}nS(ou,x)
o <

infinitely often, then u ~ x. It follows that
a

Tim S(a,x) N SE,» N W@ xX)c [ Tim S(a,x) N SB,y)1N (T(a,x) xX) N
{ @,y )

@@ %X U [ im }s<oc,x> NSE,MTNIE@n L@ xX 1. Hence, by
{(B)Y)

Fatou's Lemma, 1lim ul[S(x,x) N S@B,y) N W@ xX)] <
{(B)Y)}

LI (TIm S@x) N SES N (Tx) xD N @@xD] +
(B,

Wl (T S0 N SENH N I@ N @@SxX] » because
{(B)Y)}

o

L(T@) = p(T@ ) ,and  y(T@,%) = v(I(@,x) ). However (I(a,x) xX) N

U@ xD =0 and 1@ nle@)® x Xl = Q. Thus
lim u[S(a,x) N SEN N @@ xX1 = 0.
{(B)Y)}

Now to show that lim U@B,y) = U(x,x) it will suffice to show
{(B)Y)}
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that . [UGB,y) - U] = 0. But |UE,y) - U@, ]| = lWus@on@@xD] -
¥ )

LISE,y N WE XD | = ulsS@x) nsSEy N @@ x] +

wlS@,x) N SE,N N W@ xD] - uIS@,7) N S@x° N @@ xX)]

- wISB,y) N se,x) N @B x| < lulsx) N SE,y N @@ xX] -
wISE,Y) N S@x) N @@ x| + Juls@x) N sEN° N @@ xD1| +

lu(S@B,y) n S(a,x)° N @(B)cxz)] |. Applying the two previously established
results to the second and third terms of this expression, it follows that
lim \U(B:Y) - U(@:X)‘ S

{(B:Y)-} c - c -
lim |u[S(a,x) N SB,y) N @) xX)] - ulSB,y) N S(x,x) N @B xX)]1].

{ (B:Y)}

But |uw[S(@,x) N SB,y) N @@ xX)] -plSx) N SE,y) N @B xD)]]| =

lplS(@,x) N SE@,y) N @B) N 2@ KX + plS@,x) N SE,y» N @B N 2@ ND)]

- plS@@,x) N S@,y) N W@ nIE)S) x D)

- ulS@x) N SEY N @@ N a@) KD

< |ulS@x) N SE,y N @B NL@ ) xDT|+|ulS@x)NSE,y) N @@ ne@ DT |.

But u[ @EAL@)x X1 = y@E)NL@) )+ v (@) and

pl@@) N J(B)c) X i] = (@@ N J(B)c) X g). Thus, it will suffice to show

that  1lim (@@ N @@ = 0= lim v@@° N L(B)). However
{(B:Y)-} {(BJY)}

VU@ N 2®C) =TI n @@ I°NA]l and W@ SNLE@)) =

ol (I(oc)o)c N I(8) N Al. Thus
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v@@ NL@) + U@ n L) = ;[I(a)o Na®I@E) nAal =FaE)I(@)),

and lim F(I(B),I(x)) = F(I(@),I(x)) = 0, since (x,x) ¢ §(B) x X and
Brc: _
{B,y} € &(B) x Z. This completes the proof.

Theorem 1 characterizes a class of agents on which U is jointly
continuous, in terms of the indifference correspondence. This condition
naturally raises the question, For which agents is it satisfied? We

study this question in the next section.
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Section 3.
One would naturally be interested in identifying the largest sub-
class of agents on which the function U is a continuous utility indicator.

Unfortunately when Z is the closure of its interior in 'Rﬁ

and ¢ 1is
the measure given by the Normal distribution on Eg', there is no largest
class under the partial ordering by inclusion. To see this we note first
that the set of agents satisffing the assumptions in Neuefeind [11] is an
admissible class in the sense of Definition 2. Briefly, the indifference classes

-}

have Lebesgue measure zero,and hence satisfy y(I(a,x) - I(a,x) ) =0. It follows

-]
from Fubini's Theorem that y(I(ax)) =0 = p(I(ax) ). The function F
satisfies condition 3 of Definition 2, since I(x) = Q for all o in
this class. To verify the Cantor condition, if o 1is an agent with

J@) = @, it follows that J(a)c = Z. Thus, for any open set B C Z,

BxBd I(@), and p(T@ N U@ xD n EBxX) =plr@n @xD]

= u[{u,v)\vn>ap and u ¢ B}] # 0, because {(u,v)\'v>ap} is open, and
. s 5

hence is a set of positive measure.—

If there were a largest class of agents on which U 1is continuous,
that class must include the agents satisfying Neuefeind's assumptionms.
It must also include the class consisting of the sirgle agent who is
indifferent between any two elements of g. We call this agent o , the
"flat" agent. Therefore the largest class must include the union of these

two sets. But U is not continuous on that class, as the following

example shows.

5/

=’ The assumption that 1 assigns positive measure to open sets is used here.
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6
Example 1. Let X = [O,l].“%efine a sequence of preferences on
X as follows. Subdivide X into an even number of subintervals of

equal length, using the subdivisions

m
6n={§_ﬁ when OSmSZH},n=1,2,...

th
Let the n— preference o be monotone decreasing on intervals
m-l m .
[ om 5 9T for m odd , and strictly increasing on those intervals with m
even (see Figure l.,a.). Then,the point £ is a point of 5, for every n, and
is a maximal point of [0,1] for s for all n. Furthermore, since

J(ah) = Q for all n,

U, =uGE A @) xD =u6Ge i) =y @D, a

constant not equal to zero.

However, o~ converges to &, the flat agent on [O0,1]. Figure l.b
shows the graph of 5. As n -+ o the number of shaded diamonds becomes
large, whiie the size of each becomes small. The distance between these
graphs and the square g X Z goes to zero, while the measure of the

1

shaded diamonds stays at 5 the total measure of X z. Since

k]|

@& )® = 9, it follows that

U@EA) = p(S@d) N (@@ ) x D) = o.

6/

~="  We take X to be compact in this example just to simplify drawing
pictures.



The question arises, whether there are agents whose indifference

relations form an admissible class, and, if so, how can they be characterized?

7
Definition 4: 2 An equivalence relation o 1is said to have an ¢ -

threshold if there exists a real number g¢(x) > Q such that if
[} -]

(u,v) ¢ I(a) , then there exists a point (u',v') ¢ I(a) such that

(D) dl,v), )] <2, ang

(2) the open ball of radius 5%%1 with center

-]
(u',v'"), is contained in I(a)

The number e(x) will be called a threshold for I(x). An agent a ¢ &

has a threshold if I(x) has a threshold.

Lemma 5: Suppose o 1is an agent witlh a threshold e¢(x). 1If

-]

d(I(a),I(B)) < e€/2, where 0 < ¢ < e(a), then d(I(@)o,I(a) nIie)<e.

Proof: Suppose (u,v) ¢ I(a) . By assumption there exists a point

(u',v') ¢ I(a) such that d((u,v),@',v')) < e(x)/2 and such that the
-]

ball of radius e(a)/2 around (u',v') is contained in I(a) . Because

d(I(@),I(B)) < ¢/2, there is a point (u",v") ¢ I(B) such that

d@",v"), @',v')) < ¢/2. But then (u",v") ¢ I(x) and

d((u,v), (",v'") < d(u,v), (u',v")) + d((u',v"), (W,v") < e.

7 .
L/ We are indebted to R. Aumann and K. J. Arrow for comments which
suggested this formulation of the concept of e-threshold.
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Definition 5: (i) An agent B ¢ A

is said to satisfy Condition 3

(the outer condition) with respect to a class g of equivalence relatioms
on X 1if for each equivalence relation o e ¢ which has a threshold
there is a constant Kl(a) > 0, independent of B, such that

Sa@ Mo -5a@ 116 1) | < @da@ ,1@ 0 1e).

(ii) An agent B ¢ § 1is said to satisfy Condition 4 (the
inner condition) with respect to a class A of equivalence relations
on g, if for each equivalence relation « ¢ f which has a threshold

there is a constant Kz(a) > v(z),independent of B, such that

ISE@ N8 =TT UIE) 8| s K@« d@),I@ U @)

* . .
Definition 6: Let 7 denote the class of equivalence relations of agents
N

in 4 which have thresholds. Let 5*- denote the class of agents in &

which (a) have thresholds (b) satisfy the inner and outer conditions with
respect to the class 53* for some functioms K1 and K, on CZ* (i.e.

satisfy Conditions 3 and 4 with respect to ¢1* for Kl(- ) and K2( ),

(¢) are such that p(I(@)) =p(I@°) and v(I(a,s)) - v(I(@,x)°) =0 (.e.,

Conditions 1 and 2 of Definition 2 )and (d) also satisfy the Cantor Condition.

Condition 4 requires that if B 1is an agent whose indifference
correspondence approximates that of « in distance "from the inside",
then the measure of the interior of TI(B) on the diagonal is at least
as large as the interior of I(a) on the diagonal. This inner condition
serves to rule out the convergence in distance to the flat agent of a se-

quence of agents whose indifferences have empty interiors (thin agents), while
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the measures do not converge. Example 1 shows such a case. Condition 3
requires that if B 1is an agent whose indifference correspondence
approximates that of o« '"from the outside" in distance, then the measure
on the diagonal of the interior of I(B) is at most that of the interior
of I(x). The outer condition serves to rule out convergence to a thin
agent by agents with non-empty indifference interiors whose measure

does not go to zero. Example 2 shows such a case.

Example 2 let X = [0,1]. Let the nEh subdivision of [0,1] consist of
; - . [ .

i 1 n _m_ 2n be monotone on the intervals
the points [0, S e 2n""’2n]' Let o

m

i . . m-1
[%ﬁ%, 7;%4 for m odd and lat o be flat on the intervals [75;3 EE]
m-1 m . . ~ m-1
for m even, such that =x ¢ CE;;,E;I), m even implies x o > -

The

graph of « is shown in Figure 2.a,for n = 4 and Figure 2.b shows a
n

Q
utility function for - The(Lebesgue) measure A of (I(an) nAa) is

-]
n ,_l_ = % and hence the 1lim X(I(an) na-= %. However, an converges
Mo

to the monotone agent, the measure of whose indifference correspondence is 0.

Condition 3 serves to exclude this type of case.
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ala

Theorem 2: The utility function U is continuous on 66 X

ala

Proof: We need only show that the class B of indifference corres-
pondences of agents in £A(K1(- ),KZ(- )) is admissible. Thus suppose
B; © B, o ¢ B such that lim B; = «. The inner condition is

ala l ala
satisfied for each Bj € B by definition of 4 . Note that

FI@ NaeI® Nl =|sa@ u I®)HN A - s@@ nIE) 0l -

I5(E@ U I@ )N A - 3@@ na) +5E@ N8 -5@@ nIE) na)|s

IS(T(@) U 1) )N A) - C(I(@)a nay + \\T(I(CL)° na) - C(I(Oﬂ)° N I(B)° n a)|

< K@+ (1@ 1) UIE@) ) + K (@) +dT@ ,I@ NI1E).

By Lemma 5, B + o implies d(I(OL)o,I(or,)° N I(R)) » 0. It follows from
Lemma 3 that when B -+ a, I(B) »+ I(ax). Since I(x) < I(a) y I(B) , it
suffices to show that givemn ¢ > 0, if é e T(B) then there is an
element w ¢ I(a) within ¢ of z. But if the distance between
B and a 1is e, then there must be such an element w.

We have thus shown that 1lim F(I(B),I(x)) = 0 , which completes the

Ba

proof.

L

Lemma 7: The flat agent 5, is a member of 5“_ I.e., 1(@) = X % X

ala

implies a ¢ g .
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Proof: Clearly o has a threshold. Thus, we must show that a satisfies
the inner and outer conditions. If I(a) has a threshold, then we must

show there is a constant Kl(a) such that
— ° R ° — —_ ° ° _
FE@ na) = 5E@ nExEN A <K@ 4@ ;1@ nI@).
But this condition is trivially satisfied for any Kl(a) > 0 because

(@) nEXxIna) = (1) N A).

v &)
d(I(x),X x X)

The inner condition is also satisfied by &, for Kz(a) = >0,

since |3(I@ N &) - 5((I@ UVExD N M| = FUI@ )N &)

_ v _ .
= v@&) = d(1(@),E xX) d4@@)X x X) = Ky(@) - d(I(a),I(z) U I() ).

If d(I(a),g k'g) = 0,then @ = and the inner condition is trivially
satisfied. It is clear that Conditions 1, 2 and the Cantor condition are all

satisfied by «.

Lemma 8§: The (strictly) monotone agents are members of & . I.e., we may

choose functions K1(~),K2( +) on the set of agents with thresholds such

that the monotone agents are in &?((Kl(' );Kz( - )).

Proof: Let B be a monotone agent and let o be an agent with a
threshold. The inner condition (Condition 4) is satisfied trivially,

because (I(on)° U I(B)o) nas= (I(@)o n Aa).
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-]
To verify the outer condition, we consider two cases . If I(a) = @,

then o(I(x) N A) =0=3(I(@) N IB) N A), and hence the outer

condition is satisfied in this case.

Suppose I(a) ¥# Q. Then there exists a ball B of radius ¢ > 0

such that B X BcC I(a)o. Let D denote the ray from the origin through
the point (1,1,...1) in g X g, and let p and p' denote the points of
intersection of D with the boundary of B x B. Then PP’ ¢ I(a)o, and
the closest points to 'p,p' in I(B) N E.x B must be q,q9' , where q

and q' are elements of the set

o— ' —
{(veXx|vs= Eét2> +z,z>0} U {veX -2tp z, z >>0}]c

e
<
I

It follows that the distance between (p,p') and (g9,9"') 1is bounded
I . 2
below by a positive function of ¢. E.g., in R that distance would
e s . . 2
be at least —7;-, using the Buclidean distance for R°. It is also
clear that Conditions 1, 2 and the Cantor Condition are satisfied by a

monotone agent.,
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‘Section 4,

The utility function given in Definition 1 is, in a sense,
constfucted on the.basis of the structure of the commodity
space and data from the individual preference relations. So are the
utility functions of Kannai [ 6 ] Hildenbrand [ 4 ] and Neuefeind [ 11 ].
However, none of these functions is a continuous indicator for the full class
of continuous preference relations on ]{i (or E%’). Mas~-Colell's result {7]
te;ls us that a continuous indicator exists for the class of continuous
preferences on E& but we do mnot as yet know how to
construct one. Indeed, it is a question whether such a function can be
"constructed". To give precise meaning to that statement we must first say
what we mean by "constructed",and that seems to be difficult to do.

Informally we have in mind procedures with the following characteristics.
First, the basic input to the procedure should be data from each individual
preference relation. We regard such data as an idealized form of the
results of a choice experiment. Secondly, a measurement is performed on
those data, a measurement which is defined independently of preferences, using
only properties of the commodity space. A procedure of this kind would
involve only properties of the measurement of commodities and the indi-
vidual preferences, and would not, for example, depend on any relationship
among different preference relations. One class of such procedures is
the following.

We suppose that data from a preference relation takes the form of a

%

subset of a space related to the commodity space. E.g., the lower contour set

in the consumption set of a point x can represent the information given
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by the preference relation at the point x., This set is then evaluated

by a measurement which relies only on properties of the commodity space.
More formally, let ij be k-dimensional euclidean space,

1<k ; let /» denote the family of Borel sets of HQ{ . We say

that a pair (s,u) 1is a measurement process (on a family of agents

¢ with common consumption set X c RY), if

8
is a function "/, and

is a real valued function which is (i) countably additive and
(ii) gives positive measure to open sets. The requirement that
the function give positive measure to open sets reflects the

quantification of commodities and expresses a requirement that this
k

measurement of commodities carry over in a sense to K. The require-

ments that y be countably additive is an idealization to countable

3¢/
It would be_natural to require of s 1in addition that if o ¢ & and
Xx ¢ X, ye X such that x <y, then s(a,x) < s(a,y).
a
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collections of the property of finite additivity that processes of
measurement commonly have.
We say that a utility function u{ 8 X:g'* R, for the class &,

is constructible by a measurement process if there exists a measurement

process (sS,u) on & X g, such that

u=uos

A function constructed by measurement process has the property that
if two different agents « and B8 should happen to have the same set for

perhaps different commodity points, the function must give those points

the same utility. Thus, if
s(x,x) = S(B,y),

then
W (S(a,x)) = (S(B,y)).

This property, which can be stated more generally without reference to
measurement processes, is reminiscent of "independence of irrelevant alter-
natives'", and might be made a part of an axiomatic approach to constructi-
bility. Tt is clear that functions based on the Michael's selection theorem

need not have this property.

Several examples of utility functions constructible by a measurement

process are available.
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Exaﬁgle 1. Let the process be defined by taking k = 1, letting

k
]R+='=.A+= {ye]R'q’ y = a(l,...,1), a real},

and defining s by

s@x) ={y e RZ | y< x} na, for (%% ¢4 x X
’ 04

Since a 1is a continuous agent , s(a,x) 1is closed in A+ and hence is a
Borel set. Taking y to be (1-dimensionél) Legesgue measure on R, y(s(x,x))
is just the length of the segment of the diagonal between the origin and the
point a-indifferent to x. Let (sm — # be the class of strictly monotone con-
tinuous agents on 3__2= lRf'_. Then the function u = y,s 1is well-defined when

a e é’m, and is the utility constructed by Hildenbrand for the class of monotone

agents.

Example 2, Neuefeind's construction is obtuined by taking ]Rk= ®Y ,and letting

s(c,x) be the lower contour set (iﬁ the commodity space ]R’e') of the point x
preference relation «o. The function | 1is the probability of s(a,x)
according to the Normal distribution on ]R'e’. Neueféind's procedure
constructs a utility indicator by a measurement process for the class of

continuous preferenceés whose indifference sets have Lebesgue measure 0. (He also

o

assumes that the consumption set is connected and is the closure of its

interior in ]R'e'-)

Example 3. It is easy to verify that the utility function given in Definition

1, section 2 is constructed by a measurement process. Take k = 2y, and let

S(a,x) N (,ac(a)x z), which is a Borel set

1

s: & X 5{_:—» R be given by s(a,x)
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of g X.g_when @ 1s a continuous preference relation, since S(a,x) and
Jf?@)x X are both closed subsets of g X g. Finally,  1is a measure on
1R2z which gives finite measure to X x g, is countdbly additive and
gives positive measure to open sets, since it is the product measure

v Xy and  has these properties.

It is possible to think of other bases for construction. For example,
one might require only that the function s be defined on closed sets and
be subadditive. Then functions based on distance in the commodity space can
be used to assign to each subset the distance from its closure to a chosen
point. The metbod which Arrow-Hahn [1] use to construct an indicator for one

'

given preference relation satisfying localvnon-satiation, and its extension in
[ 10 ] to the class of continuous agents satisfying local non-satiation,
is of this kind. However, the distance associated with a set seems too
insensitive to the structure of the set far from the point at which the
distance is assumed to yield‘a continuous indicator, except in restricted

situations.

The utility construction based on distance, like the one based on measure,
defines a real valued set function. However, the function based on distance
is generally not additive. 1If such a function, denoted Y, is so defined as to

be subadditive in the sense that,if A and B are sets such that A N B=@, then

Y(AUB)E v(@&) + v(B),

and if the empty set is assigned the wvalue O, then a definition of construc-
tibility in terms of outer measure suggests itself. Whether this would lead to

anything useful remains to be explored.
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‘A Utility Function for the Preference Relation
of Example {

Figure 1a



Graph of the Preference Relation Q4.
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Figure 2a



Graph of the Preference Relation of Example 1,
for n=3. |
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