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Section 1
INTRODUCTION

In optimal control theory "Hamiltonian" systems of the form

(1.1) q = - 5

. _ o
dq

arise in a natural way in the study of optimal control. Here g ¢ &Y, x ¢ R,"." denotes
time derivative and H: [0,*) x R® x R® + R is the Hamiltonian. H = H(t,q,k). See

Lee and Markus [11] for a complete discussion of optimal control theory and the

role played by (1.1).

It is of interest to study the asymptotic behavior of optimal control in infi-
nite horizon control systems. Lee and Markus 11, p.2396) obtain a global asymptotic
stability result by placing conditions directly on the "reduced form" differential
equation that emerges from the solution for optimal control. Unfortunately, one
must "solve the problem" first before one can check whether this type of sufficient
condition holds.

In this paper, we will obtain global asymptotic stability results for optimal
control gystems by placing restrictions on the matrix of partial derivatives of H,
jtself. Our methods of analysis are related to the basic work of Hartman and Clech
{81, and Hartman [6 ], [7 ]; Markus and Yamabe {13]. Basically, what we will do
in this paper is extend the methods of Hartman and Olech and others to systems of
the form (1.1).

This is not a trivial exercise in generalizing the abSVe mentioned works
because substantially new techniques of analysis must be invented in order to deal
with the "generic" saddle point character of system {(1.1). And, furthermore, a
building block of our technigue will be an elegant method of obtaining part of
Hartman and Olech's results due to Mas-Colell f12] a result not yet known in the

mathematical literature.



Needless to say, some restrictions must be placed on (1.1} in order to

obtain any results at all. We shall focus attention on the important subclass

. 3G -

(1.2) q=fq - 5%-: pq = G
]'.(= ?.G_ EG
ogq q

1/

where G: g x " + R and p >0, G= Glg,k}. This subclass encompasses a large
nunber of economic problems - Arrow and Kurz [1], Lee and Markus 111,

samuelson [16], Rockafellar [l4], Cass [3], Koopmans [9 ], Kurz [10], Cass=-Shell
[4] are just a few of the distinguished economists and mathematicians that have
studied (1.2).

an example of the type of theorem that we establish in this paper is

Theorem: Let (a,i) be a rest point of {(1.2). Put z = (q,x) - (ﬁ,i) and

p- -

i qu p/2 In
Q{g,k} =

LDIZ In —Gkk

If fog - G (a1 (k = k) + [Gq‘q.mT(q -3 =0 implies

2T olq,k) z > 0 for all {a.k) # (a,k)»

2/
then all bounded soluticns of (1.2) converge to (g,k) as time tends to infinity.

(optimal paths will be bounded solutions of (1l.2) under certain "regularity" condi-
tions on the optimal control problem that generates (1.2).) Here "T" denotes

transpose.
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To our knowledge, no one has obtained the global asymptotic stability resules

in this paper for systems of the form (1.1) or (1.2). Cass-Shell [4] and Rockafellar

[15) have stability results for optimal control, but thelr analyses use convexity
methods. Our methods build on those of Hartman and Olech. Therefore, we obtain a
set of results complementary to theirs. We will say more about comparison of our
results with those of Hartman and Olech later.

In Section 2, we prove a general result on convergence of bounded trajectories.
This theorem is then used to prove, in Section 3, a '"Hartman-Olech" type of result
for Hamiltonian systems. This theorem, however, is not similar to the most general
results proved in [8 ].

¥or this reason, in Section 4, we prove a modified version of a result of [8].
The modified version of Hartman and Olech's methods lays out a new method of proving
global asymptotic stability theorems for autonomous systems of differential equations.
Our methods differ from Hartman and Olech's in two respects. First, Hartman and
Olech assume that the rest point is unique and locally asymptotically stable. We
assume instead that Hartman's B(y) matrix (Hartman [?, p.542]) 1is negative definite
at the rest point. This is a stronger assumption on the rest point than Hartman-

Olech. Second, Hartman and Olech assume there is a positive definite matrix

function G(y) such that (in their notaticn)

(*) G(y) F(y) x = 0 4implies B(y}) x - x < O
for all x and all y, outside a neighborhood of the rest point y = 0. We relax the
assumption that G(y) is positive definite. We assume (*) only.

Since the original proof of Hartman and Olech relies strongly on the positive
definiteness of G in order to use Riemannian geometry, we were, therefore, forced
to modify the Hartman-Olech method of proof. In Section 5, we show how this result
can be applied to study the convergence of solutions to certain optimal control
problems. As a corollary, we obtaln a convergence result for quasi-concave Hamil-
tonians.

The paper will close with suggestions on extending our methods to more general

systems than (1.1).



Section 2
A GENERAL RESULT ON

CONVERGENCE OF BOUNDED TRAJECTORIES

In this section, we shall present a general theorem that will generate
Hartman and Olech's basic result [8, p. 157, Theorem 2.3}, our results [2]
and many other results = all as simple corollaries. Furthermore, the general
theorem will be stated and proved in such a way as to highlight a general
Lyapunov method that is especially useful for the stability analysis of optimal
paths generated by optimal control problems arising in capital theory. We need
a lemma first. It is, basically, the result in [ T; p. 539].

Lemma 2.1 = Let F(z) be continuous on an open set E ¢ Rm, and such that solutions

of
(*) z = F(z)

are uniquely determined by initial conditions. Let W(z) be a real valued funetion
on E with the following properties:

{(a) W is C; on E.

(b) 0 < @(z) {where ﬁ(z) is the trajectory drivative of W(z) for any z ¢ E.]

Let z(t) be a solution of (*) for t > 0. Then the limit points of z(t) for

t >0, in E, if any, are contained in the set E0 = {z[ﬁ(z) = 0}.

Proof: See Hartman [ 7, p. 539].

We can now prove

Theorem 2.1 - Let £: R" + R™ be C2. Consider the differential equation system

(2.3) x = £(x)
Assume there is x such that f(x) = 0 (W.L.0.G. put x = 0) such that there is

v: R" > R satisfying:

{(a) For all x# 0, x Vz v(0) [J(0)x] < O.



(b) vV V() =0,

(c) For all x# 0, V V(x) f{x) = 0 implies x Vz Y(x) f(x) = 0.
(d) For all x 4 0, x V2 V(x) £(x) = 0 implies ¥ V(x) J(x) x < 0.
Then,

(a) ¥ V(x) £(x) <0 for all x # 0O,

(8) All trajectories that remain bounded for t > O converge to 0.

Proof: Let x # 0, and put

(2.4) g(}) = 7 VvOx) £0x).

We shall show that g(1) < 0 in order to obtain (a). We do this by showing that

2(0) = 0, g'(0) = 0, g"(0) < 0, and 20 = 0 implies g'(}) < O for X > 0. (At

this point, the reader will do well to draw a graph of g(i) in order to convince

himself that the above statements imply g(1) < 0.) Calculating we get

(2.5)

(2.6)

Now A = 0 implies f(3x) = 0 so g(0) = 0. Also g'(0) = 0 from £(0)

and (b).

(2.7)

g () = x V2 VOx) £(x) 4 9 VOX) J0xx

I

") = x [ 55 72 vOox)] £0x) + x V2 v [TOx]

+x 72 VvOx) [J0xx) + ¥V VOx) [ %X’ IO 1x.

]
o
™

Furthermore, £(0) = 0, (b) imply

§"(0) = 2 x V2 v(0) [3(0)x]

But this is negative by (a). By continuity of g" in A, it must be true that there

is £. > 0 such that g(A) < 0 for »e [0, €.). Suppose now that there is A > 0

0

such that g(x) = 0. Then there must be a smallest A > O such that g(})

0
0.

4

Also, g'(A) 2 0. Let us calculate g'(}), show that g'(}) < 0, and get an

jmmediate contradiction. From (2.5)



(2.8) g () = x ¥ vOx) £0x) + ¥ VO JOX)R

Now g(i) = 0 implies V V(}x) f(xx) = 0. But this, in turn, implies that
x w72 v0m £0x) = 0 by (c). Fimally, (d) implies that ¥ V(ax) JOx) (x) < 0.

Thus, g'(?)} <0 - contradiction to g'(A} > 0. Therefore,

{(2.9) 7 ovix) £{x) € ¢ for all x # 0.

By Lemma 2.1, all the rest points of @t(xo) satisfy V v(x) f(x) =0

and hence, x = 0 is the only candidate. But if ¢t(x0) is bounded, ¢t(xo) nmust

have a limit point. Hence, lim ¢t(xo) = 0.
0

0.E.D.

Note that to get global asymptotic stability results for bounded trajec-
tories all one needs to do is find a V that is monotone on bounded trajectories
and assume that EO = {x|V vi{x) £(x} = o} = {0}. This result is important for
global asymptotic stability analysis of optimal paths generated by control
problems-arising in capital theory. Also, Hartman-Olech [ 8] type results
emerge as simple corollaries. Let us demonstrate the power of the theorem by

extracting some corollaries.

Corollary 2.1 -~ Let £: R - R®. Consider the ordinary differential equations

x = f(x), £(0) = 0. If J(x) + JT(x) is negative definite for each x, then 0 is
globally asymptotically stable.
Proof: Put V = xTx. Then V V{(x} = 2 x Vz V(x) = 2I where I is the n x n identity
matrix. Assumption (2a) becomes

x J(O)x < 0 for all x # 0.
But this follows because

2 x J(O)x = x (J(0) +I°(0)) x < O.
Assumption (2b) trivially holds since V V(x) = 2x. Assumption (2c) amounts to

2x £(x) = 0 implies x(2I) f(x) = 0 which obviously holds. (2d) obviocusly holds



because 2x J(x)x < 0 for all x # 0. It is obvious that rest points are L.A.S.
since J(0) + JT(O) is a negative qefinite matrix. Thus, all bounded trajectories
converge to 0, as t = ®, It 1s easy to use v s= xTx decreasing in t in order to
show that all trajectories are bounded. This ends the proof.

The following corollary is a stronger result than Hartman and Olech [8]
in one way and weaker in another. We will explain the difference in more detail

below.

Corollary 2.2 - (A. Mas-Colell [121). Consider % = f(x), £(0) = 0. Assume

that x [J(0) + JT(O)] x < 0 for all x # 0, and

{2.10) xTf(x) = 0 implies x [J(x) + JT(X)} x < 0 for all x # 0.
Then O 1s globally asymﬁtotically stable.

Proof: let V = xTx. We show that

(2.11) j—‘t’ =2 %L £(x) < O for x # O.

Assumptions 2a,b,c,d of Theorem 2.1 are trivially verified. Therefore,-%% < 0,
and the vest of the proof proceeds as in Corollary 2.1.

This type of result is reported in Hartman and Olech [8 ] and in Hartman's
book {7]. In[7}and [8], 0 1is assumed to be the only rest point and it is
assumed to be locally asymptotically stable. On the one hand, Mas-Colell puts
the stronger assumption: X [J7(0)) x < 0 for x # 0 on the rest point. It is well
known that negative real parts of the eigenvalues of J(0) does not imply negative
definiteness of J(0) + JT(O), but negative definiteness of J(0) + JT(O) does imply
negative real parts for J(0).

But on the other hand, Hartman and Olech [8 ] make the assumption: for all

x$0
wT f(x) = 0 implies wT [J(x) + JT(x)] w < 0 for all vectors w.

Note that Mas-Colell only assumes xT f(x) = 0 implies xT [(J(x)y + JT(x)] x < 0.

So he places the restriction on a much smaller set of w, but he requires the

-



strong inequality. Furthermore, the proof of the Mas-Colell result is much
simpler than that of Hartman and Olech.

It is possible to obtain general results of Hartman and Olech type from the

theorem., For example.

Corollary 2.3 -~ Let G be a positive definite symmetric matrix, and let O be the

unique rest point of X = f(x). Assume that for all x # 0,

<L [G J(0)] % < O,

and
T

x G f(x) = Q implies xT [6 J(x)] x < 0 for all x # 0.
Then x = 0 is globally asymptotically stable for bounded trajectories.

xT Gx. Then,

Proof: Let V(x)

T T

PV =xP [C+E1=2xC

Also,
7 Vx) =G +GF = 2 G,

The rest of the proof is now routine.

Corollary 2.3 is closely related to Hartman and Olech's [ 8, Theorem 2.3,
p-157] and Hartman's book [ 7, Theorem 1.4, p.549}. Hartman and Olech also treat
the case of G depending on x. We have not been able to obtain their result for
non constant G as a speclal case of our theoren. Thus, thelr different methods
of proof yield theorems that our methods presented in this section are unable to
obtain. This leads us to believe that the original method of proof developed in
{ 2] will be useful for developing Hartman and Olech type generalizations for
non constant G for Modified Hamiltonian Dynamical Systems. We will do this below.

We turn now to the study of Modified Hamiltonian Dynamical Systems.



Section 3
CONVERGENCE OF BOUNDED

TRAJECTORIES OF M.H.D.S.

In this section we apply the results obtained in Section 2 to M.H.D.S.

systems. We will assume that the M.H.D.S. has a singularity (q,k) and rewrite

it as
(3.1) z, = p(zl + q) - HZ(Z) = Fl(z), z = (q,k) - {q,k)
g, = Hl(z) = FZ(Z)
We may now state and prove
Theorem 3.1 - Let
H,, (2) pf2 1
(3.2) oy = | M
/2 1 -sz(z)

where I is the n x n identity matrix. Assume

(a) 0 = F(0) is the unique rest point of z = F(z)
(b) For all z # 0,
T T
(3.3) 2] Fz(z) + z, Fl(z) = 0 implies z Q(z) z > O
(c) For all w # 0, w Q(0) w > O.

Then all trajectories that are bounded for t = 0 converge to 0 as t > =

Proof: Let V = zTA z where

0 I
A= -
I 0
. T T ,
where I is the n x n identity matrix. Note that z Az = - 2 Zy Zp- Since

vz V({0) = A+ AT = 2A and (wA) (J(0)w) = - w Q(0)w, we have that (c) implies
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(a) of Theorem 2.1. Also V V(z) = zT (A + AI) = 2 xTA, and hence, V V(0) = 0.
Hence (b) of Theorem 2.1 follows trivially. Now (c) of Theorem 2.1 amounts to
v v(z) F(z) = 2 254 F(z) = 0 implies z' V° V(2) F(2) = 2 2TA F(z) = O which is

trivially true. Furthermore, (d) amounts to 2 ZTA F(z) = 0 implies

(3.4) 2(2TA) I(2)z < O.

But (3.4) 1s identical to (3.3) as an easy calculation will immediately show.

Thus V < 0 except at the rest point 0. The rest of the proof is routine by

now. Q E.D
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Section 4

A MODIFIED FORM OF THE

HARTMAN AND OLECH RESULT

In Section 3, we obtained a gquite general result on the global asymptotic
stability of Modified Hamiltonian Systems as a corollary of Theorem 2.1. We
also obtained a general Hartman-Olech type result in corocllary 2.3. It was
indicated, however, that not all of the Hartman and Olech's results could be
obtained by the method used to prove Theorem 2.1. In particular, Hartman
and Olech's Theorem 14.1 [8 , p.543] cannot be obtained from our Thecrem 2.1
by the simple expedient of making the G in corollary 2.3 depend on x, and
then generating the sufficient condition for Hartman-Olech Theorem 14.1 by
cranking out the meaning of 2a-d of Theorem 2.1. The reader may convince

T G(x)x and carrying out the calculations.

himself by putting V(x) = x

One might try to prove Hartman-Olech's Theorem 14.1 by trying different
functions g{}) and carrying out the methocd of Theorem 2.1; e.g. put V = xG(x)x
and g(X) = A V V(A} « £(x), or g(}) = ¥V v{}) £(\x}, or g(A) = vV vix) £0x),
etc. None of these seems to give us Hartman and Olech's Theorem as the reader
can see by reflection.

It is of interest to obtain an analogue of Hartman and Olech's Theorem
for Modified Hamiltonian Systems. This will regquire an extension of Hartman

and Olech's methods to Hamiltonian Systems because, as we agreed above, it

will not just be a simple application of Theorem 2.1.

In order to do that we must first prove a modified form of the Hartman
and Olech result. In the next section we show how this extension can be used
to prove stability of bounded trajectories of certain M.H.D.S. The following

result will be proved.
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Theorem 4.1: Let F: R 8" be a C1 function. Consider the system

(4.1) 2 = F(z)
and assume
(a) 0 1s the unique rest point of (4.1)
(b) The lirnearization of z = F(z) at z = 0 has all
eligenvalues with negative real parts.él
(¢) There exists C1 function G: R" » MS(Rn,Rn)é/such
that for every w € Rn, w# 0, for all x € Rn,
WT G(z) F(z) = 0 implies WT B(z) w < 0 where,
Blz) = [C(z) J(2) + (C(z) J(2)T + G(2)] where
G(z) is the trajectory derivative of G; i.e.,

n
. 3G
G(z) = I 32 Fr.

r=1 T

(d) If K is a compact subset of R", then J U ¢t(z)
z€K t>0

is bounded.

A few words must be said about the relationship of Theorem 4.1 with
Hartman and Olech's Theorem 1l4.1. Hartman and Olech assume (a) and the
local asymptotic stability of the rest point (which is essentially (b)).

They assume {(c) outside a neighborhood of z = 0. We assume it everywhere
including z = 0. They do not assume the boundedness of solutions as we do
in (d). However, they assume that for each z, G(z) 1is positive definite.
This is the assumption we drop.

The fact that G(z) is not assumed positive definite requires some crucial
changes in the proof. The strategy used, however, is similar to Hartman and
olech's. The outline of the proof proceeds as follows. We construct an ortho-
gonal field of trajectories as do Hartman and Olech. Then, we show that for

p > O that the distance r(x(0,q), x(p,q)) between the points x(0,q), x(p,q)
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goes to 0 as q + =, where the notation used here is exactly the same as in
Hartman-Olech. As in Hartman-Olech, p > O corresponds to trajectories starting
in the interior of the attractor set of z = 0, and p = 0 corresponds to a tra-
jectory starting at a boundary point of the attractor. As in Hartman-Olech,
r(x(o,q), x(p,q)) + 0, q * = contradicts the assumption that the attractor of
0 has a boundary point. Thus, global asymptotic stability must obtain.

Our proof consists of estimating the quantity r(x(0,q), x(p,q)) from above
and showing that it converges to 0 as q * =. Now, Hartman and Olech do this by

showing that the Riemannian arc length

1/2
S [x G x_} ds
o P P

decreases as q increases, For us, however, G {s not necessarily positive definite
so, therefore, the Hartman-Olech argument breaks down.

OQur argument amounts to showing:
(1) xp G xp > 0 for xi ¢ F =0, and, furthermore, xp(p,q) G(x(p,q)) xp(p,q)

decreases in q.

(2) There is £ > 0 such that there is B > 0 such that for 0 < p < B, q 2 o

P 1/2
fo [xP(p.O) G(x(p,0)) xp(p,O)I dp

p 1/2
fo [xp(p,q) G(x(p,q)) xp(p,q)] dp

ny

p
el lxp(P,q)ldp

[[RY)

(3) Step 2 allows us to bound the "Riemann arc length like" gquantity

P 1/2
fo [xp(p,q) G(x(p,q)) xp(p,q)] dp

from below by the usual arc length

P |
> fO [XP(P,Q)@Pv
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Therefore, from this point on, we may cOpYy the rest of the Hartman and Olech
proof - making only minor modifications.

The proof is built up by a sequence of lemmas. Before we get on with

that, let us point out that A A(0) = {zo|¢t(zo) + 0, t > =} is open. Following
Hartman-Olech, we then assume that there exists a point z £ R® - A, z £ A (the
closure of the attractor), and show that the "distance" between the solution starting

at z and certain solutions starting in the interior of the attractor goes to zero

as t > «®,

Lemma 4.1 - If z € R (the closure of the attractor), then FT(z) G(z) F(z) >0
Proof: By assumption (c), wT B(0) w < 0 for all w # 0 because all w € R" satisfy
w G(0) F(0) = 0, since F(0) = 0. Since B(z) is a continuous function of z, we
have B(z) quasi-negative definite for [zl < § for some & > 0. By assumption (b)
every neighborhood of zero contains a positively invariant neighborhood of zero;

i.e., a neighborhood N s.t. U ¢t(N)C1 N. Let ﬁ be one such compact neighbor-
t>0
5/ —

hood such that N € B(0,6). Hence, for z € N and v € R%, v# 0, v B(z) v < ~¢ lv]2
for some € > O since N is compact. Consider now z € A. Then, there exists T(z)
such that ¢t(z) £ N for t > T(z). Suppose now FT(¢t(z)) G(¢t(z)) F(¢t(z)) = 0,

for some t. Then,

(779, (2)) 66,(2)) F(3 ()] = [3(0 () F(6, ()17 68, (2)) (9, (2))

+ FL(6,(2)) 6(6,(2)) J(6,(2)) F(6(2))

+ 0, (20) [ S5y 1 (0 (22) F(o (D)
t

FT(¢t(z)) B(¢c(z)) F(¢t(z)) < 0 by assumptions (a) and (c).

Hence if for some tgy 2 0, FT(¢ (z)) G(¢_ (z)) F($, (2)) < 0O, then for all
- to t to -

Q

t>t FT(¢t(z)) G(¢t(z)) F(¢t(z)).i 0. But for t > T(z), ¢t(z) £ N, and hence,

Ol

¥ (o, () Bo,(2)) B0 (2)) <-¢ [Fo ()"
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Thus,

41776, (2)) G5, (2)) F(6 (2)] = F' (8,(2)) B(9,(2)) F(B,(2))

<-E [F(¢t(z))]2 <=-n [FT(¢t(Z)) G(¢,(z)) F(¢t(z))| for some f > O.

Hence,

Fl (o, (2)) G(8, (2)) F,
0

(z)) < 0 for some to implies
0

0
ltn F' (9, (2)) (3, (2)) F(o (2)) = = =

| ity

which 1s a contradiction to the boundedness of ¢t(z) and continuity of F and G.

Suppose now z € A. Since z = lim =z

for some z, € A, we must have
ko

k

FT(6_(2)) 6(6,(2)) F(6,(x)) > 0 for all € 2 0. Also 1f F'(§,(2)) G(8(2)) F(O ()

= 0, again applying (*) we get %E F(¢t(z)) G(¢t(z)) F(@t(z)) < 0, and hence,

F(¢t+h(z)) G(¢t+h(z)) F(¢t+h(z)) < 0 for h small which is a contradiction.

Lemma 4.2 - There exlsts z £ A (3A denotes the boundary of AY, and r > 0 and
Cl function o: {-r,r) —* R such that c(p) € A for all p > 0, 0(0) = z, and
g'(0) G(z) F(z) = 0.

Proof: If there exists z € A - A, then there exists z € 3A such that

d(z,0) = dH(Rn - A, {0}) where dH denotes the Hausdorff distance. Hence for
any 0 < p <21, (1 - p) z € A. Since, by Lemma 4.1, we have G(z) F(z) # 0,
therefore, the set M = {z + x|x l G(z) F(z)} 1is an n-1 dimensional affine
subspace of RY, Furthermore, F(z) £ M. Let t(p) be the "first time" at which
the solution wt((l - p)z) "hits" M; if.e., t(p) solves {¢t(p)t(1 -pz] - Z}T

G(z) F(z) = 0,
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Let £: R x R > R be defined by
(c,p) > {e 1A -pz] - 7} 6 FG)
then,
£0,0) = {8,02) - 23" 6(2) F(@) = 0
Furthermore,
4 (0,00 = F@' 6(2) F@) # 0 by Lemma 4.1.

Hence by the implicit function theorem, there exists r > 0 and a C; function t(p)

It

such that for p € (-r,r), £(t,p) = 0 iff t = t(p). Let o(p) = (i)t(p)[(l - pzl.

Z. Also ¢'{0) G(z) F(z) = O since

Then, o(p) 1s Cl, c(p) € A for p > 0, 0(0)
c(p) < M, M is an affine subspace, and by the definition of M.

Q.E.D.

From now on, we fix u = 0'(0). Note that FT G(z) u = 0. Associated with
the curve O(p), there exists a two dimensional surface S that can be parametrized
by y(t,p) = ¢t(0(p)), |p| <r, 0 <t < Let us consider the differential equa-
tion transverse to the parameter arcs p = constant (i.e., the solutions of the
original differential equation on S) determined by the relation FT G %% = 0 where
y = y(T,p) and T = T(p). Let yp = %% and T = T(p,q) Be the solution to

T

dT Fr Gy
{(4.2) E,E = = _T__-P_ ’ T(0,q) = q
F° GF

where all functions are calculated at y(T,p). Note that by Lemma &.1, we must

tave FL G F > 0 for all z € A.

I1f a solution to (4.2) exists, we write x(p,q) = y(T(p,a), p). Note that

T
=FT + and x° G F = 0.
(4.3) xp F p Yp n P

We may now state and prove certain preliminary results.
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Lemma 4.3 - There exists compact neighborhood N of O such that for z € ﬁ, and
z # 0, G(z) 1s positive definite.
Proof: As in the proof of Lemma 4.1, let N be a compact neighborhood of O such

that if z € ﬁ, v# 0, vB(z) v<=-E€ |v]2 and U ¢t(ﬁ) E:ﬁ° Clearly, we may
t=0

choose ﬁ<: A, and hence, for z 4 N, lim ¢t(z) = 0, For any u € Rn, conslider the
| Matass)
variational system v = J(t)y, y(0) = u where J(t) is the Jacobian of F evaluated
at ¢t(z). Hence, lim J(t) = J(0), and since by hypothesis J(0) has all eigen-
t—PCO

values with negative real parts, y(t) + 0 as t > =. However,
L y) 68, () ¥(0) = ¥(0) B () y®) < - € [y@]" <o

Hence if for some t, y(t) G(¢ (2)) y(t) < 0, therefore, lim y(t) G(¢ _(2)) y(t) < 0

o

because y{t) G(¢t(z)) y(t) is decreasing in time. This contradicts lim ]y(t)| = 0.

t+cu
Hence, y{t) G(¢t(z)) y(t) > 0, for all t 2 0 and, in particular, u G(z) u > 0.
Lemma 4.4 - Suppose z € A, z # 0. Then for all u # 0 such that UT G(z) F(z) = 0
we must have UT G(z) u > 0.
Proof: Since z € A, there exists t such that ¢E(E) 4 N. Consider the line segment
N=z4+TH, ~T<TK< 7. Since A 1s open, for T and T sufficiently close to zero,

e A,

Let S(2) = {w € Rp|w = y(t,z), z £, t > 0}. Let T(r,q) solve:

T
-F~ G
IS 4

(4.4) T =
T FL G F

T(0,q9) = q
This differential equation is well defined since FT G F >0 by Lemma 4.1. For
0 <q<2t, (4.4) has a solution T(t,q) for 0 < T < T' for some ™ > 0,

(cf. Hale [ 2] Theorem 3.1, page 18).
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n

For 0 < T < t* and 0 < q < 2 t, write v(t,q) = y(T(t,9),T). Note that

v, T F TT + Yoo Vo G F =0, and vT(D,O) = yT(O,O) = |y, since

T
T_(0,0) = e L
F G F
hence,
(4.5) T () Cv(T,d)) v (T, = T, vy(T,a) B(v(1,q)) v, (T,0) <O
. dq T » > T 3 q T 3y ] T ’q.

By assumption (c) of Theorem 4.1 and because Tq(T,q) solves a linear differential
equation with Tq(O,q) = 1. If u G(z) ¢ = vz(0,0) G(v(0,0)) VT(O,O) < 0, we must

have by (4.5) that

m
v;(O,q) G(v(0,q)) vT(O,q) <0 for allq >0
In particular, v?(O,E) G(v(0,t)) VT(O,E) < 0, but this contradiects the fact that

v(0,8) = y(£,%) € N, and G is positive definite in N.

Corollary 4.1 - Suppose Z < A, z# 0 and uT G(z) F(z) = 0. Then, uT G(z) u > 0.

Proof: By making the same construction as before, we define v(T,q). Suppose

T G(3) u < 0, then for q small, Gi(o,q) G(#(0,q)) ¥ (0,q) < 0 and

Gi(o,q) G(¥(0,q)) F(v(0,q)) = 0. Since A 1s invariant, v(0,q) € A. Also since
¢ and F are continuous functions, and by Lemma 4.1, G(V(0,q)) F(v¥(0,q)) ¢ 0, we

can construct sequence z v(0,q), z. € A, and sequence kn -+ VT(O,q) such that

T T
An G(zn) F(zn) = (. Hence by Lemma 4.4, (ln) G(zn) F(zn) < 0, and hence,

GT(O,q) G(¥(0,q)) GT(O,q).i 0 which is a contradiction.

From now on, let R c N be a fixed compact invariant neighborhood of zero.
We can now show that, in fact, G acts like a Riemannian metric on the directions
orthogonal to GF.
Lemma 4.5 - Let g5 = sup {q/T(p,q) is defined for all 0 <p < B and x{p,q) # N}.
Then, there exists € > 0 such that lxp(p,q)l2 <€ xz(p,q) G(x(p,q)) XP(P,Q) for

all 0 <p < B, 0 £q<4q,
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o o
Proof: Suppose not. Then, there are sequences {pn}n=0 and (qn}n=0 such that

11m x;(pn.qn) Gx(p,.a.)) % (P »a,)

=0

<

2
%, (Pn,qn)|

Since by assumption (d) of Theorem 4.1, x(pn.qn) 415 in a bounded set contained in

A, there is a subsequence which we still denote by (pn,qn) such that

1im x(pn.qn) =z € A.

nr«

Also, since

X (pn,qn)

[xp(qnsqn)l =L

there exlsts yet another subsequence, that we still denote by (pn,qn), such that

X (pn,qn)

lim T{%‘(ﬂ————TT'= v
n>< P Pyrfn

T o~y T
Hence, v. G(z) v = 0. Also, xp(pn’qn) G(X(Pn:qn)) F(X(Pn-qn))

0 implies

vT G(z) F(z) = 0. But this contradicts Corollary 4.1,

The fact that xz G xp > E |xp[2 allows us to use

1 1/2 B T 1/2
(—) fo [xp(p.q) G(x(p,q)) xp(p,q)] dp

€

B8
as an upper bound to the arc length distance d(x(8,q), x(0,q9)) fo |xp(p,q)[ dp

between x(8,q) and x(0,q). The proof of Theorem 4.1 from now on is exactly

Hartman and Olech's. Thus, we simply give a sketch in the next few lines.

[t}

sup {t/y(t,p) £ ﬁ}, then one can show that 1lim T(p,q) = Z(p), where
97

the 9 is the same as in the statement of the preceding lemma. One then uses the

If L(p)

fact that
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d T
3 *p (p,q) G(x(p,q)) xp(p.q) <0
to show that

12 p T 1/2
a0y x) <(3] 7, [x, (0,00 6G:R,0) x (2,001 e

for 0 < p < 8.

Hence, _
_ 1 172 p 4 1/2
lim d(x(p,q), x(0,9)) f_(g) Iy 12 (PO G(x(p,0)) x_(p,0)] dp
g, P P

Since

T
% (p,0) 6(x(p,0)) %, (p,0)| <K
for some K > 0 for 0 < p < B, by choosing p small enough one can show that

1im d(x(p,q), x(0,q9)) < d.H(fI, 3N)
q+q0

where dH(ﬁ, ON) 1s the Hausdorff distance between N and the boundary of N. Hence,

1im x(0,q) £ N< A, and hence, x(0,q) € A for q near qq¢
q7¥q
0

This contradicts the assumption that x(0,0) £ A. Theorem 4.1 is established.
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Section 5

The Hartman and Olech Method
for M.H.D.S.

In this section we show how the modification of Hartman and Olech's result
proved in section 4 can be used to provide sufficiency conditions for global
asymptotic stability of optimal soluticns to control problems.

Conslder the M.H.D.S.

(5.1)

a
It

pq - Hz(q,k)

.

k

Hl(q,k)

We will use the following assumption in what follows,.

Assumption 5.1 - There exists just one rest point (q,k) for (5.1). Put

z = (q,k) ~ (&,E) and rewrite (5.1) in the form

]
e

(5.2) 3 p(q + zl) - Hz(z) Fl(z)

Z, Hl(z) = Fz(z)
By abuse of notation, write H(z) = H((q, k) + z).

In many optimal control problems, the variable q - called the co-state variable -

can be written as a function q = g(k). The function g is related to what is some=
times called a synthesizing function. See lLee and Markus [11] for an excellent
discussion of optimal control problems.

Usually the analyst knows enough about his problem to establish things like
(a) g(k) exists and is continuously differentiable; a.e., in k, {b) for any
ko £ R if k(t]ko) is an optimal path of the state variable with initial condition

ko, then k(tlko) is bounded, (c) g(k) is the derivative of the value function W(k}).
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(Here W(k) equals the maximum value of the problem starting at time 0, initial
condition k and having an infinite horizon), and (d) the value W solves a partial

differential equation of Hamilton-Jacobi type.

Furtheremore, it is usually straightforward to do a local analysis of g(k)
at rest points. But for arbitrary k it almost requires "solving the problem first"
to verify things like detailed sign restrictions on objects like the Jacobian
matrix of g,for example, other than general properties such as negative semi-
definiteness, for example.

For many applications it turns cut that k(tlko) is bounded for all t Z 8]
for all kg. also, except for "borderline cases" existence theory in optimal
control leads to the following assumption of local asymptotic stability of a
rest point in a natural way.

2
assumption 5.2 -  The rest point 0 4 R N of (5.2) is locally stable in the

following sense: the linearization of
(5.3) . z, = thg(zz),zz)

at z, = 0 has all eigenvalues with negative real parts.
Note the abuse of notation in using g to denote the synthesis function in z

coordinates when it is also used to denote the synthesis function in (a,k) coor-

dinates. We will do this when the context is clear. The boundedness property

that is naturally reflected in many applied problems and is essential for our
method 1s

Assumption 5.3 = For all z

20 the soluticn ¢i (220) of (5.3) is bounded indepen-

dent of t 2 Q.
Let ¢t(zo) denote the solution of (5.2) with Initial condition Zg° We will

~always be working with solutions that are bounded independently of t > 0. The syn-

thesis function g is assumed to characterize bounded trajectories in the following senst
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6/
Assumption 5.4 — There is continuously dif ferentiable g with g(0) = 0 such that

1 2
for all Zqs ¢t(zo) 1s bounded independently of t > 0 1ff ¢t(20) = g[¢t(z0)] for

all t > 0.

Here ¢i denotes the first n coordinates of ¢t and ¢i denotes the last n
coordinates of ¢t' Assumption 5.4 allows us to reduce the study of optimal paths
to the study of (5.3).

The set of z such that z = (g(zz),zz) is a differentiable n dimensional mani-

fold embedded in R°D

call it A. A is positively invariant in the sense that

¢t(zo) £ ) for all t > 0, for all 2 £ ). We will also need

7/
Assumption 5.5 - Let K be a compact subset of A, Then, \J U ¢t(z) is
24X t>0
bounded.
Let a: R2n + MS(Rzn, RZn) be a C1 function. Let
‘ T .
B(z) = [(a(z) J(2))" +a(z) J(2) +a(z)]
where J 1s the Jacobian of F and
2n o~
a=1 & ¥
dz T
r=1 T
which is the trajectory derivative of the matrix a(z).
We may now state the following theorem:
Theorem 5.1 — Suppose (5.2) obeys assumptions 5.1 to 5.5, and furthermore, the

following property holds:

T
(*) For all W, £ Rn, v, 4 0 for all z £ Rzn, we have (Jg Yo w2) al(z) F(z) = 0

toplies (3, wys )T B(2) (3, vy, w,) > O.

Then all trajectories in the bounded manifold X\ converge to 0 as t + .

We will prove this theorem by showing that the differential equation (5.3)
satisfies the hypotheses of Thecrem 4.1. Before we do that, however, we will
make some comments on assumption (%).

Although assumption (*) uses information on the Jacobian matrix Jg of g, it

is obviously implied by:
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(*') For all z, wig(z) F(z) = 0 implies wIB(z) w > 0 for all w # 0 which,
of course, uses no information on g.

Also, the case

alz) =

T T
ijs the one studied in Section 3. For thea, W B(z)w = w (2Q(z))w.
In order to prove Theorem 5.1, it is clearly sufficient to prove the following
lemma, whose proof (s exceedingly elementary and tedious.

8/
Lemma: Consider the differential equation (5.2) in Rzn.

Let g: R -+ R" be a
"synthesis" function; i.e., if qg = g(ko), then q(tlko) = g(k(t‘ko)) for all t

where (q(t|qo), k(t]kD) solves (5.2). Then 1f there exists symmetric matrix

function a(z) such that wf a(z) F(z) = 0 => wi(a J + (a)’ + &) w > 0 for all
w of the form w = (wl,wz), Wy = Jg Vo for all z = (21’22) where z, = g(zz),

where J is the Jacobian of F, and & is the trajectory derivative of a, and if

T T
G --(Jg ayq Jg + Jg a, + ajl, Jg + a22),

then wT G F, = 0 implies,

2 2
;4 ar, T
WZ(GE-k—-i-(G Ek—)+c)w2<0
where
dF
2 d
dk - c_ﬂc_ Fz(g(k)ak)-
Proof: First note that
a a
T 11 12
aT
12 22
{ff, i i
W(JTG J+JTa +aTJ+a)F=O
27g “l1 g g “12 12 g 227 "2 ’

and hence,



by definition of G, iff W,

G F2
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= Q.

We must show that

(g vpr ¥ (@ 3+ @)1+ &) (g vy W) > 0

implies

WP I + (G ID +8E) w, < 0 where J
2 n n 2 n

{aJ +

T
But, (Jg Wy “2) ;

g 2

@n’ + &) (3, wyrvy)

11 12 11
T
) Zyo J\ Fo
T
Fa1 1 29
T T
Foo 292 Y.
alZ Jg w2
932 Y2
21 F11 Y 90 Ty
T
i a5 F1n 90 Ty
T T T
+Fy 2y Fpp @t F
T T T
Fop @1 Fyp @y  F
o
12 Jg w2
%22 )

ayy Fip ¥ %19 By

T

99 F1p @

22 Fa2
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T T T T T |
(5.4) =y 37 (ayy Fyp +agy Fpp ¥ Fyy 3y Ty 91 T 211 Jg
+ 3T T T a..)

+a
g 11 Fia %9y Fop ¥ F1p %1 7 o1 T2 tap

T T T T «T
(ay, Fiq + Gyp Fpy *Fpp ag ¥ Fypap ¥ ) I,

T T T .
+ (g, iyt ayy Fpp ¥y dp ¥ Fpy dpp ¥ @591 vy

Also, using Jn = le Jg + F22 we have

T T ,
(5.%) v, (GIJn + (G Jn) +G) w,

T T T
a a "
e Y22t Ty T gt 2 7g o Y2 Far g

T T T T T T T T T T
+ + +
F22 alZ Jg Jg F21 Jg a5 F21 Jg a12 + Jg le a22 + F22 ay,

(5.6) w, [J " a
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T : T _T T
+
+ alz(Jg F21 Jg + Jg F22 Jg) + (Jg F21 Jg
T _T T
+ a,y(Fyy I, * F,p) + (Jg Fyy + Fpp) Tgp +J
T - . T '
+ Jg a, +ay, Jg + a22)w2
Note that
(5.7} q = Fl(q(k),k) = Jg(k) Fz(q(k),k) and hence,
Fll Jg + F12 = (Dk Jg) F2 + Jg le Jg + Jg F
= Jg + Jg le Jg + Jg F22
and hence,
T T T _ T T T T T T
(5.8) Jg Fll + F12 = Jg + Jg FZl Jg + F22 Jg

substituting (5.7) and (5.8) into (5.4), we obtain

(3, ¥y wz)T @3+ @)t +a (3, wyn wy)

l
1

+
[Jg all(Jg + Jg F21 Jg Jg F22)

T

T T
e 120y

T
+ J Jg + F22) + (Jg F + F

T ¢ T T
+ +
+ alz(Jg + 3, Py T, I, Foy) (Jg Ig

T _T T
(Fyp Jg + Fpp) + (3 Fpp ¥ Fo)

+

922 22

F

) ar
21 22 12

T
21

22

J

J

g

g

T



i.e., (5.6). Q.E.D.

This identity shows us that assumption (¢) of Theorem 4.1 is the same as
assumption (¥) here. Theorem 5.1 now follows. This is so because from Theorem

) 2 .
4.1 it follows that given any Zqs the solution ¢t(zz) to z, = FZ(g(ZZ)’ 22) is

such that lim ¢i(22) = ), Hence, lim g(¢i(zz)) = g(0) = 0.

i £

Theorem 5.1 allows us to prove stability theorems for quasi concave Hamil-

tonians.

Corollary 5.1 - Assume the hypotheses 5.1 to 5.5 of Theorem 5.1, and that Jg is
symmetric. Suppose that the Hamiltonian function satisfies: for all z of the form

z, = gk} - g(k), z, =k -k, z= (z;, 2))

2
(1) e, H (@) ey 2@ |clf

for all c1 # 0 such that ¢ Hl(z) =0

1
(1) ¢, [-Hy, (2] e, 2 B ley]
for all <, # 0 such that ¢, [HZ(Z) - p(zl + a)] =0

for some (o,8) in R? with al > p2/4. Then global asymptotic stability of bounded
trajectories holds.

Proof: Since in Theorem 5.1 z(t) 1s a bounded trajectory and, thus, él =7 22

g
we hagve
2y = Fl(z) = p(zl + q) - Hz(z) = Jg Fz(z) = Jg Hl(z).
Since
Cl = Jg Cos therefore,
T T
o Fz[z(t)] +c, Fl[z(t)] =0
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iff
T T _
(Jg cz) Fz + ¢y Jg F2 = 0.

Hence, assumption (*) of Theorem 5.1 holds for

0 I
aflz) =
I 0

e -—

where I is the n x n identity matrix 1ff
¢,y Fl = cq F2 =0=>cQec>0,

By (i) and (ii) it follows by direct computation that

c Qlz(t)) ¢ > 0 for all c satisfing

Hence, GAS must hold.
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FOOTNOTES

1/

~ Consider, for example, the problem

feed

maximize fo e FE U{k,x)dt
s.t. k= x, k(0) = kg

This problem generates a system of the form (1.2). The Lee and Markus infinite
horizon convex cost criteria problems [11, chapter 3] are of this form.

2/

Our hypothesis is, basically, some kind of curvature hypothesis on the "present
value Hamiltonian" G(q,k). A sufficient condition for it to hold 1is that the
product Al AZ of the smallest eigenvalues, Al’ AZ’ of the symmetric matrices
qu, - Gkk’ respectively, along the optimum path be greater than ozld. This
condition has considerable intuitive appeal. It is the basic stability hypothesis

of Rockafellar [15].

3/ .
~ Actually, assumption (c¢) below applied to the rest point O can be used to show

. that if 2 = F(z) is locally asymptotically stable then all roots must have negative
real parts. Assumption (b) 1s written here in this way to better separate the

ideas used in the proof.

4/
Here MS(RF,RF) denotes the class of n x n symmetric matrices.

s/ o
B(0,8) = {z € R| lz| < 6}.

6/
" Intuitively speaking, Assumption 5.4 amounts to existence of a C2 value function

W. Note that g is just the gradient of W when the gradient exists. Assumption

5.3 asks that the value W possess a bounded gradient.

7/

~ This assumption is relatively benign for economic problems. All that it means
is that K remains bounded (infinite capital is not accumulated) and the value

possess bounded derivative on compact sets.
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8/
~ This Lemma does a simple but tedious job. Think of g as the derivative of

the value function of an optimal contrcl problem. Then,
1) F.(z) = z, = 4 g(; y=J(z) 2z, =3 (z,) F
1 1 dt 2 g 2 2 g2 2

Using (1), the Lemma shows us (by a long computation) ‘that the assumption:

Wla(z) F(2) =0 =>wl (@J+ @D +a) w>0

for all w = (Jg Voo w2) # 0, for all z = (g(zZ), 22) translates into the
assumption: there 1is a symmetric matrix G(z) such that for all Zys for all

v, # 0
T
T dFZ sz .
2 (G -dk— +(GI)+G)W2<O.

This last allows Theorem 4.1 to be applied directly.



32

BIBLIOGRAPHY

[{1] Arrow, K. J., and M., Kurz. Public Tnvestment, The Rate of Return, and
Optimal Fiscal Policy. Baltimore, Md.: Johns Hopkins Press, 1%70.

{2] Brock, W. A., and J. A. Scheinkman. "Global Asymptotic Stability of Bounded
Trajectories Generated by Modified Hamiltonian Dynamical Systems: A Study
in the Theory of Optimal Growth," Report 7408, Center for Mathematical
Studies in Business and Economics, The University of Chicago, January 1974.

[3] Cass, D. "Optimum Growth in an Aggregative Model of Capital Accumulation."
Review of Economic Studies, 32 (July 1965), 233-240.

[41 cCass, D., and K. Shell. '"The Structure and Stability of Competitive Dynamical
Systems,"” Journal of Economic Theory, forthcoming.

[5] Hale, J. Ordinary Differential Equations. New York: Wiley-Interscience,
1969.

[6] Hartman, P. "On Stability in the Large for Systems of Ordinary Differentlal
Equations," Canadian Journal of Mathematics, 13 (1961), (XIv 11,12,13),
480-492.

{7] Hartman, P. Ordinary Differential Equations. New York: John Wiley and Sons,
Inc., 1964,

{8] Hartman, P., and C. Olech. "On Global Asymptotic Stability of Solutions of
Ordinary Differential Equations,” Transactions of American Mathematical
Society, 104 (1962), (XIV 14), 154-178.

[9] Koopmans, T. "On The Concept of Optimal Economic Growth,'" Pontiface Academiae
Scientiarum Scripta Varia, 225-300.

{10] Kurz, M. "The General Instability of a Class of Competitive Growth Processes,”
Review of Economic Studies, 35 (1968), 155-174.

[11] Lee, E. B., and L. Markus. Foundations of Optimal Control Theory. New York:
John Wiley and Sons, Inc., 1967.

{12] Mas-Colell, A. Unpublished notes, 1974.

{13] Markus, L., and H. Yamabe. "Global Stability Criteria for Differential Systems,"
Osaka Mathematical Journal, 12 (1960) (XIV 12,13), 305-317.

(14] Rockafellar, T. 'Generalized Hamiltonian Equations for Convex Problems of
Lagrange,”" Pacific Journal of Mathematics, 33 (1970), 411-427.




33

“eaddle Points of Hamiltonian Systems in Convex Lagrange

[15] Rockafellar, T.
Journal of Economic Theory,

Problems Having a Positive Discount Rate,’
forthcoming.

{16] Samuelson, P. '"The General Saddle Point Property of Optimal Control Motions,"
Journal of Economic Theory, 5 (1972).




