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ABSTRACT

In this study we derive the order of convergence of
line search techniques based on fitting polynomials, using
function values as well as information on the smoothness of
the function. Specifically, it is shown that if the in-
terpolating polynomial is based on the values of the function
and its first s-1 derivatives at (nt+l) approximating points
the rate of convergence is equal to the unique pgsitive root, T 471>
of the polynomial Dn+l(z) = L (s-1)z" - s j?l zn-j. For
all n r is bounded between s and s+1, which in turn implies

that the rate can be increased by as much as one wishes,

provided sufficient information on the smoothness is incorporated.



RATES OF CONVERGENCE OF A ONE-DIMENSIONAL
SEARCH BASED ON INTERPOLATING POLYNOMIALS

By Arie Tamir

This study is concerened with a line search technique based
on interpolating polynomials where the focus is on convergence

properties and rates of convergence.

The algorithm studied in the paper is as follows.

Let x be a scalar variable, and f(x) the function to be
minimized, assumed differentiable. An isolated minimum of f is

assumed to occur at 5, where

£ (o[) =0 (1)
Let n be a fixed integer greater than 0, and let x., Xy qr---
n
X:n be n+1l distinct approximations to . If g = Z K then
j=0

there exists a unique polynomial P o of degree less
RoY o rY1rsr:t¥n

than or equal to g-1 which satisfies

(k) (k.) .
p_J _ (x, .) =f J (x, .) for j = 0,1,...,n;
n’YQI -.on‘Yh 1=] 1-J

- - - ] £
kj O,l,...,'Yj l '\/j pd l, Xi—k % Xi"',@ 1f k % -

(2)

For brevity we write B, =P : : P. =P
Sy n’YO’Y'l’...’Y'n n,s N,S,5)¢-¢,8

where y signifies the vector YOrY1’':'Yn. Pn,Y is called the

interpolatory polynomial for f.

Then the new approximation to 4, X517 is chosen to satisfy

'Pln’Yv., (Xl+l) = O . (3)
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If x

ip1 = o terminate; otherwise the procedure is repeated,

fitting the next polynomial to Xi+l,xi"'

"Xi4(ﬁ;1). This algor-
ithm is henceforth referred to as the Sequential Polynomial Fitting

Algorithm (SPFA).

The case where only function values are used (i.e., Yj =1,
j =0,1,...,n) is studied in [ 5 ]. There we show that if the ini-
tial n+l1 approximations are sufficently; close to ¢ then the se-
quenée.generated by the SPFA converges to . Furthermore, if the
sequence is infinite, i.e., convergence is not in a finite number
of steps then the order of convergence is shown to be equal to

the unique positive root, o of the polynomial

n+l1’

n .
_ nh+l n-j
Cn+1(z) Tz - i (4)

The segquence {Un} is increasing, approaching the Golden

Section Ratio as n approaches infinity.

f‘ 1+ /5

In this work we extend the above result to the case where in-
formation on the smoothness of the function £ is included in the
interpolating polynomial. Specifically we will specialize to the
equal information case where Yj =s, j=0,1,...,n. Since the
case s = 1 is explored in [5], we assume throughout this work that

s > 2.
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Convergence and Convergence Rates

In this work speed of convergence of line search methods

is measured in terms of the following concepts. (See [1], [2])-

Let the sequence { ek} converge to 0. The order of conver-
gence of {ek} is defined as the supremum of the nonnegative

numbers p satisfying

e
o« Tm el .
Ko %kl

(The case o/o is regarded as finite). The average order of

convergence is the infinum of the numbers p > 1 such that

k

Tim \ek\l/p = 1.

ke

The order is infinity if the equality holds for no p > 1.

Let

J = (x| |x=| < L} (5)

throughout this section, f is assumed to satisfy the following

conditions. (The notation f(l)(x) denotes the ith derivative of

£).



Assumption 1

1.

If q = s(ntl), where s > 2 is integer, then f(q+l) is

continuous on J.

f(z) (x) # 0 for all x€J. (Note that this is equivalent to

f<2) (x) >0 for all x€J, since o is an isolated minimum).

D (x) #0 for all x&J,

If we define constants My Ml’ M, by

My = min |f(2)(x)|, M; = max| f(q)(x)/qE} and
xeJ xed

= max |f<q+l)(x)/(q+l)!]
x&eJ

o
I

then the interval width L in (5) is small enough to satisfy

L <7 6)
M, - M '
ﬁ%ii @S+ @ + 157 + ﬂﬁf @ + ™ <172 (7)
M M 1/(q-2)
1 2
T =1L{2G=q + == L)} <1 (8)
2y 9w, s (®)
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The main result of this work is:

Theorem 1:
Under Assumption 1, the order of convergence of the SPFA for

the equal information case (i.e. Yy = s>2, 3=0,1,...,n) is

equal to the unigue positive root, r ,0f the polynomial

n+1

. n+1 n n :n—j
D . (z) = Al _(s-1) S -s 5 z

as n approaches infinity.

In the remainder of this section, we give a number of results
leading to a proof of Theorem 1. The following two theorems, pro-
ved in appendix A, insure that the sequence fxi} is well defined,

and converges to the minimal point o.

Theorem 2:
Define J = (XI |x—a‘ < L} and suppose that ¢ is the unique
minimum of £ i1n J. Let Rivo Xy _qre-e0%; 1N J define the poly-

nomialp S(x) of degree < g-1 = s(n+l)-1 satisfying:

’

(x. .) = f(k) (x. .) j =0,1,2,...,n.
k=20,1,...,8-1, s > 2; Xi-t# X _4 if b #£ g

LI .
If £ and J satisfy Assumption 1 then P ﬁ s (x) nas arzal root in J.

’



Theorem 3:

Suppose that the conditions of Theorem 2 hold and let X501

in J be a real root of the derivative of the interpolatory polyno-
mial Pn,s(x) determined by %,,%; qs...,%;_,+ Then the sequence

ka} converges to ¢ and

eyl = 1% —uo] ek p Tl (10)
for some constant K. T <« 1 (defined in (8)) and
+
r(@nk ) = (q-1% D (11)

Hence the sequence {ek} converges to zero with average order of

convergence greater than or equal to (q-l)l/(p+l).

We now derive results on the (stepwise) order of convergence

of the SPFA. 1In Appendix A, it is shown that

P (x) = £ (x) - s£ P (E(x)) 5 (x-x )S'lﬁl (x-x, .)°
n,s E i-k i-j
q! k=0 3=0
§#k
n
£ ) o ex, 0F (12)
(g+1)! =0 J

where 5 (x) and .p (x) are in the interval determined by X aXy _qreeees



Substituting X=X, 4 into (12), and using the relations

) =00 Bxygmxgg) = (85478 )

nd
@ £(2)

P41 (6 (x, ) )

i+l® 4

where g (x ) is in the interval [x.+l,a], yield

i+l i
(2) I CY - . s-1
41 (806, )) = 88 B0y p)) B (e )
q: -

n
I (e, i~e. )% + £@D) (4x. ) S [y
j;g i+l Ti-g (q+l)'l+l jgo (ei+1-el J) (12a)
3 ]

To find the rate of convergence we suppose that the SPFA
does not terminate in a finite number of steps, i.e., e; # 0 for
all i, or equivalently none of the approximating points, X is

the sought for minimum point 4.

Recalling that s»2 we use (l2a) to note that

e.
— fi‘ — 1320 )
lesp1™ &3l 7=

which in turn implies that the order of convergence of the sequene
{ei} is at least superlinear. To derive the exact order we apply

(12a) to have:



-8-

_ s-1n s (a) ' - s-1
e. f(z)(e(xi+l)),_ i 501 €i-5 (° £ (g‘xi+1)):{(;&il -1)
i+l ; e,
q- S A
' ' -1 ) s-1 e. . s
B Cie1 135+ B Cirr %) Cisl -1 Cisl -DSTEGie1 -1)7 g4
J=1(Ei_—' ) L3 e T e, e e, 1= e. .
] k=1 i-k €i-k i i-k j£k €i-j
+ £ (n(xi+l)) (e _e.) (ei+l_ l)s-l n (ei+l -1)S
(g+1) ! i+l i’ Ye. R } .
1 =1 "1i-]

Use the .superlinear convergence of the seqguence {ei} and define

Ai+l by

n

s-1 S
®i41 % Piv1 S5 - T €5y (14)

j=1

to note that
,-th,:_:l
PO & D I AU CO N
i+l q: f(2)(a)

By Assumption 1, A # O.

We now use the difference equation (l4) to show that the order
of convergence of the sequence {ei} is the unique positive real

root, r of the polynomial

n+l

(z) = zn+l - (s-l)Zn—s

j

D A (15)

n+l

hMms

1

We need the following lemma [3 , p. 92].



Lemma 2:

Consider the linear difference eguation

a. u. v 7 i = nl n+ll

where the aj are constants and {ki} is a specified seguence. The

associated characteristic polynomial is

n .
Q(x) = T
j=o0
Let tl""’tn+l be the roots of Q(x), with ]tl\ > \tzl > he. 2 Itn+l"
Assume that \tll > 1S ‘tzl and, for some U, 0 < U< 1tl|
k= 0 (uh)

. i .
which means |ki|/u 4+ ¢ for some constant ¢ as i 4 ». Then there

exists aq stch that, as i 4 o

1 -4 Y-
t i '
1
In addition if u > ltzl
_ i i
u, = dltl + O(u).

If u= ]t

5| and m is the maximimum multiplicity of all zeros of Q(x)
with modulus lt2| then
i . T i
u, = altl + 0(i | £5] ).
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A careful examination of the proof in [ 3 ] shows that Lemma 2 is
true even if the condition ]tll > 1> |t2] is replaced by the

weaker condition

] > Lo Jt] > |ty

Taking absolute values and logs of (14), and defining

d; = 4n |e;land B, = 4n |A,]
we obtain
n
dl+l = Bi+l + Sé di + (s-l)di i = n, n+l,
j=1
Further defining
d. B.
U, = ~e——te . k., = ———m—
i zn]A!4S ! i znlA|+S
where S = -1 if |A] < 1 and S =1 otherwise, yields
n
W, q = ki+l + Sjil LI + (s—l)ui i=n, n+l,... (16)

where, for i sufficiently large

|%i01] < 1- (17)

The characteristic polynomial of (16) is D yin (15). Consider

n+l‘$z
first the case where n+l is odd. It is shown in appendix B that,
in this case, the roots of Dn+l(z) satisfy |t;] > 1> |t,|. By (17),

we can apply Lemma 2 with y = 1 to obtain:
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i

and i
]ei] = exp {—Bltl + 0(1)}

where By > 0 since ‘ei! + 0. This implies that

i;i} = exp {Blti (t-tﬁ) + Ol(l) + t02(l)}

which y#elds that the order of convergence of the sequence {ei} is ti

Alse note that the average order of convergence is tl. Suppose now
that n+l is even. Then, from appendix B, tl>l and t2=-1. The
comment following Lemma 2 justifies its use in this circumstance and

using u =t = 1 we obtain

2
u, = ti + 0 (1)
i~ %171
which implies

ley| = exp {ylti + 0 (i)). (18)

2 _. — — 2 .
Since !ei‘ o,ylgo. If vy = 0 then ]ei] = exp {0(i)}, which
contradicts (10). Hence Y1 < 0. It is then easily verified that
(18) implies that the order of convergence of the sequence {e.} as
well as the average order are again tl' Theorem 1 follows from the

preceeding discussion and Appendix B.
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Appendix A

Existence Theorem of a Zero of the

Derivative of the Interpolation Polynomial

In this appendix we prove Theorems 2 and 3, assuring that the se-

quence of roots {xi}, generated by the algorithm, is well defined in

the neighborhood of a, and converges to «a.

Proof of Theorem 2. Since qu?(x) is continuous it is well known

(e.g. [6 ,P.61]) that

n
oI (x-x. .)

(9) /¢
f(x) = Pn,s(x) + £ é?(x)) . i-j

]
where 5(x) lies in the interval determined by LIPS THPERRPE SN

derive an expression for Pg S(x) we apply a result due to Ralston
’/ -

which states that

g. dx

A L D)= ki £ (100) (a.

where n(x) is again a mean value in the interval of interpolation.

Differentiating (A.l1) and using (A.2) yield

(q) n , e=1 B
1 Y £ ] 1 7
Pn,s(x? = f fx? - 8= qufx?? kzb FXHXi_k)S jEO fx-xi_j?s -
j#k
(q+1) n
f (nx)) - S
(qFl) - - jEO (oxg-g) @

(A.

1)

To
L4,

2)

.3)

We now show that under the assumptions of the theorem P' _(x)

n,S‘

has a zero in J. Note first that ffz?(x) > 0 V x€J since o is a

minimum point and hence ffz?(q) > 0. fhé theorem follows when we
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prove that P!
n’

SFa-L) < 0 and Pé’s(a+L) > 0. f'Fa? = 0 implies
Frx) = £'(0) - £'(@) = &=a) £ (y(x)

where vy(x) is in J.

Substituting x = a - L in (A.3) ylelds

(1)
py (e = -1 £ (y(arny)- 2 {2l

n

s-1 B s
% ?a_,],“_xi‘k), on (ot *i-3)
j#k
- f_(q+_1?('ﬁ(@‘LD g (a-L-x. .)S
()t - - j=0 . . 1=3"
' - '3 . »
Pn;s(a L) is negative if
(D n -
T = @) 1 s f (ESG‘Lll = (a—L—xi_k)S 1 I (a-L-xi_j)S
LEY (y(a-1)) (q): k=0 | J#k .
+1 n
- fgq ?(n(?-L)) 1 (a-L-x._.)S] < 1,
M2 s(n+1)
To prove that T < 1 we note that T < [T| < 5o (2L) +
=ML 2 ]
My-q : .
er— (2L)S(n+1) 1 Using ( 6) we observe that—‘(ZL)k < L for all k > 2,
0 LY N 2

which in turn yields the following inequalities

(2L)SFn+1? < LFn+1) < (L+LS)H+1'

21" < (L% and (+1)S7! < L+ 57L
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Thus
M M, .q M
2 s(n+l 1 n+l)-1 2 +1
T< W (2L) ( ) 4 R §2L)SF % S WL (L+L%)T +
M, q -
wr— (WL @wsTh.
0 . S

We finally apply our assumption (7 ) to obtain T < 1.

Similar arguments lead to the conclusion that Pl j(a+L) > 0, and hence
, . - -

the theorem follows.

Proof of Theorem 3. Substituting x = x

il in (A.3) we obtain
(® . n
1 _s.f (81) n -1 S
£ x41) AR (Ri417%1- ) =0 (ip17%35)7 *
= J#4
f(q_+1)(97) n s
* CEE jﬁb §Xi+1'xi-j)
where

61 = 8(xqp)s 8y = M(xyp)-
Defining e = X T a, k=1,2,... and noting that

F 1) = e fgz?(93?’ o3 = v(®g4p)

yield

n
s=1
M fe. < sM

Let m > 1 be integer, then
|m

m-1 ,,m m m
R R e T I UL e U ] LY

. n
P rmeris [T M, T e, 1-el .
AL RS A ) By les 4178151 Ml 1417853

(A.f
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where the right inequality is implied by the assumption (g ).

Applying (A.5 to @A.H results in

-1
e. < sM; (1) (|e. + max |e; _. H2( le. | + max [e._.[S )
MOI 1+1I =71 | 1+1l 0<j< I i Jl | i+l O<j<n i-j

s\n+1
+ M, (le. + max e. .|7)
2 ‘| l+]., O<.§ , 1-j ,

sn 1 S n .sn .. 8=-1 . '
< sM1§n+1){[e?+lf<L + T [(L®+L)"-L ](L?Ln, ) + Oiaﬁén,?ifj’

el .
M, {, 1{1[E(.LS+L)H+]._LS(H+1):|+ max  le. .
: i O<j<n 1=]

ls(n+1)ﬂ'

Hence, _
SM]_ (n+1) 1, 1

el < (g D7 0T

+MZ"S }
) N, (L4771 Jegyq |

le(n+1) M,

+ { + e. .
M M OSjSp_l -3

By Assumption 1 (7 ) (A.6)
-1
e.,;| < C max le, .|

- M.q M
where C = 2( L + 2 L).

M M

For any positive integer k define t, = ]ek] Cl/(q-z). Then (A.6) yields
q-1

t. < . .
i+l = 0 i-j

<jsn

Let T = LCl/(q-Z) then it can be verified by induction that if

b

k=t(mtl) + 4, t >1, £=20,1,...,n, then

t
(q-1)".
tk < T
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and observing that I' < 1 and

Letting r(q,n,k) = (q—l)k/fn+l)

k4
t =7 - mgr yleld

lep ] =t C-%kq-Z) < ¢~/ (a-2) £(a,n,k)
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Appendix B

The Roots of the Indicial Equation

In this appendix we study the properties and roots of the polynomial

k

D (z) = z - (s-l)zk'1 - s-(z‘k'2 + 2573 4D (B.1)

when k > 2 and s > 2.

We show that Dk(z) has a unique simple positive root, r,., with
modulus greater than one, and that all other roots are also simple with
moduli less than or equal to one. In fact, it will be proved that
if k is odd Ty is the only real root and that the other k-1 roots are
inside the unit disc. When k is even Z = -1 and r), are the only real
roots and the other k-2 roots have moduli less than one.

It is finally demonstrated that the sequence {r,} k=2,3,... is

s + Vs2+4
2

increasing and tends to

Lemma 1:
Let Dk(z), k > 3 be defined by (B.1). Dk(z) has a unique simple
- x N .
positive root r ., s <1 < EQtiiﬁ—ié . If k is odd r, is the only real
root, and if k is even z = -1 is the only other real root of Dk(z) and

is simple.

Dk(z§ = == [Zk-l(ZZ-SZ-l)iS] _ (B.2)

We verify that s > 1 implies Dk(s) < 0. Furthermore, Dk(z)

s +’V§2+4 A s + ys2+4

is positive at —_— and thus there exists Tes 8 <1 < >

and Dk(rk) = 0. To see that ry is simple and also the unique positive

root note first that
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The following lemma shows that the sequence {rk} is increasing.

Lemma 3:

_ S + ¢sz+4 )

{rk}, k=2,3,... is an increasing sequence and lim r, = >
k

Proof: Using Lemma 1 the monotonicity will follow if we show that

Dk(rk-1> < 0. From (B.2) we get

z-1)D, (z)-s = z[(z-1)D z)-s]:
D0 = S, )-8
Hence (rk_l-l) Dk(rk;l)-s=brk_l-s and Dk(rk-l) = - s. The sequence
{rk} is a bounded increasing sequence and hence lim r, = B exists.
k
k-1 2 :
ry (rk - srp-1) = - s, 1 <1
,f 2
=> 82 - sg-1=0 and = iitjﬁét&

- To prove that the none real roots of Dk(Z) have moduli less

than or equal to 1 we need the following two results.

Theorem 1: = (Traub, [6.,p.51])

Let £ (z)~= zk - a(zk-l + ék-z + ...+ 1), ka > 1 and k > 2. Then
k£ =
fk(z) has one positive simple root, yy» and max(l,a) < Y < l1+a. All

other roots are also simple with moduli less than 1.

Lemma 4: (Ostrowski, [:3,p.2221))
" Let B be a closed region in the Z-plane, the boundary of which con-
sistsmof a finite number of regular arcs, and let f(z) and h(z) be regular

on B. Assume that for no value of the real parameter t, running through

the inverval a < t < b, the function f(z) + th(z) becomes zero on the
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boundary of B. Then the number N(t) of the zeroes of f(z) + th(z) inside
B is independent of t for a < t < b

We are now ready to prove the main result.

Dy (z)
Theorem 2: If k is odd the k-1 roots of =3 rk have moduli < 1. 1If k is

D (z)

even the k- 2 roots of (z rk)(z+l) have moduli < 1.

Proof: Let ¢ > 0 be arbitrary small and consider the polynomial

k-1 for tele,l]. We show that Dk(z) - tz k-1 # 0 for all

Dkgz? - tz
z ¢ {z| |z]|] = 1}. Since Dk(l) -t <0 for ¢ <t <1. it is sufficient
to prove that (z-1) {Dk(z)—tz } # 0 for all z # 1 and |[z| = 1. Suppose

(z-1) {Dk(z) tzk l} 0 for some z # 1L and |z| = 1. Then

zk-l[zz—z(s+t)—(l-t)]4-s = 0.

= (22 - z(s+t) - (1-t) | =

If z = cos 6+ 1 sin §, then

[cos 28 - (s+t)cos § - (l—t)]2 + [sin 28 - (s+t) sin e]2 = s2

which yields
—2(l—t)cosze ~ t(s+t)cos g + t2

+ t(s-2) + 2 = 0.

Let y = cos § then y = 1 is one root of the quadratic
2 2
2(1-t)y° + t(s+t)y - (£° + t(s-2) + 2) = 0. (8.4)
For t = 1, y = 1 is the only root and we obtain cos § = 1 which

contradicts z # 1. Let tele,l), then the second root of (B.4) is
2 ‘ 2
_ —[ti+t(s-2)42] -t-tsg
y(e) 2(1-v) - 2(T-t) =l<-1
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Thus we have the contradiction cos § < - 1 and we get that Dk(z) ~

tzk-1 # 0 for zefz| [z = 1}.

Observing that for t = 1, Dk(z) - tzk-l yields the polynomial
fk(z) with a = s, discussed in Theorem 1, we apply Lemma & to
conclude that for any positive t artibtrarily close to zero the

k=1 has k-1 roots inside the disc {z| |z]| <.1}.

polynomial Dk(z) - tz
Continuity arguﬁents (see for example [6, Appx. Al) lead to the
conclusion that Dk(z)‘has k-1 roots in {z| |z| < 1}. By substituting
t =0 in (B.4) Weeésily verify that the only possible root of Dk(z)

on the boﬁndary of the disc is z = -1 which is a root if and onl§ if

k is even. Hence the theorem is proved.
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