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Pre-Leontief functions and least elements

Introduction

In a previous paper [ 6] we introduced the Z-functions and showed
that a nonempty feasible region defined by a continuous Z-function
always contains a least element which is also a complementary solution.
An iterative procedure to find the least element was also given in [6].
In this work we generalize the Z-property to introduce the pre-Leontief
functions. It is then shown that these functions define feasible
regions containing least elements.

Following the generalization of the linear complementarity problem
presented in [ 2 ], we demonstrate a complementarity property associated

with the least elements.

A modification of the algorithm presented in [ 6 ] for Z-functions,
is then shown to be applicable for finding least elements of regions

corresponding to pre-Leontief functions.

Definition: Let f : RE + R™ be a function from Ri = {x]xeRn, x > 0} to
Rm, whose components are fl""’fm' f is a pre-Leontief function on Ri
if for each i, i=1,...,m, there exists an integer k(i), 1 < k(i) < n,

such that for all xeRi and t >0

fi(x) > fi(x + tej) v j # k(i),

where ej is the jth unit vector in R".
If m =n and k(i) =i f is said to be a Z-function.

Note that the pre-Leontief property ensures that each component of

f is nonincreasing with respect to at least (n-1) of its arguments.

If £ is linear and characterized by an myn matrix then it is pre-Leontief
if each of its m rows contains at most one positive element. If the

matrix is square and all its off-diagonal elements are nonpositive

f is a Z-function.
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As indicated in [6], the Z-functions constitute a natural extension
of the simple linear Leontief Interindustry Model, corresponding to n
products and n industries, each with one type of output. Following the
exposition of [6], we immediately observe that the pre-Leontief function

can be used to describe the case where several industries may produce

the same type of product.

In [ 6 ] we provided a constructive proof of the following theorem,

dealing with the existence of a least element.

Theorem 1: Let f : R$ + R"” be a continuous Z-function and let q be
+

in R". If Xq = {x|f(x) + ¢ >0, x > 0} is nonempty then it contains a

least element % (i.e. EGXZ and x <y for all yéX';), and x satisfies
x(£(x)+q) = 0.

The proof given in [6 ] is based on a modification of the well
known Gauss-Seidel and Jacobi iterative procedures.

Note that the main significance of the least element is that it
(simultaneously) minimizes any real isotone objective function defined
on X+.

q

We now generalize Theorem 1 to pre-Leontief functions.

Existence of Least Elements

n
Theorem 2: Let f : R+ + R® be a continuous pre-Leontief function.

. . n m +
Given a > 0 in R_ and q€R", if Xq,a = {x|f(x)+q > 0, x ~ a} is nonempty

it contains a least element.



Proof:
If a € XZ a it is clearly the least element. Hence,assume that
b
a is not contained in X+ The continuity of f implies that x" is

q,a’ q,a

closed. Let x be the element of XZ a which is closest to a, with

3

respect to the Euclidean norm. We show that x is the least element.

Suppose that y ¢ XZ a and y. < Xj for some j, 1 < j <n. Define z in

J
n - . . .
R, by z, - lnln(xi,yl) for i, I=1,...,n. To complete the prool [t is
then sufficient to show that =z ¢ XZ a
?
We first note that z > a. Let i, i=l,...,m, and consider fi'

Using the pre-Leontief property and supposing that Z (1) = xk(i) we get
fi(z) +q > ﬁi(x) + q > 0. (If we had assumed that Z) (i) = yk(i) we would

have obtained fi(z) + q > fi(y) + q >0). Hence f(z) + q > 0 and ZEXZ a
b

S e —— .

We note that the preceding theorem generalizes a result due to
Cottle and Veinott [ 3 ], who dealt with pre-Leontief matrices, i.e.

matrices for which each row contains at most one positive element.

In fact, when f(x) is linear the existence of a least element for

for all aERi and qERm, provided XZ a is not empty, implies that the
’

X
q,a
matrix defining f is pre-Leontief. The following example illustrates

that this is not always true when nonlinear functions are considered.

Exampie 1: Let f : Ri - Rl be defined by
xl+l x; < %,
x2+l

f(xqy,%,) =
1>72 x2+l %. > x
1 = °2

xl+I
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It is easily verified that for each aeRﬁ and scaler q X: a
3

contains a least element, provided it is not empty, but f is clearly
not pre-Leontief.
Although the pre-Leontief property is not satisfied globally the

following result can be interpreted as a local pre-Leontief property.

Theorem 3: Let f ; Ri + R™ be such that for each aeRi and qeRn, XZ a # 0
b
+

implies the existence of a least element in X Then for each x

b]

xERi, and i, i=1l,...,m there exists k(i,x),1 < k(i,x) < n such that

fi(x+tej) < fi(X) for 0 < t and j # k(i,x).

Proof:
Suppose on the contrary that for some xERi and i, i=1,...,m,there
exist r and p 1 <r, p <n r # p such that fi(X+Soer) > fi(x), and

fi(x+slep) > £, (x) where s >0, s; >0. For any j, j=1,...,m, j # i

let m = min {fj(x), fj(x+slep), fj(x+soer)} and m; = min {fi(x+soer)’

)1. X + s e_ and

where 4 = -(ml,mz,...,mm ofr

fi(x+sler}. Consider XZ’X’

belong to X"  which in turn implies that x is the least elemen

X + slep
of xt - a contradiction to the definiction of m, .
q,X R R . 1 U

As shown by the next theorem, the result of Theorem 3 can be
strengthened to achieve the (global) pre-Leontief property, if

seperability is assumed.

Theorem 4: Let f : Ri + R™ be given by f(xl,...,xn) = fl(xl) + f2(x2)
X+
q,

the existence of a least element in XZ a Then f(x) is pre-Leontief.
bl

+ ... + fn(xn) and suppose that for each aERE and q€R", a # @ implie



Proof: ‘
We show that for each i, i=1,...,m, there exists k(i), 1 < k(i) < n,
such that for any j # k(i) j=1,...,n the scaler function fg(xj) is
nonincreasing.

Suppose on the contrary, that there exist rand p 1l <r, p <n
r # p such that f;(xr) and f?(xp) are not nonincreasing. Hence, there
exist Er >0, §p >0, s, >0 and s; >0 satisfying fg(§b+sl) > f?(ip)
and f§(§r+so) > f§(§r).

For any u, u=l,...,m, let q,6 = - min[fu((§§+sl)ep+§rer);

fu(gpep + (§r+so)en)].

Then it is easily seen that (xp+sl)ep + xpe  as well as xpep + (Xr+so)er

belong to X' where q = (q4,..-,9.) is defined above and
q,a 1 m

a = §pep + xpep. This in turn implies that a is the least element of
X; q ~ @ contradiction to the definition of q; -
3

As shown in [3], if f is affine the (global) pre-Leontief

property is equivalent to the following condition.

+

For each qeR", Xq o # P implies the existence of a
b

least element in X .
q,0

The next example shows that the latter condition, (i.e. when the
existence of least elements for X 2 for all q and a is replaced by

b

the existence of least elements for x" o for all q), is not even
3

sufficient to yield the (local) pre-Leontief property stated in

Theorem 3.



Example?2: Let f : Ri - R1 be defined by f(xl,xz) = h(Xl) + g(xz)

where

x; 0<x <1 1-x 0<x;<1
h(x)) = { 2-x; 1<x <2 and glx) = {x -1 lsxx=s2
0 xlzz 1 XzZZ

When some differentiability and regularity assumptions are imposed
on the function f, one can derive additional necessary conditions for
the existence of a least element. Specifically we will assume an arbitrary

qualification for constrained optimization (see [41]).

n
Theorem 5: Let £ : R, » R™ be a continuously differentiable function

and let x be a least element of X; 4+ Denote I = {i]fi(§)+qi =0} and

b]

J = {i|§i=ai} and suppose that a constraint qualification is satisfied

at x.

Then |[I]| + |J| > n and there exists an n y (|I| + |J|) nonnegative

matrix A such that

v (%)
A ___-I_-—_— = T
= n, n (1)
J
where I a is the identity matrix of order n, vfI(x) is the Jacobian of
X

the functions £, (x), i€I, and E& is the |J|x n Jacobian matrix of

the functions gj(x) = ;5 ied.



Proof:
It is assumed that some constraint qualification which is
required by the Kuhn-Tucker conditions is satisfied. (See [47]).

X being a least element of X: N implies thar for each (row) unit vector

¢

oo in rRY
]

- +
e.X < e.X V x¢ X
J — ] q,a

Hence for any j, j=1,...,n, there exists (row) vectors of multipliers

ol >0, UjERlIl and v >0, vJer |J 1 such that

ey = ujvf,I(sZ) -vl=0 , j§=1,2,...,n.

Let A be the n, (|I]| + |J|) matrix having (uj,vj) as its

jth row, then

In particular we obtain that |I| + |J| > n, and the proof is

complete.

A similar version of the above theorem was also proved by
Bod [ 17.

Following Mangasarian [ 5], we note that (1 ) is equivalent

VfI (X)

to the inverse isotonicity of [— (A matrix B is inverse

I;

isotone if for all x Bx > 0 implies x > 0.)



As a consequence of the theorem it follows that if

of; (%)

, then there exists a nonnegative matrix A
o8X ¢ . .
3 1€I,j4J

o5}
I

of order (n-|J]|) x (1] such that AB = [(n_lJl)x(n_lJl). The latter

implies that the partial Jacobian of the binding functions, fi’ iel,

with respect to the nonbinding variables, xj, j£J is inverse isotone.

Finally we observe that the regularity assumptions in
Theorem 3 cannot be omitted as illustrated by the function

2 .
f(xl,xz) = -(xl-l)2 - (x2—l) and Xg,a where q = 0 and a = (0,0).

An Algorithm Finding the Least Element:

Focussing on a constructive approach to find a least element
we next show that the algorithm suggested in [ 6] for Z-functions
can be modified to be applied to pre-Leontief functions. (Note that

by Theorem 2 the least element can be found by solving

e +
{min iji x; | s.t. x¢ Xq,a}')
let £ : Ri -+ R® be a pre-Leontief function and qeRm. For any i,
i=1,...,n, let

(i) = {j|fj is not monotonically nonincreasing in xi}

Further, if I(i) # ¢ we define

g; (x) = jgi?i) {fj(X) + qj}



We observe that the pre-Leontief property ensures that I(i), i=1,...,n
are well defined, i.e. i# j = I(i) N I(j) = @. We also verify that
gi(x) : Ri -+ R1 is pre-Leontief for each i such that I(i) # @. 1In
fact, gi(x) is monotonically nonincreasing in xj for all j#i. We

define the following sets of indices
J=1{j|j £UI(i)} and I = {i|I(i) # @) (4)

We will further assume without loss of generality that

I = {i(1),7(2),...,i(t)} where i(k) <i(ktl), L <k <t ( 5)

Having associated the above notation with a pre-Leontief
function f, we prove the following result, which will be found useful

in the application of the algorithm of [ 6 ].

n m . n m
Lemma 6: et £ : R+ + R be pre-Leontief, and let aeR+ and qeR . 1If
X is a least element of X a then §i = a; for each if 1, where I is
2

given by (4).

Proof:
i£¢I implies that for each j, j=1,...,m, fﬂx) is monotonically

. . . . n
nonincreasing in x;, i.e. for any xeR+ and t >0

fj(x) < fj(x + tei)_ If x is the least element in XZ a then

]

0 < a4 + fj(E) < qj + fj(§ - (§i-ai)ei), for all j, j=1,...,n,

which in turn proves that Ei = a;.
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As a consequence of the above lemma we can set X = a; for

all ifI, as a start in our effort to find the least element of X;,a'
Our next step is to introduce a Z-function which will be shown to
be equivalent to f£(x) in the sense of finding least elements.
Let I be given by (2)-(4), and gi(x), i€l be defined by (3).
For each k=1,...,t define
t

B 5¥) = 85y ( op T Cige) t 121 a;e;) (6)

Note that h = (hl,...,ht) is a Z-function mapping RE to Rt, where

t <min (m,n). We next show that for our purposes it is sufficient

to concentrate on the Z-function h.

m
Theorem 7: Let f :R: + R be pre~Leontief. Given aERE and qERm, define
h: RE - R by (6), and I,J by (4).
Let ~y '

Xq,a = {xlfj<x) + a5 = 0, jAJ and x > a} and

YT = {yh.(¥) >0 > a k=1 t}

q,a y ky = sYk_ i(k)’ 300y .
Then

+  _ g s e SF
(l? Yq,a =@ if and only if Xq,a g.

(2) If y is a least element in vy"  then

q,4a
t
X= Z y, e, + = a.e, is a least element in
=1 CK ) Ty T
Xz,a' Further, if also fj(§) + aj >0 for all
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j€J then x is also a least element of Xg 43
b
+
otherwise X = 0.
q,a ¢

Proof:
(1) follows directly from the definition of h. If yEYq a
t
then it is easily verified that x = k§1 Vi € i (k) + 121 a;e, € Xq;a

Conversely, if xqu 5°0bserve that fj(x),j=l,...,m is monotonically
3

nonincreasing in Xs for all if£T. 1In particular for j£J

t
= >
fj(x) + qj >0 and x > a = fj( E X. i (k) 1(k) + 1?1 ase, )-i-qJ > 0.
The latter implication then yields
t
gi( ? Xi(k)ei(k) + = a.e, ) > 0, for all i€I.
= if1
Hence, (x. 5eeesXs ) € Yyt
i(1l) P22 () q,a
To prove (2), suppose that y is a least element in YZ a Clearly,
t ~ 5
= 35 + e
x= Z y € (k) + i?l a;e; € Xq,a If x was not the least element,

k=1

. o, o o -
there would exist x qu 5 Such that X k) < Yk for some 1 < k < t.

b

As demonstrated above while proving (lj, (Xg(l)" )) € Y

° 1(t q,a’

which in turn contradicts the fact that y is the least element in Y
b

To prove the second part of (2), it will be shown that if X+

. q,a
is nonempty, then X is the least element of X+ ar Suppose that
b
x1 is in X; a In particular xlex: a and x1 > x. The proof will be
2> k]
complete when we show that fj(§) + aj 2 0 for all jeJ. But the latter

is implied by the monotonicity of fj, jeJ in all of its n arguments.
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We are now ready to apply the algorithm of [6] to find the
least element of xt = {x|f(x) + q >0, x > a}, provided xT # ¢,
q,4a - - q,a

when £ : R} 4 R™ is a continuous pre~Leontief function.

+
Given a continuous Z-function h : RE - RP, and qERP the
algorithm presented in [ 6 ] finds a least element of X; o =
b

{x|h(x) + q >0, x >0} or indicates that Xg a is empty.

b

To find the least element of {x|h(x) + q >0, x > a} when

aeRi one has to find the least element of {y|h(y) + q >0, y >0},

where h(y) = h(y+a) and add the vector a-to this least element.

Il
Let £ : R+

and qERm. Using Theorem 7, one can apply the following procedure to

m . . .
+ R" be a continuous pre-~lLeontief function, aERi

verify the existence of a least element to X+ a and to find the
! >

element provided it exists.

Step 1: Define I, J and h : Ri 5 RE by (4) and (6 ) respectively.

Step 2: Apply the algorithm of [ 6 ] to find the least element
of the set {y|h(y) > 0, Yk 2 24 (k) k=1,...,t}. If the
set is empty XZ a is empty: terminate. Otherwise apply

b

Step 3, where y is the least element.

t
Step 3: Define x = ? Vi ei(k) + .E a;e.. If fj(x) + qj > 0 for
k=1 igI
all j€J, x is the least element of X . Otherwise, X+

q’a q,a

is empty.
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Finally we demonstrate a complementarity property associated
with pre-Leontief functions. Motivated by the generalization of the
linear complementarity problem due to Cottle and Dantzig [2], we refer

to the generalized nonlinear complementarity problem defined as follows.

Let F : RE l”"’Fm’ and suppose that

these components are partitioned into n sets Sj’ j=1,...,n. The

- Rm, have components F

generalized complementarity problem is to find x€R™ such that

x >0, F(x) >0 and X5 - 11 Fr(x) =0, j=1,...,n. (7)

€S.
RS

Cottle and Dantzig [2] treat the linear case i.e. when f is
affine and provide conditions guaranteeing the existence of a comple-
mentary solution.

It is shown in L6] that if h is a continuous Z-function and
y is a least element of {y|h(y) + q >0, y > 0}, then y’(h(y)+q)=0. Con-
sequently we can conclude that if f is a continuous pre-Leontief

function and x is a least element of XZ a’ then for each i€I, there

b

exists j = j(i) € I(i) such that X, > a; implies fj(x) + a5 = 0.

The latter observation can be interpreted in terms of the generalized

complementarity property presented above. If f : RE

Leontief and continuous define Si = I(i), i=1,...,n where I(i) is given

m .,
+ R is pre-

by (2). Assuming for simplicity that a = 0 we conclude that for any
q € R?,XZ o 7 @ implies the existence of a least element which is also
a complementary solution to the generalized complementarity problem

(7) defined by F(x) = f(x) + q.
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