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ON THE STRUCTURE OF SEMIMARKOV PROCESSES

AND THEIR CONVERSION TO CHUNG PROCESSES
by

ERHAN GINLAR

Abstract

Semimarkov processes with discrete state spaces are
considered without restrictions on their probability
laws., They admit states where every visit lasts a
positive time even though there may be infinitely many
such visits in a finite interval. These are called
unstable holding states as opposed to the stable holding
states which are encountered in Markpv processes. Fur-
ther, 1t is possible to have instantaneous states at
which the behavior is that at an ordinary instantaneous
state of a Chung process, or that at a sticky boundary
point, or that at a non-sticky point. To convert such
processes to Chung processes, each unstable state is
split into infinitely many stable ones, and then a ran-
dom time change i1s effected whereby some sets of con-
stancy are dilated)and sojourn intervals are altered to

have exponentially distributed lengths.
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ON THE STRUCTURE OF SEMIMARKOV PROCESSES

AND THEIR CONVERSION TO CHUNG PROCESSESl

by
ERHAN GINLAR®

llorthwestern University, Evanston

1. INTRODUCTION
While introducing semimarkov3 processes, LﬁVY (1954)
asserted that any such process can be transformed into a

farkov process through a random time change using a sult-

¥

able strictly increasing time scale. The assertion im-
Plies that the qualitative structure of the sample paths
cof a2 semimarkov process is the same as that of a Markov
process. The only differences, therefore, would be re-
stricted to "the probability laws governing the sojourns"
at a holding state: they are exponential fcr Markov pro-
cesses and arbilitrary for semimarkov processes.

This, however, is not true. The source of error 1is
the implicit assumption that "sojourn times at a fixed
state" are well-defined random variables. It turns out
that there are states such that every visit lasts a posi-
tive time but that between any two sojourn intervals there
is a third. Of course, then, the left end points of those
intervals cannot be well-ordered, which implies that we
need to talk of random variables such as the length of the

1



first (or second or third...) sojourn interval whose
length exceeds €. And the law of such intervals, of course,

depends on €. Here is an illustration.

(1.1) EXAMPLE. Consider a Brownian motion on (-w,w)
starting from O. Let M be the set of all t at which the
process 1s at the point 0. This is a closed set. Let KO
be the smallest right-closed set whose closure is M, i.e.

KO is the set of all t in M which are not isoclated on the

right. ILet X, be the complement of K, in [0,0). Define

1
a stochastic process (Xt) by

0 if t € K,

ct

1 if t € Kl.

The process (X is semimarkov 1n all the senses

+)
L

which we are aware of: IEVY (1954), YACKEL™ (1968), PYKE

and SCHAUFELE (1964) p. 1740. State O is instantaneous,

and state 1 is holding. The set K, is a countable union

1
of intervals each of which has positivé length, but any
neighborhood of t = 0 contains infinitely meny of those
intervals. No two of these sojourn intervals have an end
point in common, and between any two interveals there lies
a third.

We note that the phrase "length of a sojourn interval

at state 1" has no definite meaning, and it is faulty to



speak of its probability law. However, there is a mea-
sure A cn (O,m), whose total mass is infinite, and which
governs the sojourns at 1 in the following sense: Con-
sider those sojourn intervals whose lengths exceed €; the
lengths of the first, the second,... such intervals are

independent and identically distributed as
X(B)/k((s,w)), B < (e,»), B Borel.

It is well known that the set K. is the range of a right

0]
continuous increasing additive process with zero drift.
The measure A above is the Lévy measure of this additive

process.

Our object is to clarify the qualitative structure
of semimarkov processes on discrete spéées, and to give
a rectification of Lévy's assertion.

We will classify the states of a semimarkov process
X first as holding versus instantaneocus just as with
Markov processes. A holding state is elither stable or
unstable depending on whether 1t is entered only finitely
often or not during a finite interval. An instantaneous
state 1 1s attractive or repellent depending on whether
its set of constancy {t : Xt = i} is perfect or discrete
(perfect means right closed and has no isolated points,

discrete means every point is isolated). An attractive

state 1s light or heavy according as the Lebesgue measure



of 1ts set of constancy is O or positive.

Zvery Chung process (see the definition below) is
semimarkov. 1l: a Chung process, every holding state is
stable, and every instantaneous state is heavy. Supposing
that a Chung process has a purely atomic boundary, in the
terminology of CHUNG (1968), a sticky boundary point is
like a light attractive state, and a non-sticky boundary
point 1s like a repellent state.

The most important gualitative difference between
semimarkov and Chung processes 1s due to unstable states.
While converting a semlimarkov process to a Chung process,
each unstable state i is "split" into infinitely many
stable ones (in addition to dilating light attractive
states and replacing sojourn intervals by exponentially
distributed ones). Section 5 sketches the steps necessary
to reduce this conversion problem to that treated by
YACKEL (1968). 'In fact, we have nothing to add if every
state 1s eilther stable or heavy attractive--a state of
affairs insured by YACKEL by requiring that the basic
semigroup be "strong."

Finally, we would\like to introduce the following

much needed definition.

(1.2) CHUNG PROCESSES. Let (Xt) be a (continuous time-
parameter) Markov process defined on a complete probability
space, and taking values in a discrete state space E (a

countable set with the discrete topology which is further



compactified by adding an extra point if not already

compact). Then X is said to be a Chung process provided

that

a) the transition function of X be standard, and

b) the sample paths be "right lower semicontinuous,"
that is, for any t and w, the sample path Xs(w) has at
most one limiting value in E as s decreases to t; Xt(w)
is equal to that limiting value iIn E if 1t exists, and is
equal to the "point at infinity" if there is no such

limit in E.

Chung processes are important because Chung, Doob,
Feller, Kolmogorov, and Lévy have worked on them; they
are interesting because their sample paths have intricate
discontinuity properties not possessed by "standard" Markov
processes on more general state spaces; and they do not
fit neatly into the general potentigl-theoretic framework.
Finally, on sheer volume of publications concerning them
alone, Chung processes deserve a name of thelr own amongst
other processes such as Brownian motion, Feller processes,
Hunt process. We hope that the wisdom, and the Jjustice
Implicit in, this definition will be recognized.

Our terminology for elements of stochastic processes
in general follows DELLACHERIE (1972). In addition, we

write B = [0,»), B, = (t,o) for any t € E,; and B and

t
Et for the associated o-algebras of all Borel subsets.



2. SEMIMARKOV PROCESSES

In this section we describe the processes we are
interested in. A more fundamental definition (which seems
to have been what Lévy had in mind) will be given else-
where along with comparisons with other definitions.

Let E be a discrete set (countable with discrete
topology). If E is finite, let E = E. If E is not finite,
let E = E U {¢} be its onepoint compactification. Let
(Q,M,P) be a complete probability space, and let

X = (X be a stochastic process defined on (Q,M) and

t)t>O =

taking values in E. Let gg =o(Xg 0< s < t),

H = o(XS; s > 0); let H Dbe the completion of gg, and

let H, be the o-algebra generated by g§+ = r@>t§: and all

the negligible sets in H . We will refer to the family

llas

= (8,)

and progressive sets etc. are all relative to this his-

as the history generated by X. Stopping timss

tory unless specified otherwise.

For each w € 0 let M(w) be the set of all t > O at
which the path X(w) S —»XS(w) is not continuous plus
those t > O at which X(w) 1s continuous and has the value
¢©. The random set M will be called the discontinuity set
of X.

Fix w € Q. The set M(w) is closed in (0,). Its

complement (if not empty) is a countable union of open



intervals. Each such open interval is said to be con-
tiguous to M(w). We define L(w) to be the set of all left
end points of the intervals contiguous to ﬂ(w).

For every t > O and w € N we define

(2.1) St(w) =1t - sup{s < t : s € M(w)}.

We call St(w) ﬁhe sojourn value at t for the path X(w). If
t is a time of discontinuity for X(w), then St(w) = 0.
Otherwise, if t belongs to the contiguous interval
(a(w),b(w)) (on which, by the way M(w) is defined, the
path X(w) remains constant), the sojourn value at t is
St(w) =1t - a(w).

Throughout this paper we assume that the following

axioms hold.

(2.2) Regularity: For almost every w and every t > O,

a) 1if t € L(w), then the path X(w) is right con-
tinuous at tj

b) . if t € M(w)\L(w), and if there exists a sequence
(t.) © M(w)\L(w) decreasing to t and such that

X (w) = 1 for every n for some i € E, then Xt(w) = i.
(2.3) Point ¢: For every t > O, P[Xt = ¢} = O.

(2.4) Progressive measurability: The process X is




progressively measurable with respect to the history H.

(2.5) Regeneration. The process (X,8) = (Xt’st)t>0 is

a time-homogeneous Markov process which further enjoys
the strong Markov property at every stopping time T of H
such that X, € E a.s. on (T < w}.

Then X 1s a semimarkov process in the strict sense.

Regularity axiom (2.2)is close to a separability
axiom. By (2.2a) every interval of constancy has the
form [ ). Axiom (2.2b) is in fact an axiom on random
sets on which X 1s in a fixed instantaneous state. These
axioms might require the state space to be closed, and
thus the need for compactifying the state space. Hence
(2.3) delimits ¢ to the role of "an extra point added for
reasons of smoothness." Axiom (2.4) is technical. The
crucial assumption is (2.5): FPirst, note that each S

t

is H, measurable, and that (X,S) is progressively measur-

t
able relative to H. So, it is meaningful to talk of strong
Markov property for (X,S). This property is of particular
interest for stopping times T whose graphs [T] are con-
tained in M, i.e., T(w) € M(w) for almost every w € (T < =}.
Then, ST = 0, and the strong Markov property at T may be

re-phrased as follows. For every state 1 € E there exists

a probability measure P* on (0,EC) such that
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(2.6) E[Weop By ] = EY[W] a.s. on (%, = 1)

for any bounded Ei measurable random variable W and any
stopping time T such that [T] € M. Here and below (et)
are the usual shift operators defined on O such that

(2.7) EXAMPLE. Consider the process X of Example (1.1).
Then, it is well known that S is a strong Markov process,
(see MEYER (1970) for instance). For any stopping time T,
on {ST > 0} we have XT = 1. There 1s no stopping time T
such that [T] € L other than T = ». Therefore, for any
stopping time T, on {T < =, Sp = 0} we have Xp = 0. It
follows that the strong Markov property of S implies that
of (X,8); that is,axiom (2.5)1s satisfied. It is easy

to check the other three. So, X is semimarkov.

(2.8) CHUNG PROCESSES. Suppose X is a Chung process.

Then right lower semicontinulty implies (2.2). Point ¢
being ”fictitious,” (2.3) is true. Axiom (2.4) follows
from right lower semicontinuity again. And it is known

that (2.5) holds. So, X 1s semimarkov.

(2.9) REGENERATIVE SETS. lLet KO be a regenerative set
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in the sense of MAISONNEUVE (1971); (Markov random set
is another equivalent term; and the set on which a re-
generative phenomenon in the sense of KINGMAN (1972) is
equal to 1 is a particular regenerative set). Define X to
be O on KO and 1 onZR+\KO. The resulting process X is
semimarkov. Example (1.1) is a special case.

We end this section by. giving a regularization of
sample paths, due to LéVY (1954), which simplifies cer-
tain questions.

For each i € E and w € 0 define

(2.10) Ki(w) = {t> 0: Xt(w) =1i}.

The random set Ki is called the constancy set for 1i.

(2.11) DEFINITION. A point i € E is said to be instan-
taneous if for a.e. w the set Ki(w) has an empty interior.
It is said to be a holding point if for a.e. w the set
Ki(w) is a countable union of intervals each of which has
a finite positive length. It is said to be absorbing if,

for a.e. m,Ki(w) is either empty or consists of one in-

finite interval.

By FUBINI's theorem, axiom (2.3) implies that the
point ¢ is instantaneous. If X i1s a Chung process then

every point 1 is either instantaneous or holding or
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absorbing. However, 1n general, a semimarkov process may
have states which are neither instantaneous nor holding
nor absorbing. The following "splitting of states" is to
eliminate this unpleasantness.

We define,
(2.12) R (w) = inf{s > t : s € M(w)}-T.

Then, Rt is the remaining time to be spent in the state

being occupied at t.

(2.15) PROPOSITION. For every w € Q and £t > 0O define

ai if Rt(w) = 4o
1
X (w) ={hi if R, (w) € (0,)
ii if Rt(w) =0
when Xt(w) = 1. Then, the process X' is again a semi-

R I . .
markov process, and every state 1 is either instantaneous,

or holding and not absorbing, or absorbing.

4
This proposition can be found in LEVY (1954).
Throughout the remainder of this paper we assume that the
regularization implicit in this proposition is already

carried out, so that, we have

(2.14) Regularity. FEach point i € E of the process X is

elther absorbing, or holding, or instantaneous.
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3. BEHAVIOR AT A HOLDING POINT

Throughout this section 1 is a fixed holding point.
For a.e. w, the set K;(w) = {t> 0 : X, (w) =1} is a
countable union of intervals. By axiom (2.2b), each com-~
ponent interval has the form [ ) except possibly the first
which may have the form (0,t). Since it is possible that

Ki(w) N B have infinitely many components for even bounded

intervals B, first we consider those component intervals
of Ki(w) whose lengths (strictly) exceed ¢. Here e > 0

is fixed. Let L_ (w) and Ren(w) be the left end point

th

and the right end point of the n such interval; if

there is no such interval we set L (w) = R_,(w) = +=.
Since X 1is progressively measurable, the random set

K. 1is progressive, and each R€n is a stopping time. Note

that, 1In general, Len is not a stopping time, but that

Len 4+ € 1is. It 1s clear that

(3.1) X 4¢=131,8, L, . =¢ on {L€n < ).

let Ac E and B €R; (recall that R, = (t,») for

t

any t €R,_ = [0,=), and that R, is the set of all Borel

t

subsets of R By the strong Markov property at L€n + €,

t)’

(3.2)  P(R,-L, €B, Xg ¢ A|§L€n+€

} = L (1,A,B)
en
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a.5. on {Len < w} for some measure Le(i,~) on the Borel
subsets of E x R, where we write Le(i,A,B) for Le(i,A.xB)
and below we will write Le(i,j,B) for L (i, (J] xB). If

¢ is such that Le,l = 4+ a.s., we set Le(i,-) = 0.

We now explore the shape of Le(i,-) as € varies.

Define
(3.3) n (i,t) = L(L,ERL), t2> e.

Let 0 < 6 < ¢ and B € R, and suppose that Le(i,j,B) > 0.

Note that, {R € B} implies {Rél = R Leqy = L

51761 el 51 1)
Therefore, applying the strong Markov property at L61 + 6

to the formula (3.2) for Lé(i,j,B), we obtain
<3°L|') né(i,E)L€<i,j,B) = L6<i’j:B>:

which 1s also true when Lé(i,j,B) = 0. In particular,

This implies that
(3.6) n (i,t) = n(i,t)/n(i,¢), 0< et

for some right continuous decreasing function t-ﬂ-n(i,t)

defined onZRO. Using this fact in (3.4) shows that
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(3.7) L.(i,3,B) = L(1,3,B)/n(i,e), 0< e, J €E, B E€R,,

for some measure L{i,-,-) on E x R, satisfying

0

(3.8) L(1,ER,) = n(i,t), t> O.

The measure L(i,:) is the i-entry of a kernel L
which plays the same role 1n semimarkov processes as éézx
kernels do in the ﬁheories of Hunt processes and Markov
additive processes, (see CINLAR (1975)). Moreover, the
functions n(i,-).figure as densities for some measure N
which is invariant for (X,S); (this is to explain the

particular choice of letters L, n etc.)

(3.9) EXAMPIE. Consider the semimarkov process X of

Example (1.1). For the holding state 1 we have
L(1,0,B) = A (B), L(1,1,B) = O.

(3.10) EXAMPILE. Suppose X i1s a Chung process and let 1

“a (i)t

be a holding point. Then n(i,t) = c-e for some

finite constant A (i) and some constant ¢ > O. Therefore,

Sa (i)t

(3.11) L(i,j,dt) = cK(i,j)r(i)e dt

for some numbers K(i,j) > O, K(i,i) = 0. 1In terms of the
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generator G of X, (that is, G(i,j) is the derivative at

t = O of the transition function Pt(i,j),) we have
A1) = -G(i,1); A(L)K(L,3) = G(1,3), j# i

Returning to the general case we note that L(i,-)
and n(i,-) are defined only up to multiplication by a
constant. If the limit n(i,0+) of n(i,t) as t { O is
finite, then a'convenient normalization is effected by

choosing the multiplicative constant so that

(3.12) n(i) = lim n(i,t) = 1.
tlo

Otherwise, if n(i,0+) = =, we set

(%3.13) n(i) = lim n(i,t) = +=.
t10

15

(3.14) DEFINITION. A holding state is said to be stable

if n(i) = 1 and unstable if n(i) = .

It follows from (3.11) that for a Chung process every

holding state is stable. The following proposition shows

that the behavior of a semimarkov process at a stable

holding state is qualitatively the same as that of a Chung

pProcess at such a state. We will later see that the

converse of this proposition is also true, (see Proposition

(3.29)).
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(3.15) PROPOSITION. Let i be a stable holding state.
Then, for almost every w, the set Ki(w) N B has only fi-

nitely many connected components for any bounded interval

B'

PROOF. It is enough to show this for B = (s,s+t)
where s 1s arbitrary and t > O fixed. Choose t such that
n(i,t) > 0. Define

(3.16) Tep =8+ L o8, U =58+ R °8_.

Note that the number of component intervels Ki has

in B = (s,s+t) is egual to, or one greater than,

3.17) N =1lim 5 1,(T. ),

( €elOn B( en

and that

2.18) P{N > k} = 1lim P{S 21.(T..) > kJ}.
( el0 n B( €n

So, we need to show that this goes to 0 as k — =.
The event figuring on the right side of (3.18)
implies the event that the lengths of the intervals

(T€l+e,U€l),...,(T€k+e,U€k) sum to something less than t,
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and this event 1n turn implies the event that each one of
these k intervals is less than t in length. On the other
hand, Tcl + €, T€2 + €, ... are all stopping times. By
the strong Markov property applied thereat, the lengths

of the k intervals in question are i.i.d. with the common

distribution ¢ given by
o(u) = 1 - n(i,e+u)/n(i,e), u> O.

Hence,

k

. . n(i,e+t)
(3.19) P{N > k} < i?? [1 Y E) ] .

By hypothesis of stability for i, n(i,e) — 1 as € — O.
So, the limit on the right is [1-n(i,t)]*, which goes to
0 as k = o since n(i,t) > O by choice.

Let R = Ry, where R_ is defined by (2.12), that is,
(3.20) R =1inf M, R, = R°8, = Inf M NR, -1,

and for the fixed state i under examination, define

(3.21) V =dinf M N Ki» Vo =t + Veb,, t> 0.
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We call V the tine ot first visit to i, Vt is the time of

first visit to i afte: t. Note that V. (w) differs from the
first hitting tine Ht(w) of i after t whenever Xt(w) = i:
If Xt(w) =1 then (t,t+e) c Ki(w) for some ¢ > 0, which im-
plies that Vt(w) > t + € whereas Ht(w) = t.

In interpreting the following recall that Xvoet = XV

t
is the state at the time of first visit to i1 after t.

(3.22) THEOREM. For almcst every w and for every t > O,

Xvoet(w) =i if 1 is stable,

xvoet(w) € E\{i} 4if i is unstable.

PROOF. Case of stable i. By the preceding theorem,

for every w in a set Q' of full measure, the left end

Q]

points of the component intervals of Ki(w) form a discrete
set (i.e. every point is isolated). Therefore, Vt(w) must
be one of those left end points for w € Q', and by axiom

(2.2a), X(w) is equal to i at Vt(w).

Case of unstable i. Let

(3.23) p(s) = P{Xy°8, = i, Regy°8, > s).

By the strong Markov property applied at Vt + s, we have
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(3.24) p(w = p(s)n(i,u)/n(i,s), O0< s < u.

Since i is unstable, n(i,s) — o as s — 0. Since p(s) is

bounded, (3.24) can hold only if

(3.25) p(s) = 0 for all s > O.

Since 1 is a holding state,

Ref 00, = th > 0 on {Xvoet = 1}.
Therefore, (3.25) can hold only if (cf. (3.23) also)
(3.26) P{X,°8, = i} = O.

This shows that for fixed t there is a negligible set

0, such that X8, # 1 outside 0. Let

(3.27) g = U 0

t rational
Then QO is negligible. Pick w £ QO and t > 0. If Vt(w) =
then X;-6, (w) # 1 (since X (w) = 1 implies V. (w) > t).
If Vt(w) > t, then there are rationals r in (t,Vt(w)), and
for any such r we have Vr(w) = Vt(w). So,

XV°9t(w) = Xv°er(w) # 1 since w ﬁ Q.. This completes the

proof.

t
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The following shows that the converse of Proposition
(3.15) is also true; a holding state i 1s stable if and
only if, for almost every w, Ki(w) has only finitely many

component intervals in a bounded time interval.

(3.28) PROPOSITION. Let i be an unstable holding state.
Then, for a.e. w, between any two component Iintervals of

Ki(w) there is a third component interval of Ki(w)'

PROCF. Let Q2. be the negligible set defined by

0

(3.27), and suppose w £ 0 Let [p,q) and [u,v) be two

0"
component intervals of Ki(w), suppose q < u. Pick

t € (g,u). Clearly, Vt(w) < u. But the equality cannot

hold, since then X(V,(w),w) = X _(w) = 1 which contradicts

€
the choice of w. So, V

u

t(w) < u and therefore there must
exist r,s € (Vt(w),u) such that [r,s) is a component

interval of Ki(w).

The following is a rewording of the preceding
proposition. Recall that L is the set of all left end
points of the intervals contiguous to M. Therefore L N Ki
is the set of all left end points of the component inter-

vals of K..
i

(3.29) COROLLARY. Let 1 be an unstable holding point.
Then, for a.e. w and every t > 0, if (t,t+e) contains

one point of L(w) N Ki(w)’ it contains infinitely many
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points of L(w) N XK, (w).

that

We have seen in Theoren (3.22%, at the time of a
visit to an unstable state i, X is always at some other
state. From the definition of visiting time and the pre-
ceding corollary, it follows that at such a time X must

be in an instantaneous state.

(3.30) COROLLARY. Let i be an unstable holding state.

B R S N T SN AT s S X TS i it X Pl E IR B v

Then, for any t > O, Xv°et is in the set of instantaneous

states almost surely.

It follows that, 1f the semimarkov process X has an
unstable state, then 1t must also have some Instantaneocus

states. This, however, does not require that the state

é‘ space be infinite. In Example (l.l), for instance, state

1l is an unstable holding state.

(3.31) REMARK. Consider the transition function (P,) of

£
the Markov process (X,S), and let PiS be the probability
law corresponding to the entrance law Pt((i,s),-), t > 0.

If 1 is a holding state and s > O, then it is clear that

(3.32) t¥i?o (Xt’st) = (i,s) a.s. P,_-

If 1 is a stable holding point, the same is true for s = O

also. However, if i is an unstable point, this 1limit no
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longer exists for s = 0. In fact, when i is unstable, the
point (1,0) is a branching point for the semi-group
(Pt)t>o and the branching distribution is concentrated on

the set {(j,0) : j € E instantaneous]}.
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4, INSTANTANEOUS STATES

Thnrocughout this section 1 will be a fixed instan-
taneous state in E. We willl deal with the special point
¢ separately at the end.

Censider the set K, = {t : Xy = i}. For each w, we
define KZ(w) to be the set of all limit points of Ki(w)
from the right side, that is, t € K;(w) if and only if
there 1s a sequence (tn) c Ki(w) which 1s strictly de-
creasing to t. Define K;(w) similarly as the set of
all limit points from the left. Finally, let K?(w) be

the minimal right closed set whose closure 1s the same

as the closure of K, (w).

(4.1) LEMMA. a) The random set K; is progressively
measurable (relative to g). b) For almost every w, Ki(w)
is right closed, that is, K;(w) - Ki(w). ¢) The random

m . .
set K.l 1ls progressive.

PROOF. a) The first statement follows from the
Progressive measurabllity of X 1ltself.

b) By the definition of an instantaneous state
Ki < M almost surely. By axiom (2.2&), LN Ki = ¢ almost
surely; hence, Ki c M\L. Now axiom (2.2b) applies to
show that K, (w) is right closed for a.e. w.

c) We have, for any uw,
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—_— —
(4.2) K(w) = Ky (0)\ (K] (@)\K{ ()3
that is, K? is obtained from K, by removing from K; those
non-isolated points of K.l which are isolated on the right.
Since K, is progressive, so are K;'and K; (see
DELLACHERIE (1972), p. 126). DNow (4.2) implies the same

.m
for hi.

(4L.3) THEOREM. There is a right continuous increasing
additive process (As)seR (where Ao is not necessarily
zero) such that, for a.e. w,

(h.4) K?(w) = {t : As(w) = t for some sj.

PROOF 1s immediate from the characterization theorem
of MAISONNEUVE (1971) for regenerative sets whose conditions
on K? are satisfied by the following facts: K? is pro-
gressive; K? is right closed and minimael. For every
t € K?, we have Xt = 1 and St = 0, (the latter is because
K? j Ki c M). Therefore, by the stroné Markov prcperty,
for any stopping time T with [T] c K?, the past Hop is in-

dependent of the future o(X t > 0) which includes the

T+t
"future of K? after T."

It follows from the well-known facts about increasing

additive processes that
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(h.5) E[exp (-1 (A -A5)}] = exp[-sAN (1) ],
where
(4.6) XNX(i) = a(i) + f (1—e"xy)L(i,dy)

(0]

for some constant a(i) e:m+ and some Lévy measure L(i,:)

onlﬁo = (0,»]. We define (recall that Iﬁt = (t,=])
(4.7) n(i,t) = L(ijﬁt), t > 03
then Nx(i) is the Laplace transform of the measure N(i,-)

which has an atom of weight a(i) at t = 0 and is absolutely

continuous on (O,w) with density n(i,-).

(4.8) DEFINITION. The instantaneous state i is said to

be attractive if n(i,0) = +» and repellent if n(i,0) < o.

If 1 is attractive, it is further said to be light if

a(i) = O and heavy if a(i) > 0. State i 1is said to be

recurrent if n(i,+w) = O and transient if n(i,x) > O.

The next proposition provides the meanings behind
these definitions. We omit the proof, which follows from
Theorem (4.3), the well known facts about additive pro-
cesses, and the observations that Ki\K? is at most

countable and its every polnt 1s a limit point of Ki'
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(L.9) PROPOSITION. The following statements are true for
a.e. w in (XK, # g}.

a) If i is attractive Ki(w) is everywhere dense in
itself, and therefore, 1s perfect (in the right-topology).
If 1 is repellent, then every point of Ki(w) is isolated,
and therefore, X, (w) is at most countable.

b) If i is repellent; or attractive and light, then
the lLebesgue measure of Ki(w) is zero. If i1 is heavy,
then the Lebesgue measure of Ki(w) i1s strictly positive.

c) If i is recurrent then Ki(w) is unbounded; if

i is transient then X; (w) is bounded.

In the case of a repellent state, if TO’Tl""

the successive points of Ki’ we see that each Tn is a

are

stopping time and the process (Tn) is a delayed (and
possibly transient) renewal process. If X is a Chung
process, then every instantaneous state 1s attractive and
heavy. However, repellent and light attractive states do
come up within the boundary theory for Chung processes.
The behavior at a repellent state is very close to that of
a Chung process at a non-sticky boundary point (though not
exactly the same, as we shall see below), and the behavior
at a light attractive state is the same as that of a Chung
process at a sticky boundary point; (for the terms see

CHUNG (1968)).
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or %f The following clarifies the picture at a repellent
| state.
i
n ik
. %» (4.10) THEOREM. Let i be a repellent state. Then, for
, gt almost every w and for every t € Ki(w), the path X(w)
ik
?f admits ¢ as a limit point from the right at t; moreover,
en 4§ if X(w) admits j € E as a limit point from the right side

at t, then J must be an unstable holding point.

REMARK. It is possible to have more than one

unstable state as 1limit points from the right.

PROOF. Let Q' be the set on which X; © M\L and

Kj > X, for every stable holding state j and for every

Instantaneous state j. By the definition of an instan-

e

taneous state i, by Proposition (3.15) on Kj for a stable

holding state, and by Lemma (4.1) concerning Kj for j

instantaneous, we have that P(Q') = 1.
Let w € 0' and let t € K, (w). Since t € M(w)\L(w),

there is a sequence (tn) c ﬁ(w) strictly decreasing to t.

If the sequence (Xt (w)) has no limit points in E, then
n
there is a subsequence (XS (w)) converging to ¢ since the
n
state space E is compact.

Suppose that (Xy (w)) admits j € E as a limit point for
n
Some sequence (tn) decreasing to t. Since w € Q', the facts

o
that t € Kj(w) and t € Ki(w) imply that jmust be unstable. Let
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Vg be defined by (5.21) for the present state j; and
consider the sequence (sn) = (Vg (w)). By Corollary
(3.30), X (w) is instantaneous ?or each n. Hence, the
sequence (?Sn(w)) cannot have any limit points in E, be-
cause (sn) decreases to t and w € Q'. So, (XS (w)) must

n
admit ¢ as a limit point.

The preceding proof goes through for t € Ki(w) where
i 1is attractive and t is isolated on the right. We put
this next along with some other supplementary facts about
such points t. Note that, Theorem (M.B) specifies the
structure of K? completely, and hence, the next proposi-

tion completes the picture of Ki'

(4.11) PROPOSITION. Suppose i is attractive, and let
L, = Ki\K‘in = I«t‘l’\z«:l

a) The random set L, is progressive.

b) If T is a stopping time such that [T] < L;, then
T = 4+ almost surely.

c) Tor z.e. , Li(m; is ccuntable; if ¢ € Li(w;,

then there is (t_.) ! t such that Xy (w) =3 if t € Li(w)
n
and if there is (tn) ! t such that X, (w) = j for some

n

n

J € E, then j is unstable.

PROOF. a) follows from DELLACHERIE (1972) p. 126;

the proof of ¢) is the same as that of Theorem (4.10). To
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show b) let T be such a stopping time. Then, [T] < Ki
and the strong Markov property at T implies (by the
attractiveness of i) that T(w) € K;(w) for a.e.

w € {T < »}. Since Li(w) n K;(w) = @, and since

T(w) € Li(w) for a.e. w € {T < =} by hypothesis, we must

have T = += almost surely.

We have seen in the preceding propositions that if
i is attracti&e and if a left end point t of an interval con-
tiguous to K;(w) is such that t € K;(w) and t € K‘;(w) for
some Jj, then j must be unstable. The following strengthens
this result by showing that, in that case, t € K;(w) also:
in other wocrds, there are infinitely meny component in-

tervals of Kj(w) in any interval (t-e,t) with ¢ > O.

(4.12) PROPOSITION. Suppose i is attractive, let

Li = Ki\K? as before. Then for almost every w,

PROOF. Let Vj be the time of first visit to j after

t
t defined by (3.21), but for state j. For any fixed t,
this is a stopping time, and therefore, [V%] N Li =g

almost surely by Proposition (4.11b). Let

(4.13) v =U{V) £ 1}
r
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where the union is over all rational numbers r. Then,
P(R') = 1.

Choose w € Q' and suppose t € Li(w) n K;(w). Then,
for any s < t, s < VJ(w) < t. On the other hand, if s is
rational, Vg(w) cannot be t since w € '. Choose a se-~

quence r of rationals strictly increasing to t. Then,

J

r <V (w) < t
n

for every n, which implies that for each n there is

s, € [rn,t) such that s € Kj(w). Since r_ 1 t, this

implies that t € K—J.’(w).

In view of the ease with which Theorem (4.3) is ob-
tained it is worth commenting upon its main ingredients.
The obvious (and quite reasonable) ones are the progres-
sive measurability and strong Markov property. Other than
these, the most important is Axiom (2.2b), which is
equivalent to saying that Ki is right closed for every in-
stantaneous state 1. For Chung procesées this follows
from right lower semicontinuity, which in turn is made
possible by separability and stochastic continuity. How-
ever, for semimarkov processes, it 1s difficult to obtain
the property (2.2b) by any reasonable hypothesis. The
following i1s an example of a strong Markov process X which

satisfies all the axioms except (2.2b), and for which
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Theorem (4.3) fails, and the behavior at any of the three
instantaneous states is radically different from that

dexcribed above.

1
t),

processes each of which has parameter 1. Let Q' be the

(4.14) EXAMPLE. ILet (N}), (N5),... be independent Polsson

set of all w such that no two paths t —»Ng(w) and
t —>N?(w) have any jump time in common. Then P(Q') = 1

as is well known. We now define

(1 if w € Q' and t is a jump time of N%(w)
for some odd integer m;
X, (w) = { 2 if w € 0' and t is a jump time of N™(w)

for some even integer m;

L 0 otherwise.

Then P{Xt = 0} = 1 for every t, and X is stochastical-
ly continuous. For every w, X(w) admits all three possible
values as limiting values from the right (and left) at
any time t. So, X is separable trivially. Let
B = o(N0; s < t), and set g% = H @ gi ® ... . Then, X
is strong Markov with respect to (Eg).

instantaneous, every t is a time of discontinuity, axiom

Every state 1s

(2.2a) holds trivially, axiom (2.2b) does not hold.

Theorem (4.3) is not true for any state.

It should be clear from the foregoing discussion
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that the behavior of K¢ = (t : X, = v} is radically dif-
ferent from that at Ki for an instantaneous state i € E

even though ¢ is an instantaneous point. This is because
the set Kb is not necessarily right closed; and because

we do not have the strong Markov property at stopping times

T at which X may be in o¢.
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5. CONVERSION TO CHUNG PROCESSES

We will now give the rectification of Léﬁy's asser-
tion concerning the conversion of semimarkov processes
to Markov processes. The version due to YACKEL (1968)
contains the maln idea in this regard and we have nothing
to add if the semimarkov process X is such that every
state 1is eithgr stable or instantaneous and heavy.
Yackel insures this state of affairs by requiring that

the semi-group (P corresponding to the process (Xt,S

¢ &)

be "strong'. Our object in this section is to start
from our semimarkov process X and to transform it to a
Chung process.

Let C and D te the set of all stable and unstable

states respectively, and put

(5.1) D =bDx{1,2,...}, & =cC u D,

t=»
]
=
/'
2
c
o

Define f : E = E by setting

(5.2) f£(i) = i if 1 € E\D, f(i,n) = i if (i,n) € D.

In one of the steps below we need to use sequences

W,

ie a, independent of each other and of X, where
each wi 1s a sequence of 1i.1.d. exponential random var-
iables. If (Q,M,P) is not large enough to support them,

1t can be replaced by a suitably larger one in the usual
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ways known to all. We assume that it is large enough.

Here, then, is the main result.

(5.5) THEOREM. There exist a strong Markov process X

with state space E and a strictly increasing continuous

process A such that
(5.4) X, = £(X, ), t> 0.

Moreover, considered as a semimarkov process on E, the

process X has no unstable states and no light attractive

states.

(5.5) REMARK. The last statement of (5.3) means that, if
X has no repellent states, then i is a Chung process. If

X has repellent states, then putting

it(w) if X, (w) is not repellent,
© if Xt(w) is repellent,

~

we obtain a Chung process X.

The remainder of this section 1s devoted to proving

the above theorem and identifying (X.) and (A

2 Y

(5.7) STEP 1. Dilation of Ki for light attractive 1i.

Let A be the set of all light attractive states. For
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each i in A, let ¢t be the local time constructed by

MAISONNEUVE (1971) for the regenerative set K?, and note

that

(5.8) B(C1] < e°

(since the potential ¢ generated by e'sdci is bounded by

1; see MAISONNEUVE (1971), p. 149). IlLet (pi)iGA be a
sequence of strictly positive numbers Py with

2 p; = 1. Define5

(5.9) cg = 3 p,Ci.

The following summarizes the relevant facts concerning

the ct.

(5.10) IEMMA. a) Each CT (i € A) is a continuous (in-
creasing) additive functional of (X,S). The support of
the measure dci is Ki (--the closure of K3 this is equal
to K; U L; in the notation of Proposition (4.11)).

b) c® is an increasing continuous additive func-
tional of (X,S). The support of dcg is (Uiﬁi) UK.

©
c) Almost surely, for each i in A and t > O,

t
(5.11) | 1 (syac = p.c;.
0

PROOF. (a) is a restatement of the results shown



by MAISONNEUVE. To show (b), first note that E[cD] < e©

by (5.8) and (5.9). So, (5.9) defines an increasing

finite valued functional of (X,S). Additivity follows
from that for the C1. Left continuity for c° follows
from the fact that each C is increasing and continuous.
If t is a time of right increase for C*(w), that is, if
i i

Ci . (w) > Ci(w) for all e > O, then t belongs to

K?(w) c Ki(w). Hence, a time t of right increase for
c®(w) belongs to Ki(w) for exactly one i. It follows
that Cc° is right continuous, and that its set of right
increase 1s UiK?. The support of dcg is just the closure
of this; by axiom (2.2b), the closure is in (Uifi) U K¢.
Finally, (5.11) follows from (5.9), the fact that

the set of right increase of C° is UiK?, the fact that
K\K; is at most countable, the fact that the closure of
UiK? differs from UiKi by at most countably many points,

and the fact that C° is continuous (and therefore dCS

puts no mass on a countable set).
Define, for t > O,

(5.12) ¢

Il
o+
+
Q

e}
-3

1]
[
o
H

~—
2]
Q
2]
\4
+
—
ws

(5.13) X, =X_, Sg=5_, H =H

5.14) LEMMA. X~ is a semimarkov process (relative to
1
)

(
H”) with state space E. Each i € E\A has the same
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classification for Xl as 1t had for X. Each i € A 1is

heavy attractive for Xl.

PROOF. C 1s a strictly increasing continuous
additive functional of (X,S). Therefore, (Tt) is contin-

uous and strictly increasing; and each Ts is a stopping

time of H. It follows that the random time change (5.13)

yields a progressive strong Markov process (Xl,sl) rela-

tive to El. Regularity conditions (2.2) and (2.3) fol-

lows from the fact that (Tt) is strictly increasing.

This latter fact also implies that the qualitative pro-

perties of the sample paths of Xl are exactly as those of

the paths of X. Since c° remains constant over Ki for

i € E\A, the states in E\A have the same classification

1

and in fact the Lebesgue measure of K.l n [O’Ct] is equal

to the Lebesgue measure of Ki N [0,t], where K% is the
set of i-constancy of Xl. The statement concerning i € A

follows from (5.11) and the fact that the Lebesgue

1

measure of Ki

N [O,Ct] is equal to the mass put on
. . i
K; 0 [0,t] by dC_, which is p.Ci.

(5.15) STEP 2. Splitting the unstable states. For each
1

unstable holding state 1 (of X~ and therefore of X), let

K. (w) be the union of those component intervals of Ki(w)

in(
whose lengths belong to the interval [1/n,1/(n-1)),
ns=1,2,... . Then, each Kin(w) has only finitely many

components during a bounded interval, and we have
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~

2( ) {(i,n) if t € Kin(w), (i,n) € D,
W) =

Xl(w) otherwise;

E(w) = S%(w). Let (Ei) be the right continuous
2)

complete history generated by (Xt

and set S

(5.17) LEMMA. X2 is a semimarkov process (relative to
)

with state space E. Every 1 € C is a stable holding

state for X°. Every 1 € E\C is either heavy attractive

or repellent. Moreover, with f defined by (5.2), we have
1 2
(5.18)  Xi(w) = £(xF(w)), t>0, wen.

PROCF will only be sketched. ©Note that the dis-

continuity set M for X2 is the same as that for Xl, and

2 .1 2 1 . , -
therefore St = St and Rt = Rt =inf{s > t : s € ¥
1

Note again that X%(w) = (i,n) if and only if X_(w) =1 €D
%(w) + R%(w) € [1/n,Y(n-1)). Now, progressive

measurablility for X2 follows fram that for Xl and the fact

1y C ot

and S

that

Sl+Rl)l{i}(X%)

t = l[l/n,l/(n-l))( £

is right continuous. The strong Markov property for

(X2,Sg) is seen as follows: The process Y = (Xl,Sl,Rl) is
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strong Markov. For a stopping time T of 52, first note

that the future of (X°,S°) after T is conditionally in-

dependent of "the past Gp of Y before 7" given
+1 o1 o1

r = (%7.57.Bp) -

function g(YT) of YT given g% 1s some function of

2 42
(XT,ST). 0f course, Hy < Gp-

since the remaining assertions are trivial.

Y And, conditional expectation of any

This completes the proof

(5.19) STEP 3. Conversion to a Markov Process. This

step is exactly the same as the method of YACKEL (1968)
which works as long as there are no unstable or no light
attractive states. For the sake of completeness we des-
cribe the random time change involved.

For 1 € C let m(i) be a median value of the sojourn

distribution I,(i,E,-); see Section 3 for the defini-

tion. For i € D, set m(i,n) = 1/n. For each j € C=cCuD,

let Wj = (W be a sequence of i.i.d.r.v. having the

5
exponential distribution with parameter m(j). Further

let Wj, J € 6, be independent of each other and of XE.

(See the remarks preceding Theorem (5.3).) Let [Tjk’Ujk)

be the kD component interval offK% = {t : Xi = j}, and
set
t
. © W.k
(5.20) B = 3z [g—dE— 1, o (s)as
k=1 o “Jk “Jk Jk’ 7k
Define,
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t
o _ o e
(5.21) BY = f 1py3(%g)as,
o)
and set
- RO J.
(5.22) B, = Bp + = BY
jecC
I . N . 3 _ 42
(5.23) Ty = inf{s : B, > t])3 X{ = XTt.

Define(gz)to be the history generated by X2

Since C is strictly increasing, v 1s cocntinuous;
since C is continuous, T is strictly increasing. The
last fact implies that the gualitative structure of the
path™s of X° is the same as that of the paths of X°. 1In
particular, stable states of X2 are stable for XB, and
similarly for the heavy attractive states and repellent
states.

YACKEL's proof shows that X3 is strong Markov. X3
may differ from a Chung process only if there are repel-
lent states for X (--then, they remain repellent for XB).
This process X2 is the process X of Theorem (5.3). Fin-

ally, since C used in Step 1 and B used in this final

step are both strictly increasing, (5.12) and (5.23) imply
(5.24) X, = XX X° =%

This together with (5.18) shows that (5.4) holds with
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(5.25) %X, = %2 and A, - B. .
This completes the proof of Theorem (5.3).

Remark (5.5) makes use of Theorem (4.3): if
kt(w) = ifwhere i 1s repellent, then ¢ is the only limit-
ing valueAkS(w) as s | t. This is because X has no un-
stable states, and E is given the discrete topology.

It is possible that for some sequence (tk) decreasing to
t, at which i(w) is i repellent, we have %t (w) = (j,nk)
for scme unstable state j of X. Giving E tie discrete
topology with ¢ as the only point at infinity, the limit
of (j,nk) is ¢ as k = ». It is this fact which is the
basis of our statement that the conversion of X to X
alters the qualitative structure somewhat.

In order to keep the same qualitative behavior,
then, we need to let ® have the discrete topology but
have as points at infinity the point ¢ plus every point
i €D. Now, 1 € D is the 1limit of any sequence of the
form (i,nk), n, =« as k —«. Indeed, starting with
the Chung process X described in Remark (5.5), while

studying the behavior of X at its entrance boundary, each

point 1 € D will be a repellent boundary point.
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6. CONCLUDING REMARKS

We mention the implications of several possible

regularity conditions which are commonly introduced.

If every path X(w) is a separable function, then
there can be no repellent states, (but all other kinds
are possible). If X is right separable, then there can
be no repellent states, and K; is minimal (i.e. L, = a)
for every instantaneous state i. If X 1s right continuous,

then there are no instantaneous states and no unstable

states.
The role of "right lower semicontinuity" is somewhat

ambiguous. If we define it as usual, i.e. by the condi-

tion that

(6.1) X, = 1lim inf X

E sit S
for some ordering of states in E so that ¢ always corres-
ponds to 4w, that ordering becomes important. For ex-
ample, in Example (1.1), X satisfies (6.1). However, if

- we interchange the labels of the two states, (so that

O' =1 and 1' = 0 and O' < 1',) then X is not right lower
? semicontinuous; and moreover any attempt to make it so
would set X% = 0! for all t.

We may define a property RLSC by requiring that, fof"

any t, X have at most one finite limiting value at t




43

from the right, and that X be equal to that finite 1limit
if it exists, and be otherwise ¢. In the case of Chung
processes this property "RLSC" is simply the right' lower
semicontinuity. For semimarkov processes, if X has the
RLSC property, then there can be no unstable states and

no repellent states.
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