Wohltmann, Hans-Werner; Winkler, Roland C.

Working Paper
Solution of RE Models with Anticipated Shocks and Optimal Policy

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Department of Economics

Suggested Citation: Wohltmann, Hans-Werner; Winkler, Roland C. (2007) : Solution of RE Models with Anticipated Shocks and Optimal Policy, Economics Working Paper, No. 2007-32, Kiel University, Department of Economics, Kiel

This Version is available at:
http://hdl.handle.net/10419/22048

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Solution of RE Models with Anticipated Shocks and Optimal Policy

by Hans-Werner Wohltmann and Roland Winkler
Solution of RE Models with Anticipated Shocks and Optimal Policy

Hans-Werner Wohltmann* and Roland Winkler**
Christian-Albrechts-University of Kiel

December 20, 2007

Abstract

The purpose of this paper is to solve linear dynamic rational expectations models with anticipated shocks by using the generalized Schur decomposition method. We also determine the optimal unrestricted and restricted policy responses to temporary as well as permanent shocks which both are anticipated by the public. In particular, our method is useful for the analysis of optimal monetary policy in New Keynesian dynamic general equilibrium models.

JEL classification: C32, C61, E52
Keywords: Anticipated Shocks, Optimal Monetary Policy, Rational Expectations, Generalized Schur Decomposition

*Corresponding author: University of Kiel, Department of Economics, Olshausenstr. 40, D-24098 Kiel, Germany, Phone: ++49-431-880-1449, Fax: ++49-431-880-3150, E-mail: wohltmann@economics.uni-kiel.de

**E-mail: winkler@economics.uni-kiel.de
1 Introduction

The purpose of this paper is to solve linear dynamic rational expectations models with anticipated shocks by using the generalized Schur decomposition method. We also determine the optimal unrestricted and restricted policy responses to temporary as well as permanent shocks which both are anticipated by the public.

Our paper is closely related to the work of Söderlind (1999), who also uses the generalized Schur decomposition method to solve linear rational expectations models with optimal policy. Our approach differs in one important respect, namely the possibility to deal with anticipated shocks. In this case, the occurrence of all future shocks is known exactly at the time when the solution of the model is computed. Thus, our RE model is deterministic. Söderlind (1999), on the other hand, only considers stochastic models with white noise shocks which are, by definition, unpredictable. Our method contains unanticipated shocks as a borderline case and can therefore be seen as a generalization of the work by Söderlind (1999).

The paper is organized as follows: Section 2 discusses optimal policies in RE models with anticipated temporary shocks. We first determine the optimal unrestricted policy under precommitment and calculate the minimal value of the intertemporal loss function. We then consider optimal simple rules and show how the Schur decomposition can be used in this case to solve the model. Section 3 deals with permanent anticipated shocks while section 4 presents a short discussion of the well known stochastic case with i.i.d. shocks.

2 The Model

In this paper we discuss the following linear expectational difference equations

\[A \begin{pmatrix} w_{t+1} \\ E_t \nu_{t+1} \end{pmatrix} = B \begin{pmatrix} w_t \\ \nu_t \end{pmatrix} + C u_t + D \nu_{t+1} \]

(1)

where \(w_t \) is an \(n_1 \times 1 \) vector of predetermined variables with \(w_0 \) given, \(\nu_t \) an \(n_2 \times 1 \) vector of non-predetermined variables, \(u_t \) an \(m \times 1 \) vector of policy instruments and \(\nu_{t+1} \) an \(r \times 1 \) vector of exogenous shocks. The matrices \(A \) and \(B \) are \(n \times n \) (where \(n = n_1 + n_2 \)), while the matrices \(C \) and \(D \) are \(n \times m \) and \(n \times r \) respectively. We allow the matrix \(A \) to be singular which is the case if static (intratemporal) equations are included among the dynamic relationships. The vector \(w \) of backward-looking variables can include exogenous variables following autoregressive processes. \(E_t \nu_{t+1} \) denotes rational (model consistent) expectations of \(\nu_{t+1} \) formed at time \(t \). Equation (1) could represent a New Keynesian macroeconomic model with forward-looking expectations where the economy is being subjected to supply-side and demand-side shocks (see, for example, Clarida, Galí and Gertler (1999) or Walsh (2003)). We assume that
the shocks are anticipated by the public in advance and take the following form

$$\nu_t = \begin{cases} \overline{\nu} & \text{for } t = T > 0 \\ 0 & \text{for } t \neq T \end{cases}$$ \quad (2)

where $\overline{\nu} = (\nu_1, \ldots, \nu_r)'$ is a constant non-zero $r \times 1$ vector. It is assumed that at time $t = 0$ the public anticipates a shock of the form (2) to take place at some future date $T > 0$. A macroeconomic example is the credible announcement of the OPEC that a temporary increase in the price of crude oil (p_O) will take place at some future date $T > 0$ where p_O follows the autoregressive $AR(1)$ process

$$p_{O,t} = \beta p_{O,t-1} + \kappa_t \quad (0 \leq \beta < 1)$$ \quad (3)

with the one-unit price shock

$$\kappa_t = \begin{cases} 1 & \text{for } t = T > 0 \\ 0 & \text{for } t \neq T \end{cases}$$ \quad (4)

Then $p_{O,t}$ would be a predetermined variable $w_{j,t}$ while κ_t would be part of the general shock vector ν_t. Since the shocks are anticipated by the public we have $E_t \nu_{t+1} = \nu_{t+1}$. For notational convenience, define the $n \times 1$ vector k_t by

$$k_t = \begin{pmatrix} w_t \\ \nu_t \end{pmatrix}$$ \quad (5)

Define further an $n_3 \times 1$ target vector s_t by

$$s_t = \tilde{A} k_t + \tilde{B} u_t$$ \quad (6)

where the matrices \tilde{A} and \tilde{B} are $n_3 \times n$ and $n_3 \times m$ respectively. Assume that the policy maker’s welfare loss at time t is given by

$$J_t = \frac{1}{2} E_t \sum_{i=0}^{\infty} \lambda^i \{k'_{t+i} \tilde{W} k_{t+i} + 2k'_{t+i} P u_{t+i} + u'_{t+i} R u_{t+i} \}$$ \quad (7)

where W_1 and W_2 are symmetric and non-negative definite and λ is a discount factor with $0 < \lambda \leq 1$. We can rewrite J_t as

$$J_t = \frac{1}{2} E_t \sum_{i=0}^{\infty} \lambda^i \{k'_{t+i} \tilde{W} k_{t+i} + 2k'_{t+i} \tilde{P} u_{t+i} + u'_{t+i} \tilde{R} u_{t+i} \}$$ \quad (8)

where $\tilde{W} = \tilde{A}' W_1 \tilde{A}$ and $\tilde{R} = W_2 + \tilde{B}' W_1 \tilde{B}$ are symmetric and non-negative definite and $\tilde{P} = \tilde{A}' W_1 \tilde{B}$.

2
2.1 Optimal Policy with Precommitment

In the following the policy maker’s optimal policy rule at time \(t = 0 \) is developed. It is assumed that the policy maker is able to commit to such a rule. From the Lagrangian

\[
L_0 = \frac{1}{2} E_0 \sum_{t=0}^{\infty} \lambda^t \{ k_t' \dot{W} k_t + 2k_t' P u_t + u_t' R u_t \\
+ 2\rho_{t+1}' [Bk_t + C u_t + Dv_{t+1} - Ak_{t+1}] \}
\]

(9)

with the \(n \times 1 \) multiplier \(\rho_{t+1} \) we get the first-order conditions with respect to \(\rho_{t+1}, k_t \) and \(u_t \):

\[
\begin{pmatrix}
A & 0_{n \times n} & 0_{n \times n} \\
B & 0_{n \times n} & -\lambda B' \\
0_{m \times n} & 0_{n \times n} & \lambda B'
\end{pmatrix}
\begin{pmatrix}
k_t' \\
u_t' \\
\rho_t + 1
\end{pmatrix}
=
\begin{pmatrix}
B' & C & 0_{n \times n} \\
0_{n \times n} & A' & 0_{n \times n} \\
-\lambda \dot{W} & -\lambda P & 0_{n \times n}
\end{pmatrix}
\begin{pmatrix}
k_t \\
u_t \\
\rho_t + 1
\end{pmatrix}

\]

(10)

To solve the system of equations (10) expand the state and costate vector \(k_t \) and \(\rho_t \) as \((w_t', v_t')'\) and \((p_{wt}', p_{vt}')'\) respectively and reorder the rows of the \((2n+m) \times 1\) vector \((k_t', u_t', \rho_t')'\) by placing the predetermined vector \(p_{vt} \) after \(w_t \). Since \(v_t \) is forward-looking with freely chosen initial value \(v_0 \), the corresponding Lagrange multiplier \(p_{vt} \) is predetermined with initial value \(p_{v0} = 0 \). Reorder the columns of the \((2n+m) \times (2n+m)\) matrices in (10) according to the reordering of \((k_t', u_t', \rho_t')'\) and write the result as

\[
F \begin{pmatrix}
\tilde{w}_{t+1} \\
\tilde{v}_{t+1}
\end{pmatrix}
= G \begin{pmatrix}
\tilde{w}_t \\
\tilde{v}_t
\end{pmatrix}
+ \begin{pmatrix}
D \\
0_{n \times r} \\
0_{m \times r}
\end{pmatrix}
\nu_{t+1}
\]

(11)

where

\[
\tilde{w}_t = \begin{pmatrix}
w_t \\
p_{vt}
\end{pmatrix}
\]

(12)

and

\[
\tilde{v}_t = \begin{pmatrix}
v_t \\
u_t \\
p_{wt}
\end{pmatrix}
\]

(13)

The \(n \times 1 \) vector \(\tilde{w}_t \) contains the 'backward-looking' variables of (10) while the \((n+m) \times 1\) vector \(\tilde{v}_t \) contains the 'forward-looking' variables.

Equation (10) implies that the \((2n+m) \times (2n+m)\) matrix \(F \) is singular. To solve equation (11) we apply the generalized Schur decomposition method [Söderlind (1999), Klein (2000)]. The decomposition of the square matrices \(F \) and \(G \) are given by

\[
F = \overline{Q} S \overline{Z}, \quad G = \overline{Q} T \overline{Z}
\]

(14)
or equivalently

\[QFZ = S, \quad QGZ = T \quad (15) \]

where \(Q, Z, S \) and \(T \) are square matrices of complex numbers, \(S \) and \(T \) are upper triangular and \(Q \) and \(Z \) are unitary, i.e.

\[Q \cdot \overline{Q} = \overline{Q} \cdot Q = I_{(2n+m) \times (2n+m)} = Z \cdot \overline{Z} = \overline{Z} \cdot Z \quad (16) \]

where the non-singular matrix \(Q' \) is the transpose of \(Q \), which denotes the complex conjugate of \(Q \). \(Z' \) is the transpose of the complex conjugate of \(Z \).

The matrices \(S \) and \(T \) can be arranged in such a way that the block with the stable generalized eigenvalues (the \(i \)th diagonal element of \(T \) divided by the \(i \)th diagonal element of \(S \)) comes first. Premultiply both sides of equation (11) with \(Q \) and define auxiliary variables \(\tilde{z}_t \) and \(\tilde{x}_t \) by

\[\begin{pmatrix} \tilde{z}_t \\ \tilde{x}_t \end{pmatrix} = \overline{Z} \begin{pmatrix} \tilde{\omega}_t \\ \tilde{\nu}_t \end{pmatrix} \quad (17) \]

Partition the triangular matrices \(S \) and \(T \) conformably with \(\tilde{z} \) and \(\tilde{x} \) and set

\[\begin{pmatrix} D \\ 0_{n \times r} \\ 0_{m \times r} \end{pmatrix} = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} \quad (18) \]

where \(Q_1 \) is \(n \times r \) and \(Q_2 \) is \((n + m) \times r\). We then obtain the equivalent system

\[\begin{pmatrix} S_{11} & S_{12} \\ 0_{(n+m) \times n} & S_{22} \end{pmatrix} \begin{pmatrix} \tilde{z}_{t+1} \\ \tilde{x}_{t+1} \end{pmatrix} = \begin{pmatrix} T_{11} & T_{12} \\ 0_{(n+m) \times n} & T_{22} \end{pmatrix} \begin{pmatrix} \tilde{z}_t \\ \tilde{x}_t \end{pmatrix} + \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} \nu_{t+1} \quad (19) \]

where the \(n \times n \) matrix \(S_{11} \) and the \((n + m) \times (n + m)\) matrix \(T_{22} \) are invertible while \(S_{22} \) is singular. The square matrix \(T_{11} \) may also be singular. The lower block of equation (19) contains the unstable generalized eigenvalues and must be solved forward. Since

\[\tilde{x}_{t+s} = T_{22}^{-1} S_{22} \tilde{x}_{t+s+1} - T_{22}^{-1} Q_2 \nu_{t+s+1} \quad (s = 0, 1, 2, \ldots) \quad (20) \]

the unique stable solution for \(\tilde{x}_t \) is given by

\[\tilde{x}_t = - \sum_{s=0}^{\infty} (T_{22}^{-1} S_{22})^s T_{22}^{-1} Q_2 E_t \nu_{t+s+1} \]

\[= \begin{cases} -(T_{22}^{-1} S_{22})^{T-1-t} T_{22}^{-1} Q_2 \overline{Z} & \text{for } 0 \leq t < T \\ 0 & \text{for } t \geq T \end{cases} \quad (21) \]

The upper block of (19) contains the stable generalized eigenvalues and can be solved backward. Since

\[\tilde{z}_{t+1} = S_{11}^{-1} T_{11} \tilde{z}_t + S_{11}^{-1} (T_{12} \tilde{x}_t - S_{12} \tilde{x}_{t+1}) + S_{11}^{-1} Q_1 \nu_{t+1} \quad (22) \]
the general solution is given by

$$
\begin{bmatrix}
\hat{\nu}_t \\
\hat{\nu}_t
\end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} \hat{z}_t \\
\hat{x}_t
\end{bmatrix}
$$

and therefore

$$
\hat{\nu}_0 = Z_{11} \hat{z}_0 + Z_{12} \hat{x}_0
$$

with

$$
\nu_0 = (w_0', 0_{n_2 \times 1})', \quad \hat{z}_0 = K
$$

and

$$
\hat{x}_0 = -(T_{22}^{-1} S_{22})^{-1} T_{22}^{-1} Q_2 \varphi
$$

where $T > 0$ is assumed.¹ Equation (25) implies

$$
K = Z_{11}^{-1} \hat{\nu}_0 - Z_{11}^{-1} Z_{12} \hat{x}_0
$$

provided the inverse Z_{11}^{-1} exists. A necessary condition is that the dynamic system (11) has the saddle path property, i.e., that the number of backward-looking variables ($n_1 + n_2 = n$) coincides with the number of stable generalized eigenvalues [Söderlind (1999), Klein (2000)]. If Z_{11} is invertible, equation (24) implies

$$
\hat{\nu}_t = Z_{21} \hat{z}_t + Z_{22} \hat{x}_t = Z_{21}(Z_{11}^{-1} \hat{\nu}_t - Z_{11}^{-1} Z_{12} \hat{x}_t) + Z_{22} \hat{x}_t = N \hat{\nu}_t + \hat{Z} \hat{x}_t
$$

where

$$
N = Z_{21} Z_{11}^{-1}, \quad \hat{Z} = Z_{22} - Z_{21} Z_{11}^{-1} Z_{12}
$$

¹In the special case $T = 0$ (unanticipated shocks) we have $\hat{z}_0 = 0$ and $\hat{\nu}_t = (S_{11}^{-1} T_{11})' K + (S_{11}^{-1} T_{11})' S_{11}^{-1} Q_1 \varphi$ implying $\hat{z}_0 = K + S_{11}^{-1} Q_1 \varphi$ and $K = Z_{11}^{-1} \hat{\nu}_0 - S_{11}^{-1} Q_1 \varphi$ with $w_0 \neq 0$. By contrast, the initial value w_0 can be normalized to zero if $T > 0$.

Write equation (30) as
\[
\begin{pmatrix}
 v_t \\
 u_t \\
 p_{vt}
\end{pmatrix} =
\begin{pmatrix}
 N_{11} & N_{12} \\
 N_{21} & N_{22} \\
 N_{31} & N_{32}
\end{pmatrix}
\begin{pmatrix}
 w_t \\
 p_{vt}
\end{pmatrix} +
\begin{pmatrix}
 \tilde{Z}_1 \\
 \tilde{Z}_2
\end{pmatrix} \tilde{x}_t
\]
(32)

Assume the invertibility of the \(n_2 \times n_2\) matrix \(N_{12}\). Then the optimal policy rule under commitment can be written as
\[
u_t = N_{21} w_t + N_{22} p_{vt} + \tilde{Z}_2 \tilde{x}_t
\]
\[
= N_{21} w_t + N_{22} N_{12}^{-1} (v_t - N_{11} w_t - \tilde{Z}_1 \tilde{x}_t) + \tilde{Z}_2 \tilde{x}_t
\]
\[
= N_{22} N_{12}^{-1} v_t + (N_{21} - N_{22} N_{12}^{-1} N_{11}) w_t + (\tilde{Z}_2 - N_{22} N_{12}^{-1} \tilde{Z}_1) \tilde{x}_t
\]
(33)

where \(\tilde{x}_t\) is given by (21). For \(t < T\) \(u_t\) depends on the auxiliary variable \(\tilde{x}_t\) while for \(t \geq T\) \(u_t\) is only a linear function of the predetermined state variables \(w_t\) and \(p_{vt}\) where \(p_{vt}\) can be substituted by the original state variables \(v_t\) and \(w_t\).

Minimal Value of the Loss Function

To determine the minimal value of the loss function \(J_t\) at time \(t = 0\) we express \(J_t\) as function of \(\tilde{w}\) and \(\tilde{v}\). The loss function (8) can be written as
\[
J_t = \frac{1}{2} \sum_{i=0}^{\infty} \lambda^i (k_{t+i}^i, u_{t+i}^i) H \begin{pmatrix}
 k_{t+i} \\
 u_{t+i}
\end{pmatrix} = \frac{1}{2} \sum_{i=0}^{\infty} \lambda^i (w_{t+i}^i, v_{t+i}^i, u_{t+i}^i) H \begin{pmatrix}
 w_{t+i} \\
 v_{t+i} \\
 u_{t+i}
\end{pmatrix}
\]
(34)

where the \((n + m) \times (n + m)\) matrix \(H\) is given by
\[
H = \begin{pmatrix}
 \tilde{W} & P \\
 P' & R
\end{pmatrix}
\]
(35)

with \(H = H'\). Define the \(n_1 \times n\) matrix \(\tilde{D}_1\) and the \((n_2 + m) \times (n + m)\) matrix \(\tilde{D}_2\) by
\[
\tilde{D}_1 = (I_{n_1 \times n_1}, 0_{n_1 \times n_2})
\]
(36)

and
\[
\tilde{D}_2 = (I_{(n_2 + m) \times (n_2 + m)}, 0_{(n_2 + m) \times n_1})
\]
(37)

respectively. Then
\[
w = \tilde{D}_1 \begin{pmatrix}
 w \\
 p_{vt}
\end{pmatrix} = \tilde{D}_1 \tilde{w}
\]
(38)

\[
\begin{pmatrix}
 v \\
 u
\end{pmatrix} = \tilde{D}_2 \begin{pmatrix}
 v \\
 p_{wt}
\end{pmatrix} = \tilde{D}_2 \tilde{v}
\]
(39)

and
\[
\begin{pmatrix}
 w \\
 v \\
 u
\end{pmatrix} = \tilde{D} \begin{pmatrix}
 \tilde{w} \\
 \tilde{v}
\end{pmatrix}
\]
(40)
with
\[
\tilde{D} = \begin{pmatrix} \tilde{D}_1 & 0_{n_1 \times (n+m)} \\ 0_{(n_2+m) \times n} & \tilde{D}_2 \end{pmatrix}
\]
\[
= \begin{pmatrix} I_{n_1 \times n_1} & 0_{n_1 \times n_2} & 0_{n_1 \times (n_2+m)} & 0_{n_1 \times n_1} \\ 0_{(n_2+m) \times n_1} & I_{(n_2+m) \times (n_2+m)} & 0_{(n_2+m) \times n_1} \\ \end{pmatrix}
\]
(41)
which is an \((n+m) \times (2n+m)\) matrix. The loss function \(J_t\) can now be rewritten as
\[
J_t = \frac{1}{2} \sum_{i=0}^{T-1} \lambda_i (\tilde{w}_{t+i}, \tilde{v}_{t+i}) \tilde{D}' H \tilde{D} \begin{pmatrix} \tilde{w}_{t+i} \\ \tilde{v}_{t+i} \end{pmatrix} = J_t^{(1)} + J_t^{(2)}
\]
(42)
where
\[
J_t^{(1)} = \frac{1}{2} \sum_{i=0}^{T-1} \lambda_i (\tilde{w}_{t+i}, \tilde{v}_{t+i}) \tilde{D}' \tilde{H} \tilde{D} \begin{pmatrix} \tilde{w}_{t+i} \\ \tilde{v}_{t+i} \end{pmatrix}
\]
(43)
and
\[
J_t^{(2)} = \frac{1}{2} \sum_{i=T}^{\infty} \lambda_i (\tilde{w}_{t+i}, \tilde{v}_{t+i}) \tilde{D}' H \tilde{D} \begin{pmatrix} \tilde{w}_{t+i} \\ \tilde{v}_{t+i} \end{pmatrix}
\]
(44)
We want to calculate \(J_t^{(2)}\) at first. Since
\[
\tilde{v}_t = \tilde{N} \tilde{w}_t \quad (N = Z_{21} Z_{11}^{-1}) \quad \text{for} \quad t \geq T
\]
(45)
we get for \(t \geq T\)
\[
\begin{pmatrix} \tilde{w}_t \\ \tilde{v}_t \end{pmatrix} = \tilde{N} \tilde{w}_t
\]
(46)
where
\[
\tilde{N} = \begin{pmatrix} I_{n \times n} \\ N \end{pmatrix}
\]
(47)
is a \((2n+m) \times n\) matrix. \(J_t^{(2)}\) can be the rewritten as
\[
J_t^{(2)} = \frac{1}{2} \sum_{i=T}^{\infty} \lambda_i \tilde{w}_{t+i} \tilde{N}' \tilde{D}' H \tilde{D} \tilde{N} \tilde{w}_{t+i} + \frac{1}{2} \tilde{w}_{t+i} H^* \tilde{w}_{t+i}
\]
(48)
with
\[
H^* = \tilde{N}' \tilde{D}' H \tilde{D} \tilde{N}
\]
(49)
\(H^*\) is a symmetric \(n \times n\) matrix. From (23) and (24) we obtain for \(t \geq T\)
\[
\tilde{w}_t = Z_{11} \tilde{z}_t = Z_{11} [(S_{11}^{-1} T_{11})^t K + \sum_{s=0}^{T-1} (S_{11}^{-1} T_{11})^{t-s-1} S_{11}^{-1} (T_{12} \tilde{x}_s - S_{12} \tilde{x}_{s+1}) + (S_{11}^{-1} T_{11})^{t-T} S_{11}^{-1} Q_{11}] \tilde{w}
\]
(50)
which can be written as

$$\tilde{w}_t = Z_{11}M^{t-T}\tilde{K} \quad (t \geq T) \quad (51)$$

with

$$M = S_{11}^{-1}T_{11} \quad (52)$$

(which is not invertible in general),

$$\tilde{K} = M^T K + S_{11}^{-1}Q_1\varphi + \sum_{s=0}^{T-1} M^{T-s-1}S_{11}^{-1}(T_{12}\tilde{x}_s - S_{12}\tilde{x}_{s+1}) \quad (53)$$

and

$$\tilde{x}_s = -(T_{22}^{-1}S_{22})^{T-s-T}T_{22}^{-1}Q_2\varphi \quad \text{for} \quad 0 \leq s < T \quad (54)$$

Inserting (51) in (48) we obtain

$$J_t^{(2)} = \frac{1}{2}(M^T\tilde{K})'\lambda T \left(\sum_{i=T}^{\infty} \lambda^{i-T}(Z_{11}M^{i-T})'H^*(Z_{11}M^{i-T}) \right) M^T\tilde{K}$$

$$\quad = \frac{1}{2} \lambda^T \varphi_t^*V^* \varphi_t = \frac{1}{2} \lambda^T \text{trace}(V^*\varphi_t^*\varphi_t) \quad (55)$$

where

$$\varphi_t = M^t\tilde{K} \quad (56)$$

and V^* is the (convergent) geometric sum of matrices

$$V^* = \sum_{i=T}^{\infty} \lambda^{i-T}(Z_{11}M^{i-T})'H^*(Z_{11}M^{i-T}) \quad (57)$$

V^* is $n \times n$ and satisfies the Lyapunov equation [Currie and Levine (1993)]

$$V^* = Z_{11}'H^*Z_{11} + \sum_{i=T+1}^{\infty} \lambda^{i-T}(Z_{11}M^{i-T})'H^*(Z_{11}M^{i-T})$$

$$\quad = Z_{11}'H^*Z_{11} + \sum_{i=T}^{\infty} \lambda^{i+1-T}(Z_{11}M^{i+1-T})'H^*(Z_{11}M^{i+1-T})$$

$$\quad = Z_{11}'H^*Z_{11} + \lambda M'V^*M \quad (58)$$

To solve for V^*, we use the matrix identities [Rudebusch and Svensson (1999), Klein (2000)]

$$\text{vec}(A + B) = \text{vec}(A) + \text{vec}(B) \quad (59)$$

and

$$\text{vec}(ABC) = [C' \otimes A] \text{vec}(B) \quad (60)$$

8
where vec(A) denotes the vector of stacked column vectors of the matrix A, and \otimes denotes the Kronecker product of matrices. We then obtain the equation
\[
\text{vec}(V^*) - [\lambda M' \otimes M'] \text{vec}(V^*) = \text{vec}(Z_{11}'H^*Z_{11})
\]
with the solution
\[
\text{vec}(V^*) = [I_{n \times n} - \lambda M' \otimes M']^{-1} \text{vec}(Z_{11}'H^*Z_{11})
\]
where
\[
\text{vec}(Z_{11}'H^*Z_{11}) = [Z_{11}' \otimes Z_{11}'] \text{vec}(H^*)
\]
with
\[
\text{vec}(H^*) = [(\tilde{D} \tilde{N})' \otimes (\tilde{D} \tilde{N})'] \text{vec}(H)
\]
For $t = 0$ we get
\[
J_0^{(2)} = \frac{1}{2} \lambda^T \text{trace}(V^* \varphi_0 \varphi_0') = \frac{1}{2} \lambda^T \text{trace}(V^* \tilde{K} \tilde{K}')
\]
The next step is the calculation of the finite sum $J_t^{(1)}$ for $t = 0$. Since
\[
\begin{pmatrix} \tilde{w} \\ \tilde{v} \end{pmatrix} = Z \begin{pmatrix} \tilde{z} \\ \tilde{x} \end{pmatrix}
\]
we obtain
\[
J_0^{(1)} = \frac{1}{2} \sum_{i=0}^{T-1} \lambda^i (\tilde{w}'_i, \tilde{v}'_i) \tilde{D}'H \tilde{D} \begin{pmatrix} \tilde{w}_i \\ \tilde{v}_i \end{pmatrix} = \frac{1}{2} \sum_{i=0}^{T-1} \lambda^i (\tilde{z}'_i, \tilde{x}'_i) Z' \tilde{D}'H \tilde{D}Z \begin{pmatrix} \tilde{z}_i \\ \tilde{x}_i \end{pmatrix}
\]
where \tilde{z}_i and \tilde{x}_i are defined in (23) and (54) respectively.

The optimal unrestricted policy under commitment yields a loss given by
\[
J_0 = J_0^{(1)} + J_0^{(2)}
\]
where
\[
J_0^{(2)} = \frac{1}{2} \lambda^T \text{trace}(V^* \varphi_0 \varphi_0') = \frac{1}{2} \lambda^T \text{trace}(V^* \tilde{K} \tilde{K}')
\]
In the special case $T = 0$ (unanticipated shocks) we have
\[
J_0 = J_0^{(2)} = \frac{1}{2} \tilde{K}'V^* \tilde{K}
\]
where
\[
\tilde{K} = K \bigg|_{T=0} + S_{11}^{-1}Q_1 \varphi = Z_{11}^{-1} \tilde{w}_0 - S_{11}^{-1}Q_1 \varphi + S_{11}^{-1}Q_1 \varphi = Z_{11}^{-1} \tilde{w}_0
\]
Then
\[
J_0 = \frac{1}{2} \tilde{w}_0'Z_{11}^{-1}V^*Z_{11}^{-1} \tilde{w}_0 = \frac{1}{2} \tilde{w}_0'V \tilde{w}_0' = \frac{1}{2} \text{trace}(V \tilde{w}_0 \tilde{w}_0')
\]
where
\[
\tilde{w}_0 \tilde{v}_0' = \begin{pmatrix} w_0 \\ p_{v0} \\ u_0' \\ v_0' \end{pmatrix} \begin{pmatrix} w_0' w_0' \\ 0_{n_1 \times n_2} \\ 0_{n_2 \times n_2} \end{pmatrix} = (w_0 v_0') (w_0 v_0') (0_{n_1 \times n_2} 0_{n_2 \times n_2}) \tag{73}
\]
and \(V = Z_{11}^{-1} V^* Z_{11}^{-1} \) satisfies the matrix equation
\[
\begin{aligned}
V &= Z_{11}^{-1} V^* Z_{11}^{-1} = H^* + \lambda Z_{11}^{-1} M' V^* M Z_{11}^{-1} \\
&= H^* + \lambda Z_{11}^{-1} M' Z_{11}^{-1} V^* Z_{11}^{-1} Z_{11} M Z_{11}^{-1} = H^* + \lambda V^* T
\end{aligned}
\tag{74}
\]
with
\[
\Gamma = Z_{11} M Z_{11}^{-1} \quad \text{and} \quad M = S_{11}^{-1} T_{11}
\tag{75}
\]

2.2 Optimal Simple Rule

The policy maker could alternatively commit to a suboptimal simple rule of the form
\[
u_t = \Lambda k_t + \Psi E_t k_{t+1} \tag{76}
\]
where the constant matrices \(\Lambda \) and \(\Psi \) are \(m \times n \). Assuming rational expectations and exogenous shocks of the form (2) which are anticipated in \(t = 0 \) we get the dynamic system
\[
\begin{pmatrix} A & 0_{n \times m} \\ \Psi & 0_{m \times m} \end{pmatrix} \begin{pmatrix} k_{t+1} \\ u_{t+1} \end{pmatrix} = \begin{pmatrix} B & C \\ -\Lambda & I_{m \times m} \end{pmatrix} \begin{pmatrix} k_t \\ u_t \end{pmatrix} + \begin{pmatrix} D \\ 0_{m \times r} \end{pmatrix} \nu_{t+1} \tag{77}
\]
The generalized Schur decomposition yields the system of equations
\[
F \begin{pmatrix} \tilde{w}_{t+1} \\ \tilde{v}_{t+1} \end{pmatrix} = G \begin{pmatrix} \tilde{w}_t \\ \tilde{v}_t \end{pmatrix} + \begin{pmatrix} D \\ 0_{m \times r} \end{pmatrix} \nu_{t+1} \tag{78}
\]
where \(\tilde{w} = w \) is an \(n_1 \times 1 \) vector, \(\tilde{v} = (v', u')' \) is an \((n_2 + m) \times 1 \) vector and where the square matrices \(F \) and \(G \) are \((n + m) \times (n + m) \) with the decomposition
\[
Q F Z = S, \quad Q G Z = T \tag{79}
\]
\(Q, Z, S \) and \(T \) are \((n + m) \times (n + m) \) matrices. Since
\[
\begin{pmatrix} \tilde{w} \\ \tilde{v} \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} \tilde{z} \\ \tilde{x} \end{pmatrix} \tag{80}
\]
the matrices \(Z_{11}, Z_{12}, Z_{21} \) and \(Z_{22} \) are now \(n_1 \times n_1, n_1 \times (n_2 + m), (n_2 + m) \times n_1 \) and \((n_2 + m) \times (n_2 + m) \) respectively. The auxiliary variables \(\tilde{z} \) and \(\tilde{x} \) satisfy the system of equations
\[
\begin{pmatrix} S_{11} & S_{12} \\ 0_{(n_2 + m) \times n_1} & S_{22} \end{pmatrix} \begin{pmatrix} \tilde{z}_{t+1} \\ \tilde{x}_{t+1} \end{pmatrix} = \begin{pmatrix} T_{11} & T_{12} \\ 0_{(n + m) \times n_1} & T_{22} \end{pmatrix} \begin{pmatrix} \tilde{z}_t \\ \tilde{x}_t \end{pmatrix} + \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} \nu_{t+1} \tag{81}
\]
where S_{11} and T_{11} are $n_1 \times n_1$ matrices, S_{22} and T_{22} are $(n_2 + m) \times (n_2 + m)$ and S_{12} and T_{12} are $n_1 \times (n_2 + m)$. The matrices Q_1 and Q_2 are $n_1 \times r$ and $(n_2 + m) \times r$ respectively with

$$
\begin{pmatrix}
Q_1 \\
Q_2
\end{pmatrix} = Q
\begin{pmatrix}
D \\
0_{m \times r}
\end{pmatrix}
$$

(82)

The solution of (81) is given by (21) and (23). For $t \geq T$ we get

$$
\tilde{\nu}_t = N\tilde{w}_t = Nw_t
$$

(83)

where $N = Z_{21}Z_{11}^{-1}$ is now an $(n_2 + m) \times n_1$ matrix.

The loss function (42) simplifies to

$$
J_t = \frac{1}{2} \sum_{i=0}^{\infty} \lambda^i (w'_{t+i}, \tilde{v}'_{t+i})H (w_{t+i}, \tilde{v}_{t+i})
$$

(84)

since $\tilde{D}_1 = I_{n_1 \times n_1}$, $\tilde{D}_2 = I_{(n_2+m) \times (n_2+m)}$ and therefore $\tilde{D} = I_{(n+m) \times (n+m)}$ (cf. (41)). J_t can be partitioned via (42). $J_t^{(2)}$ can be written as (48) with

$$
H^* = \tilde{N}'HN
$$

(85)

and

$$
\tilde{N} = \begin{pmatrix} I_{n_1 \times n_1} \\ N \end{pmatrix}
$$

(86)

The value of the loss function J_0 for given matrices Λ and Ψ is given by $J_0 = J_0^{(1)} + J_0^{(2)}$, where $J_0^{(1)}$ and $J_0^{(2)}$ are defined in (67) and (69) respectively. The minimization of J_0 with respect to the coefficients of the matrices Λ and Ψ yields an optimal simple rule of the form (76). The loss under such a policy rule is greater than the loss under the unrestricted optimal policy under commitment.

3 Anticipated Permanent Shocks

Up to now we have discussed the solution method in case of anticipated temporary shocks. Let us now discuss the case of anticipated permanent shocks which take the following form:

$$
\nu_t = \begin{cases} \nu_0 & \text{for } 0 \leq t < T \\ \nu_1 (\neq \nu_0) & \text{for } t \geq T \end{cases}
$$

(87)

Such a shock could be a permanent increase in the price of crude oil taking place at time $t = T$ which the public anticipates at time $t = 0$. The Schur decomposition (19) can again be used to solve the dynamic system in case of permanent anticipated shocks. The steady state system of (19) is given by

$$
\begin{pmatrix}
S_{11} \\
0_{(n+m) \times n}
\end{pmatrix}
\begin{pmatrix}
\tilde{z} \\
\tilde{x}
\end{pmatrix} =
\begin{pmatrix}
T_{11} & T_{12} \\
0_{(n+m) \times n} & T_{22}
\end{pmatrix}
\begin{pmatrix}
\tilde{z} \\
\tilde{x}
\end{pmatrix} +
\begin{pmatrix}
Q_1 \\
Q_2
\end{pmatrix} \psi
$$

(88)
where
\[\tilde{z} = \begin{cases} \tilde{z}_0 & \text{for } 0 \leq t < T \\ \tilde{z}_1 & \text{for } t \geq T \end{cases} \] (89)

and
\[\tilde{x} = \begin{cases} \tilde{x}_0 & \text{for } 0 \leq t < T \\ \tilde{x}_1 & \text{for } t \geq T \end{cases} \] (90)

The dynamics of the Schur decomposition can be written in the form
\[\tilde{x}_t = T_{22}^{-1}S_{22}\tilde{x}_{t+1} - T_{22}^{-1}Q_2\nu_{t+1} \] (91)
\[\tilde{z}_{t+1} = S_{11}^{-1}T_{11}\tilde{z}_t + S_{11}^{-1}(T_{12}\tilde{x}_t - S_{12}\tilde{x}_{t+1}) + S_{11}^{-1}Q_1\nu_{t+1} \] (92)

Since
\[\lim_{n \to \infty} (T_{22}^{-1}S_{22})^n = 0 \] (93)
we get
\[\lim_{t \to \infty} \tilde{x}_t = \bar{x}_1 \] (94)

Equation (94) already holds for \(t \geq T \), i.e.,
\[\tilde{x}_t = \bar{x}_1 \quad \text{for } t \geq T \] (95)

which follows from the general solution formula (21): For \(t \geq T \) we have \(\nu_{t+s+1} = v_1 \) and therefore
\[\tilde{x}_t = -\left(\sum_{s=0}^{\infty} (T_{22}^{-1}S_{22})^s T_{22}^{-1}Q_2 \right) v_1 \] (96)

Let \(\tilde{\Lambda} \) be the geometric sum of matrices
\[\tilde{\Lambda} = -\sum_{s=0}^{\infty} (T_{22}^{-1}S_{22})^s T_{22}^{-1}Q_2 \] (97)

We then obtain the matrix equation
\[\tilde{\Lambda} = -T_{22}^{-1}Q_2 - \sum_{s=1}^{\infty} (T_{22}^{-1}S_{22})^s T_{22}^{-1}Q_2 \]
\[= -T_{22}^{-1}Q_2 - \sum_{s=0}^{\infty} (T_{22}^{-1}S_{22})^{s+1} T_{22}^{-1}Q_2 \]
\[= -T_{22}^{-1}Q_2 - (T_{22}^{-1}S_{22}) \sum_{s=0}^{\infty} (T_{22}^{-1}S_{22})^s T_{22}^{-1}Q_2 \]
\[= -T_{22}^{-1}Q_2 + (T_{22}^{-1}S_{22})\tilde{\Lambda} \] (98)
with the solution

\[\tilde{\Lambda} = -(I - T_{22}^{-1}S_{22})^{-1}T_{22}^{-1}Q_{2} = (S_{22} - T_{22})^{-1}Q_{2} \]

(99)

Equation (96) now implies

\[\tilde{x}_t = \tilde{\Lambda} \tilde{\varphi}_1 = (S_{22} - T_{22})^{-1}Q_{2} \tilde{\varphi}_1 = \tilde{x}_1 \quad (t \geq T) \]

(100)

where the formula for \(\tilde{\varphi}_1 \) directly follows from the lower block of the steady state system (88) or from equation (91).

The solution formula for \(\tilde{x}_t \) over the anticipation phase \(0 \leq t < T \) can be either derived by backward iteration or from the general solution (21). Equation (91) implies for \(t = T - 1 \)

\[\tilde{x}_{T-1} = T_{22}^{-1}S_{22}\tilde{x}_1 - T_{22}^{-1}Q_{2}\tilde{\varphi}_1 \]

(101)

and for \(t = T - 2 \)

\[\tilde{x}_{T-2} = T_{22}^{-1}S_{22}\tilde{x}_{T-1} - T_{22}^{-1}Q_{2}\tilde{\varphi}_0 = (T_{22}^{-1}S_{22})^2\tilde{x}_1 - (T_{22}^{-1}S_{22})T_{22}^{-1}Q_{2}\tilde{\varphi}_1 - T_{22}^{-1}Q_{2}\tilde{\varphi}_0 \]

(102)

For \(t = T - 3 \) we get

\[\tilde{x}_{T-3} = T_{22}^{-1}S_{22}\tilde{x}_{T-2} - T_{22}^{-1}Q_{2}\tilde{\varphi}_0 = (T_{22}^{-1}S_{22})^3\tilde{x}_1 - (T_{11}^{-1}S_{22})^2T_{22}^{-1}Q_{2}\tilde{\varphi}_1 - (T_{22}^{-1}S_{22})T_{22}^{-1}Q_{2}\tilde{\varphi}_0 - T_{22}^{-1}Q_{2}\tilde{\varphi}_0 \]

(103)

and for \(t = T - n \)

\[\tilde{x}_{T-n} = (T_{22}^{-1}S_{22})^n\tilde{x}_1 - (T_{22}^{-1}S_{22})^{n-1}T_{22}^{-1}Q_{2}\tilde{\varphi}_1 - \sum_{j=2}^{n} (T_{22}^{-1}S_{22})^{n-j}T_{22}^{-1}Q_{2}\tilde{\varphi}_0 \]

(104)

We therefore obtain for \(0 \leq t < T \)

\[\tilde{x}_t = (T_{22}^{-1}S_{22})^{T-t}\tilde{x}_1 - (T_{22}^{-1}S_{22})^{T-t-1}T_{22}^{-1}Q_{2}\tilde{\varphi}_1 \]

\[- \sum_{j=2}^{T-t} (T_{22}^{-1}S_{22})^{T-t-j}T_{22}^{-1}Q_{2}\tilde{\varphi}_0 \]

(105)

where

\[\tilde{\varphi}_1 = (S_{22} - T_{22})^{-1}Q_{2}\tilde{\varphi}_1 = -(I - T_{22}^{-1}S_{22})^{-1}T_{22}^{-1}Q_{2}\tilde{\varphi}_1 \]

(106)

\(^2\)Note that \(\sum_{j=2}^{n}(T_{22}^{-1}S_{22})^{n-j}T_{22}^{-1}Q_{2}\tilde{\varphi}_0 = (I - \tilde{M})^{-1}(I - \tilde{M}^{n-1})T_{22}^{-1}Q_{2}\tilde{\varphi}_0 \) where \(\tilde{M} = T_{22}^{-1}S_{22} \)

and \(n \geq 2. \)
It is obvious that equation (113) holds so that the solution formula (107) is equivalent to (105):

\[
\tilde{x}_t = -\sum_{s=0}^{\infty} (T_{22}^{-1} S_{22})^s T_{22}^{-1} Q_2 \nu_{t+s+1}^{T-t-2} - \sum_{s=0}^{T-t-2} (T_{22}^{-1} S_{22})^s T_{22}^{-1} Q_2 \nu_0
\]

\[
= - \sum_{s=T-t-1}^{\infty} (T_{22}^{-1} S_{22})^s T_{22}^{-1} Q_2 \nu_1 \quad (0 \leq t < T)
\]

where

\[
- \sum_{s=0}^{T-t-2} (T_{22}^{-1} S_{22})^s T_{22}^{-1} Q_2 \nu_0 = - \sum_{j=2}^{T-t} (T_{22}^{-1} S_{22})^{T-t-j} T_{22}^{-1} Q_2 \nu_0
\]

\[
= (I - T_{22}^{-1} S_{22})^{-1} (I - (T_{22}^{-1} S_{22})^{T-t-1}) T_{22}^{-1} Q_2 \nu_0
\]

and

\[
- \sum_{s=T-t-1}^{\infty} (T_{22}^{-1} S_{22})^s T_{22}^{-1} Q_2 \nu_1 = -(I - T_{22}^{-1} S_{22})^{-1} (T_{22}^{-1} S_{22})^{T-t-1} T_{22}^{-1} Q_2 \nu_1
\]

The show that the right-hand side of (109) equals the sum of the first two expressions on the r.h.s. of (105), rewrite this sum as follows:

\[
(T_{22}^{-1} S_{22})^{T-t} \tilde{x}_1 - (T_{22}^{-1} S_{22})^{T-t-1} T_{22}^{-1} Q_2 \nu_1
\]

\[
= -(T_{22}^{-1} S_{22})^{T-t} (I - T_{22}^{-1} S_{22})^{-1} + (T_{22}^{-1} S_{22})^{T-t-1} T_{22}^{-1} Q_2 \nu_1
\]

\[
= -(T_{22}^{-1} S_{22})^{T-t-1} [T_{22}^{-1} S_{22}(I - T_{22}^{-1} S_{22})^{-1} + I] T_{22}^{-1} Q_2 \nu_1
\]

\[
= -(T_{22}^{-1} S_{22})^{T-t-1} [T_{22}^{-1} S_{22}(I - T_{22}^{-1} S_{22})^{-1}
\]

\[
+ (I - T_{22}^{-1} S_{22}) (I - T_{22}^{-1} S_{22})^{-1} T_{22}^{-1} Q_2 \nu_1
\]

\[
= - (T_{22}^{-1} S_{22})^{T-t-1} [T_{22}^{-1} S_{22} + (I - T_{22}^{-1} S_{22})] (I - T_{22}^{-1} S_{22})^{-1} T_{22}^{-1} Q_2 \nu_1
\]

\[
= -(T_{22}^{-1} S_{22})^{T-t-1} (I - T_{22}^{-1} S_{22})^{-1} T_{22}^{-1} Q_2 \nu_1
\]

(110) is equivalent to (109) if and only if

\[
(T_{22}^{-1} S_{22})^{T-t-1} (I - T_{22}^{-1} S_{22})^{-1} = (I - T_{22}^{-1} S_{22})^{-1} (T_{22}^{-1} S_{22})^{T-t-1} \quad \iff \quad (111)
\]

\[
(I - T_{22}^{-1} S_{22} (T_{22}^{-1} S_{22}))^{T-t-1} = (T_{22}^{-1} S_{22})^{T-t-1} (I - T_{22}^{-1} S_{22}) \quad \iff \quad (112)
\]

\[
(T_{22}^{-1} S_{22})^{T-t-1} - (T_{22}^{-1} S_{22})^{T-t} = (T_{22}^{-1} S_{22})^{T-t-1} - (T_{22}^{-1} S_{22})^{T-t} \quad \iff \quad (113)
\]

It is obvious that equation (113) holds so that the solution formula (107) is equivalent to (105).
Consider now the first subsystem of the Schur decomposition, equation (92). The general solution is given by (23) with the constant K defined in (29). For $t < T$ we have

$$
\tilde{z}_t = (S_{11}^{-1}T_{11})^t K + \sum_{s=0}^{t-1} (S_{11}^{-1}T_{11})^{t-s-1} S_{11}^{-1} (T_{12} \tilde{x}_s - S_{12} \tilde{x}_{s+1})
+ \sum_{s=0}^{t-1} (S_{11}^{-1}T_{11})^{t-s-1} S_{11}^{-1} Q_1 \nu_0 \\
(0 \leq t < T)
$$

(114)

where

$$
\sum_{s=0}^{t-1} (S_{11}^{-1}T_{11})^{t-s-1} S_{11}^{-1} Q_1 \nu_0 = \left(\sum_{k=0}^{t-1} (S_{11}^{-1}T_{11})^k \right) S_{11}^{-1} Q_1 \nu_0
= (I - S_{11}^{-1}T_{11})^{-1} (I - (S_{11}^{-1}T_{11})^t) S_{11}^{-1} Q_1 \nu_0
$$

(115)

For $t \geq T$ we get

$$
\tilde{z}_t = (S_{11}^{-1}T_{11})^t K + \sum_{s=0}^{T-1} (S_{11}^{-1}T_{11})^{t-s-1} S_{11}^{-1} T_{12} \tilde{x}_s
+ \sum_{s=T}^{t-1} (S_{11}^{-1}T_{11})^{t-s-1} S_{11}^{-1} T_{12} \tilde{x}_s
- \sum_{s=T-1}^{t-1} (S_{11}^{-1}T_{11})^{t-s-1} S_{11}^{-1} T_{12} \tilde{x}_s
+ \sum_{s=T-1}^{t-1} (S_{11}^{-1}T_{11})^{t-s-1} S_{11}^{-1} Q_1 \nu_1
(t \geq T)
$$

(116)

Let $M = S_{11}^{-1}T_{11}$. Then\(^3\)

$$
\sum_{s=T}^{t-1} M^{t-s-1} S_{11}^{-1} T_{12} \tilde{x}_s = \left(\sum_{k=0}^{t-1} M^k \right) S_{11}^{-1} T_{12} \tilde{x}_s
= (I - M)^{-1} (I - M^{t-T}) S_{11}^{-1} T_{12} \tilde{x}_1
$$

(117)

$$
\sum_{s=T-1}^{t-1} M^{t-s-1} S_{11}^{-1} T_{12} \tilde{x}_s = \left(\sum_{k=0}^{T-1} M^k \right) S_{11}^{-1} T_{12} \tilde{x}_s
= (I - M)^{-1} (I - M^{T-1}) S_{11}^{-1} T_{12} \tilde{x}_1
$$

(118)

\(^3\)Note that

$$
\sum_{k=0}^{n-1} M^k = (I - M)^{-1} (I - M^n)
\sum_{k=m}^{n-1} M^k = \sum_{k=0}^{m-1} M^k - \sum_{k=0}^{m-1} M^k = (I - M)^{-1} (M^n - M^m)
$$

15
\[
\sum_{s=0}^{T-2} M^{t-s-1} S_{11}^{-1} Q_1 \varphi_0 = \left(\sum_{k=t-T+1}^{t-1} M^k \right) S_{11}^{-1} Q_1 \varphi_0
\]
\[
= (I - M)^{-1} (M^{t-T+1} - M^t) S_{11}^{-1} Q_1 \varphi_0
\]
\[
(119)
\]
\[
\sum_{s=-T}^{t-1} M^{t-s-1} S_{11}^{-1} Q_1 \varphi_1 = (I - M)^{-1} (I - M^{t-T+1}) S_{11}^{-1} Q_1 \varphi_1
\]
\[
(120)
\]
Inserting (117) to (120) in (116) yields for \(t \geq T \)
\[
\tilde{z}_t = M^t K + \sum_{s=0}^{T-1} M^{t-s-1} S_{11}^{-1} T_{12}\tilde{x}_s + (I - M)^{-1} (I - M^{t-T}) S_{11}^{-1} T_{12}\tilde{x}_1
\]
\[
- \sum_{s=0}^{T-2} M^{t-s-1} S_{11}^{-1} S_{12}\tilde{x}_{s+1} - (I - M)^{-1} (I - M^{t-T+1}) S_{11}^{-1} S_{12}\tilde{x}_1
\]
\[
+ (I - M)^{-1} (M^{t-T+1} - M^t) S_{11}^{-1} Q_1 \varphi_0
\]
\[
+ (I - M)^{-1} (I - M^{t-T+1}) S_{11}^{-1} Q_1 \varphi_1 \quad (t \geq T)
\]
\[
(121)
\]
Since \(M = S_{11}^{-1} T_{11} \) is a stable matrix, i.e.,
\[
\lim_{t \to \infty} M^t = 0
\]
\[
(122)
\]
\(\tilde{z}_t \) converges towards its steady state value
\[
\tilde{z}_1 = (I - M)^{-1} S_{11}^{-1} T_{12} \tilde{x}_1 - (I - M)^{-1} S_{11}^{-1} S_{12} \tilde{x}_1 + (I - M)^{-1} S_{11}^{-1} Q_1 \varphi_1
\]
\[
= (I - M)^{-1} S_{11}^{-1} (T_{12} - S_{12}) \tilde{x}_1 + Q_1 \varphi_1
\]
\[
= (S_{11} - T_{11})^{-1} ((T_{12} - S_{12}) \tilde{x}_1 + Q_1 \varphi_1)
\]
\[
(123)
\]
The formula for \(\tilde{z}_1 \) also results from the steady state system (88) and the dynamic equation (92).

Combining (121) and (123) yields for \(t \geq T \)
\[
\tilde{z}_t - \tilde{z}_1 = M^t K + \sum_{s=0}^{T-1} M^{t-s-1} S_{11}^{-1} T_{12} \tilde{x}_s - \sum_{s=0}^{T-2} M^{t-s-1} S_{11}^{-1} S_{12} \tilde{x}_{s+1}
\]
\[
- (I - M)^{-1} M^{t-T} S_{11}^{-1} T_{12} \tilde{x}_1
\]
\[
+ (I - M)^{-1} (M^{t-T+1} - M^t) S_{11}^{-1} Q_1 \varphi_0
\]
\[
+ (I - M)^{-1} M^{t-T+1} S_{11}^{-1} (S_{12} \tilde{x}_1 - Q_1 \varphi_1)
\]
\[
(124)
\]
Note that similar to (111) we have
\[
(I - M)^{-1} M^{t-T} = M^{t-T} (I - M)^{-1}
\]
\[
(125)
\]
(125) is equivalent to
\[
(S_{11}^{-1} T_{11})^{t-T} (I - S_{11}^{-1} T_{11}) = (I - S_{11}^{-1} T_{11}) (S_{11}^{-1} T_{11})^{t-T} \quad \Leftrightarrow
\]
\[
(S_{11}^{-1} T_{11})^{t-T} - (S_{11}^{-1} T_{11})^{t+1-T} = (S_{11}^{-1} T_{11})^{t-T} - (S_{11}^{-1} T_{11})^{t+1-T}
\]
\[
(126)
\]
For $t \geq T$ we therefore get

$$\tilde{z}_t - \tilde{z}_1 = M^{t-T} \tilde{K}$$ \hspace{1cm} (127)

where

$$\tilde{K} = M^T K + \sum_{s=0}^{T-1} M^{T-s-1} S_{11}^{-1} T_{12} \tilde{x}_s - \sum_{s=0}^{T-2} M^{T-s-1} S_{11}^{-1} S_{12} \tilde{x}_{s+1}$$

$$- (I - M)^{-1} S_{11}^{-1} T_{12} \tilde{x}_1 + (M - M^T)(I - M)^{-1} S_{11}^{-1} Q_1 \tilde{v}_0$$

$$+ M(I - M)^{-1} S_{11}^{-1} (S_{12} \tilde{x}_1 - Q_1 \tilde{v}_1)$$ \hspace{1cm} (128)

In order to determine the minimal value of the loss function J_t, replace in (42) \tilde{v}_t and \tilde{w}_t by $\hat{\tilde{v}}_t$ and $\hat{\tilde{w}}_t$ respectively, where

$$\hat{\tilde{v}}_t = \begin{cases} \tilde{v}_t - \tilde{v}_0 & \text{for } 0 \leq t < T \\ \tilde{v}_t - \tilde{v}_1 & \text{for } t \geq T \end{cases}$$ \hspace{1cm} (129)

and

$$\hat{\tilde{w}}_t = \begin{cases} \tilde{w}_t - \tilde{w}_0 & \text{for } 0 \leq t < T \\ \tilde{w}_t - \tilde{w}_1 & \text{for } t \geq T \end{cases}$$ \hspace{1cm} (130)

with

$$\overline{w} = Z_{11} \tilde{z} + Z_{12} \tilde{x}$$ \hspace{1cm} (131)

and

$$\overline{v} = Z_{21} \tilde{z} + Z_{22} \tilde{x}$$ \hspace{1cm} (132)

Then $J_0 = J_0^{(1)} + J_0^{(2)}$ where

$$J_0^{(1)} = \frac{1}{2} \sum_{i=0}^{T-1} \lambda^i(\hat{\tilde{z}}_i, \hat{\tilde{x}}_i) Z' \tilde{D}' H \tilde{D} Z \begin{pmatrix} \hat{\tilde{z}}_i \\ \hat{\tilde{x}}_i \end{pmatrix}$$ \hspace{1cm} (133)

with

$$\hat{\tilde{z}} = \tilde{z} - \overline{z}, \quad \hat{\tilde{x}} = \tilde{x} - \overline{x}$$ \hspace{1cm} (134)

and

$$J_0^{(2)} = \frac{1}{2} \lambda^T \text{trace}(V^* \tilde{K} \tilde{K}')$$ \hspace{1cm} (135)

with V^* defined by (58) and \tilde{K} given by (128).
4 The Stochastic Case

Assume now that \(\nu_{t+1} \) is an \(r \times 1 \) vector of white noise disturbances independently distributed with covariance matrix \(\Sigma_{\nu\nu} = E(\nu_{t}\nu_{t}') \). The i.i.d shocks are, by definition, unpredictable \((T = 0) \) and occur at time \(t = 0 \). Since \(E_t(\nu_{t+1}) = 0_{r \times 1} \), equation (11) implies

\[
F \cdot E_t \begin{pmatrix} \tilde{w}_{t+1} \\ \tilde{v}_{t+1} \end{pmatrix} = G \begin{pmatrix} \tilde{w}_t \\ \tilde{v}_t \end{pmatrix}
\] (136)

The Schur decomposition yields the system of equations

\[
\begin{pmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{pmatrix} E_t \begin{pmatrix} \tilde{z}_{t+1} \\ \tilde{x}_{t+1} \end{pmatrix} = \begin{pmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{pmatrix} \begin{pmatrix} \tilde{z}_t \\ \tilde{x}_t \end{pmatrix}
\] (137)

where

\[
\begin{pmatrix} \tilde{w}_t \\ \tilde{v}_t \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} \tilde{z}_t \\ \tilde{x}_t \end{pmatrix}
\] (138)

and \(\tilde{x}_t = 0 \) for all \(t \geq T = 0 \). Partition the matrices \(A \) and \(B \) in equation (1) conformably with \(w_t \) and \(v_t \), i.e.

\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}
\] (139)

Equation (1) then implies

\[
A_{11} w_{t+1} + A_{12} E_t v_{t+1} = B_{11} w_t + B_{12} v_t + C_1 u_t + D_1 \nu_{t+1}
\] (140)

and

\[
A_{11} E_t w_{t+1} + A_{12} E_t v_{t+1} = B_{11} w_t + B_{12} v_t + C_1 u_t
\] (141)

where

\[
C = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}, \quad D = \begin{pmatrix} D_1 \\ D_2 \end{pmatrix}
\] (142)

From (140) and (141) we get

\[
A_{11}(w_{t+1} - E_t w_{t+1}) = D_1 \nu_{t+1}
\] (143)

so that

\[
w_{t+1} - E_t w_{t+1} = A_{11}^{-1} D_1 \nu_{t+1}
\] (144)

holds (provided \(A_{11}^{-1} \) exists). The corresponding equation for the costate vector \(p_v \) is given by [Backus and Driffill (1986)]

\[
p_{v,t+1} - E_t p_{v,t+1} = 0_{n_2 \times 1}
\] (145)
Equations (137) and (138) and the definition of \(\tilde{w}_t = (w'_t, p'_t)' \) then imply
\[
\tilde{w}_{t+1} - E_t \tilde{w}_{t+1} = Z_{11}(\tilde{z}_{t+1} - E_t \tilde{z}_{t+1}) = Z_{11}(\tilde{z}_{t+1} - S_{11}^{-1}T_{11}\tilde{z}_t) = \left(A_{11}^{-1}D_1 \nu_{t+1} \right)_{0_{n_2 \times 1}}
\]
and therefore
\[
\tilde{z}_{t+1} = (S_{11}^{-1}T_{11})\tilde{z}_t + Z_{11}^{-1}\left(A_{11}^{-1}D_1 \right)_{0_{n_2 \times 1}} \nu_{t+1}
\]
(146)
The solution of the VAR(1) process (147) has the general form
\[
\tilde{z}_t = (S_{11}^{-1}T_{11})^tK + \sum_{s=0}^{t-1}(S_{11}^{-1}T_{11})^{t-s-1}Z_{11}^{-1}\left(A_{11}^{-1}D_1 \right)_{0_{n_2 \times 1}} \nu_{s+1}
\]
(147)
where
\[
K = \tilde{z}_0 = Z_{11}^{-1}\tilde{w}_0 = Z_{11}^{-1}\left(w_0 \right)_{0_{n_2 \times 1}}
\]
(149)
Since \(E_0 \nu_{s+1} = 0 \) the expected time path of \(\tilde{z}_t \) is given by
\[
E_0 \tilde{z}_t = (S_{11}^{-1}T_{11})^tZ_{11}^{-1}\tilde{w}_0
\]
(150)
Premultiply (147) with \(Z_{11} \) and use \(\tilde{w}_t = Z_{11}\tilde{z}_t \) to obtain the VAR(1) process
\[
\tilde{w}_{t+1} = \Gamma \tilde{w}_t + \left(A_{11}^{-1}D_1 \right)_{0_{n_2 \times r}} \nu_{t+1}
\]
(151)
where
\[
\Gamma = Z_{11}(S_{11}^{-1}T_{11})Z_{11}^{-1}
\]
(152)
Then
\[
\tilde{w}_t = \Gamma^t\tilde{w}_0 + \sum_{s=0}^{t-1} \Gamma^{t-s-1}\left(A_{11}^{-1}D_1 \right)_{0_{n_2 \times r}} \nu_{s+1}
\]
(153)
and the expected future path of \(\tilde{w}_t \) is given by
\[
E_0 \tilde{w}_t = \Gamma^t\tilde{w}_0 = \Gamma^t\left(A_{11}^{-1}D_1 \right)_{0_{n_2 \times r}} \nu_0
\]
(154)
The solution of the forward-looking vector \(\tilde{v}_t \) follows from
\[
\tilde{v}_t = Z_{21}\tilde{z}_t = Z_{21}Z_{11}^{-1}\tilde{w}_t = N\tilde{w}_t \quad (N = Z_{21}Z_{11}^{-1})
\]
(155)
by inserting the solution time path of \(\tilde{w}_t \).
To determine the minimal value of the loss function J_0 set

$$\varepsilon_{t+1} = \left(A_{11}^{-1} D_1 \right) \nu_{t+1}$$ \hspace{1cm} (156)

According to (34), (42), (48) and (153) we then obtain

$$J_0 = \frac{1}{2} E_0 \sum_{i=0}^{\infty} \lambda^i (w'_i, v'_i, u'_i) H \begin{pmatrix} w_i \\ v_i \\ u_i \end{pmatrix}$$

$$= \frac{1}{2} E_0 \sum_{i=0}^{\infty} \lambda^i (\tilde{w}'_i, \tilde{v}'_i) \tilde{D}' H \tilde{D} \begin{pmatrix} \tilde{w}_i \\ \tilde{v}_i \end{pmatrix}$$

$$= \frac{1}{2} E_0 \sum_{i=0}^{\infty} \lambda^i \tilde{w}'_i \tilde{D}' H \tilde{D} \tilde{D} \tilde{w}_i$$

$$= \frac{1}{2} E_0 \sum_{i=0}^{\infty} \lambda^i \tilde{w}'_i H^* \tilde{w}_i$$

$$= \frac{1}{2} \sum_{i=0}^{\infty} \lambda^i \left\{ (\Gamma^i \tilde{w}_0)' H^* (\Gamma^i \tilde{w}_0) + 2 E_0 (\Gamma^i \tilde{w}_0)' H^* \left(\sum_{s=0}^{i-1} \Gamma^{i-s-1} \varepsilon_{s+1} \right)

+ E_0 \left(\sum_{s=0}^{i-1} \Gamma^{i-s-1} \varepsilon_{s+1} \right)' H^* \left(\sum_{s=0}^{i-1} \Gamma^{i-s-1} \varepsilon_{s+1} \right) \right\}$$

$$= \frac{1}{2} \tilde{w}_0' \left(\sum_{i=0}^{\infty} \lambda^i \Gamma^i H^* \Gamma^i \right) \tilde{w}_0$$

$$+ \frac{1}{2} \sum_{i=0}^{\infty} \lambda^i E_0 \left(\sum_{s=0}^{i-1} \Gamma^{i-s-1} \varepsilon_{s+1} \right)' H^* \left(\sum_{s=0}^{i-1} \Gamma^{i-s-1} \varepsilon_{s+1} \right)$$ \hspace{1cm} (157)

where we have used

$$E_0 \varepsilon_{s+1} = 0$$ \hspace{1cm} (158)

Set

$$V = \sum_{i=0}^{\infty} \lambda^i \Gamma^i H^* \Gamma^i$$ \hspace{1cm} (159)

Then V satisfies the matrix equation (cf. (74))

$$V = H^* + \lambda \Gamma^i V \Gamma$$ \hspace{1cm} (160)

and

$$\frac{1}{2} \tilde{w}_0' \left(\sum_{i=0}^{\infty} \lambda^i \Gamma^i H^* \Gamma^i \right) \tilde{w}_0 = \frac{1}{2} \tilde{w}_0' V \tilde{w}_0 = \frac{1}{2} \text{trace}(V \tilde{w}_0 \tilde{w}_0')$$ \hspace{1cm} (161)
To calculate the last expression in (157) note that

\[E_0 \left(\sum_{s=0}^{i-1} \Gamma_i \varepsilon_{s+1} \right) H^* \left(\sum_{s=0}^{i-1} \Gamma_i \varepsilon_{s+1} \right) \]

\[= E_0 (\Gamma_i \varepsilon_1 + \Gamma_i \varepsilon_2 + \ldots + \Gamma_i \varepsilon_i) H^* (\Gamma_i \varepsilon_1 + \Gamma_i \varepsilon_2 + \ldots + \Gamma_i \varepsilon_i) \]

\[= E_0 (\Gamma_i \varepsilon_1) H^* (\Gamma_i \varepsilon_1) + E_0 (\Gamma_i \varepsilon_2) H^* (\Gamma_i \varepsilon_2) + \ldots + E_0 (\Gamma_i \varepsilon_i) H^* (\Gamma_i \varepsilon_i) \]

\[= E_0 \varepsilon_i \Gamma_0 H^* \Gamma_0 + \Gamma_i H^* \Gamma_i + \ldots + \Gamma_i^{-2} H^* \Gamma_i^{-2} + \Gamma_i^{-1} H^* \Gamma_i^{-1} \varepsilon_i \]

\[= E_0 \varepsilon_i \left(\sum_{s=0}^{i-1} \Gamma_i s^{-1} H^* \Gamma_i s^{-1} \right) \varepsilon_i \]

(162)

since \(E_0 (\varepsilon_i \varepsilon_j) = 0 \) for \(i \neq j \) and the covariance matrix

\[E_0 (\varepsilon_i \varepsilon_j) = E_0 (\varepsilon_j \varepsilon_j) = \Sigma_{ee} \]

(163)

is independent of \(i \) and \(j \). We then obtain

\[\frac{1}{2} \sum_{i=0}^{\infty} \lambda^i E_0 \left(\sum_{s=0}^{i-1} \Gamma_i s^{-1} \varepsilon_{s+1} \right) H^* \left(\sum_{s=0}^{i-1} \Gamma_i s^{-1} \varepsilon_{s+1} \right) \]

\[= \frac{1}{2} \sum_{i=0}^{\infty} \lambda^i \sum_{i=0}^{\infty} \lambda^i \varepsilon_i \left(\sum_{s=0}^{i-1} \Gamma_i s^{-1} H^* \Gamma_i s^{-1} \right) \varepsilon_i \]

\[= \frac{1}{2} \sum_{i=0}^{\infty} \lambda^i E_0 \varepsilon_i' \left(\Gamma_0 H^* \Gamma_0 + \Gamma_i H^* \Gamma_i + \ldots + \Gamma_i^{-2} H^* \Gamma_i^{-2} + \Gamma_i^{-1} H^* \Gamma_i^{-1} \right) \varepsilon_i \]

\[= \frac{1}{2} \lambda E_0 \varepsilon_i' \Gamma_0 H^* \Gamma_0 \varepsilon_i \]

\[+ \frac{1}{2} \lambda^2 E_0 \varepsilon_2' \left(\Gamma_0 H^* \Gamma_0 + \Gamma_1 H^* \Gamma_1 \right) \varepsilon_2 \]

\[+ \frac{1}{2} \lambda^3 E_0 \varepsilon_3' \left(\Gamma_0 H^* \Gamma_0 + \Gamma_1 H^* \Gamma_1 + \Gamma_2 H^* \Gamma_2 \right) \varepsilon_3 + \]

\[+ \ldots \]

\[+ \frac{1}{2} \lambda^n E_0 \varepsilon_n' \left(\Gamma_0 H^* \Gamma_0 + \Gamma_1 H^* \Gamma_1 + \Gamma_2 H^* \Gamma_2 + \ldots + \Gamma_n H^* \Gamma_n \right) \varepsilon_n \]

\[= \frac{1}{2} \lambda \text{trace}(H^* \Sigma_{ee}) \]

\[+ \frac{1}{2} \lambda^2 \text{trace} \left((H^* + \Gamma_1 H^* \Gamma_1) \Sigma_{ee} \right) \]

\[+ \frac{1}{2} \lambda^3 \text{trace} \left((H^* + \Gamma_1 H^* \Gamma_1 + \Gamma_2 H^* \Gamma_2) \Sigma_{ee} \right) + \]

\[+ \ldots \]

\[+ \frac{1}{2} \lambda^n \text{trace} \left((H^* + \Gamma_1 H^* \Gamma_1 + \Gamma_2 H^* \Gamma_2 + \ldots + \Gamma_n H^* \Gamma_n \right) \Sigma_{ee} \right) + \ldots \]
\[= \frac{1}{2} \lambda \text{trace} \left((H^* + \lambda H^* + \lambda^2 H^* + \ldots + \lambda^{n-1} H^* + \ldots) \Sigma_{ee} \right) \]
\[+ \frac{1}{2} \lambda \text{trace} \left((\lambda \Gamma' H^* \Gamma + \lambda^2 \Gamma' H^* \Gamma + \ldots + \lambda^{n-1} \Gamma' H^* \Gamma + \ldots) \Sigma_{ee} \right) \]
\[+ \frac{1}{2} \lambda \text{trace} \left((\sum_{i=0}^{\infty} \lambda^i \Gamma' H^* \Gamma^i) \Sigma_{ee} \right) + \ldots \]
\[= \frac{1}{2} \lambda \text{trace} \left(\left(\frac{1}{1-\lambda} H^* + \frac{\lambda}{1-\lambda} \Gamma' H^* \Gamma + \frac{\lambda^2}{1-\lambda} \Gamma'^2 H^* \Gamma^2 + \ldots + \frac{\lambda^n}{1-\lambda} \Gamma'^n H^* \Gamma^n + \ldots \right) \Sigma_{ee} \right) \]
\[= \frac{1}{2} \frac{\lambda}{1-\lambda} \text{trace} \left((\sum_{i=0}^{\infty} \lambda^i \Gamma' H^* \Gamma^i) \Sigma_{ee} \right) \]
\[= \frac{1}{2} \frac{\lambda}{1-\lambda} \text{trace}(V \Sigma_{ee}) \] (164)

with \(V \) defined in (160). The optimal value of the loss function \(J_0 \) in the stochastic case (with \(T = 0 \)) is then given by

\[J_0 = \frac{1}{2} \text{trace}(V \tilde{w}_0 \tilde{w}_0') + \frac{1}{2} \lambda \text{trace}(V \Sigma_{ee}) \] (165)

Note that (165) is a generalization of (72) where we have assumed that the shock in \(t = 0 \) is deterministic (\(\Sigma_{ee} = 0 \)). The formula (165) holds for a discount factor \(\lambda \) with \(0 < \lambda < 1 \). The right-hand side of (165) is not defined in the special case \(\lambda = 1 \). If the discount factor \(\lambda \) approaches unity we must scale the intertemporal loss function \(J_0 \) by the factor \((1 - \lambda) \) [Rudebusch and Svensson (1999)]. Equation (165) then implies

\[(1 - \lambda)J_0 = \frac{1}{2} (1 - \lambda) \text{trace}(V \tilde{w}_0 \tilde{w}_0') + \frac{1}{2} \lambda \text{trace}(V \Sigma_{ee}) \] (166)

The scaled intertemporal loss function \((1 - \lambda)J_0\) converges if \(\lambda \) approaches unity. (166) implies

\[\lim_{\lambda \to 1} (1 - \lambda)J_0 = \frac{1}{2} \text{trace}(V \Sigma_{ee}) \] (167)

Note that in case \(T = 0 \) and \(\lambda = 1 \) the r.h.s. of (167) equals the r.h.s of (72) if \(w_0 u_0' = \Sigma_{ee} \). In this special case the stochastic and deterministic case are equivalent. If the off-diagonal elements of \(W_1 \) and \(W_2 \) in the loss function (7) are equal to zero, then the limit value of \((1 - \lambda)J_0\) can be expressed as

\[\lim_{\lambda \to 1} (1 - \lambda)J_0 = \frac{1}{2} \mathbb{E}(L_t) \] (168)

In the deterministic case, where \(\Sigma_{ee} = 0 \), (165) also holds for \(\lambda = 1 \).
where $E(L_t)$ is the unconditional mean of the period loss function

$$L_t = (s'_t, u'_t) \begin{pmatrix} W_1 & 0 \\ 0 & W_2 \end{pmatrix} \begin{pmatrix} s_t \\ u_t \end{pmatrix} = \sum_{i=1}^{n_3} w_{i,1} s_{i,t}^2 + \sum_{i=1}^{m} w_{i,2} u_{i,t}^2 \quad (169)$$

Then

$$E(L_t) = \sum_{i=1}^{n_3} w_{i,1} \text{Var} s_{i,t} + \sum_{i=1}^{m} w_{i,2} \text{Var} u_{i,t} \quad (170)$$

The period loss function can also be written as

$$L_t = Y'_t H Y_t \quad (171)$$

where $Y'_t = (k'_t, u'_t)$ and H defined in (35). Then the unconditional period loss also fulfills

$$E(L_t) = E(Y'_t H Y_t) = \text{trace}(H \Sigma_{YY}) \quad (172)$$

where Σ_{YY} is the unconditional covariance matrix of the vector Y.

5 Summary

In this paper, we present a method to solve linear dynamic rational expectations models with anticipated shocks and optimal policy by using the generalized Schur decomposition method. We determine the optimal unrestricted and restricted policy responses to anticipated temporary and permanent shocks. In particular, our method can be applied to analyze optimal monetary policy in New Keynesian dynamic general equilibrium models. Our approach allows also the evaluation of the widely discussed case of unpredictable shocks and can therefore be seen as a generalization of the methods summarized by Söderlind (1999).

References

