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ABSTRACT

An improved theoretical rate of convergence is shown for
a member of the class of exponential penalty function algorithms.
We show that the algorithm has the structure of an asymptotic
Newton algorithm, which means this algorithm has a superlinear

convergence rate,



In [ 9] we presented an exponential penalty function algorithm for the
following nonlinear programming NLP:

minimize f(x) (D
x< ED
subject to

gi(x) <0 for i=1l,...,m (2)

with an optimal solution x*, The penalty function is

m 1
. = . e = r
Fk(.-:) £(x) o5, exerkgi(X)] (3)
i=1
where T, > Sy > 1 and Ty -+ @, We consider a variant of (3) where the rate

of convergence is that of an asymptotic Newton algorithm as described in
Mangasarian "8). This variant meets one of the important concerns with
asymptotic Newton algorithms, that is, it is everywhere second order differentiable

it 1(-), aud gL(-),...,gn(-) are. Our algorithm is

Step_1: Minimize

k
m Xi )
f(x) + £ — exp.org.(x)] 4)
., r. K1
i=1 k
with the minimum at X
Step 2: Set
k _ .,k [ o (v
PR exerkci(kk)], (3)
then let
k+tl _ ., - Ny k
xi = anLUk,mah-Lk,Yill (6)

where U( > L

| >0, U —+oand L, 20, and r, L, -+ o, and Uk/r + 0 as k #+ =,

k k k k7k k
Since this penalty function is clearly a member of the class of exponential
penalty functions as described by Evans and Gould 3] we need not prove con-

vergence here. To establish our convergence rate result we make the following

assumpticns:



l. NLP is a convex programming problem,
2. Slater's constraint qualification [ 7] is satisfied.
3. Either f(x) or one of the binding constraints is strictly convex.

4. The feasible region is compact.

5. Strict complementarity holds, that is, gi(x*) = 0 implies X: >0
where ki is the optimal Lagrange multiplier for constraint i,
i=1,...,m.

6. XT,...,X; are unique, x* is a unique optimal solution.

7. {Vgi(x*)!gi(x*) =0 i=1l,...,m} are linearly independent

AT . k k . . .
In {105 it was shown that Yl,...,Y remain uniformly bounded. As this is the
m

standard proect as found in {47 it also is not repeated here.

Lemma 1. Let IC fl,...,m} be the index set of the binding constraints.

With assumptions 1, 2, and 6 above,

lim rkgi(xk) =0 (7)
k-

for i=1.

Proof. For izI, there is a K such that for k > K

kK .. kg _ Uk
Xi = mlnLUt, max[Lk,Yi]] Y, - (8)

. k % . x LK * ,
Since y, - X; as k #+ @ by the uniqueness of Xi, Xi -+ Xi as k » », That is,

X§+l - X? = Xt exp[rkgi(xk)] - X?
= X? [exp[rkgi(xk)-lj]. (9)
Since Xg+l - Xk +0as k »@and \* > 0,
1 1 1
exp[rkgi(xk)] +1as k »® (10)
or rkgi(xk) +0as k + =,



Unlike the algorithms that fit into the classification of methods of multi-
pliers 753, 78%, 7117, T127, with this algorithm we bear the computational
burden of carrying along nonbinding constraint within the unconstrained mini-

mization. To deal with this problem we have to analyze the behavior of the

nonbinding constraints.
. . . . k
Lemma 2. There exists a K such that for k > K, and i#I, Ki = Lk.

Proof. For iz1, since gi(x*) < 0 there exists an € > 0 and a K such that

for k > K
< -z
gi(xk) < -z, (11)
That 1is
. < expl - . 2
exp[rkgi(xk)] < expL-T e] (12)
Consequently, K
AL -r 2 U, -r, ¢
yt < L. Kk < ;5e k (13)
Tk k ‘
Since U, /r, = 0, T exp{-rk =] + 0 and r,L, *®as k + =, there exists a k'

such that kar < 1 and exp[-r1 :] <L for k > K'. Choose k > maXEK,K']
K - N - - -

k k

and the lemma holds.
Without loss of generality, let I = {1,...,p}. We may then formulate a

new nonlinear program NLPl:

m
. 'l. . = {' \ 3 , T /
minimize ﬁ}rkgd f(x +' b3 Lk/rk exerkgi(x)] (14)

X< E i=p+l
subject to g. (x) =0 for i=l,...,p. (15)

1

*

Letting %, be the optimal solution to NLPl for a given r, we see that ﬁk -+ x

k

as k 4 = and for k large enough x, = §k; and for r, large enough (14) is arbi-

k k

trarily close to (1) over the teasible region defined by (?). We can now apply the
duality results in Luenberger [ 6, p. 321]. We define the dual function @ of

NLP! for a given r, as



-4 -

m
¢ = minimum {6(x) + L [L /r 3 explr, g . (x)] +
on . _ k' "k k=i
xe [ i=p+1
o o
itlLki/rkj Lexerkgi(x)j—l]j (16)

p
= mi::?gm {gfﬁex)-Fiﬁl[ki/rk][exp[rkgi(x)]-1]}

where A = (o, ..., ).
1 P
The function ¢ is convex since we assumed f(x), gl(x),...,gm(x) are convex.

Now by L6, p. 3211 with k > K as defined in Lemma 2

1/rk [exp[rkgl(xk)]-1]
G (L) = . (17)
P , -
1, Lexelr g (,)1-1]
Vg, ()
Let vg(x) = . , (18)
»gp(xz—J
— -—
Kl 0
Let A(\) = (19)
0 X
p
_ —
exp[rkgl(x)-‘-... 0 |
and let H(rk,x) = . (20)
0 o exerkgp(x)l

— ]
and let F»(rk’X) be the Hessian of fo(rk,x) and let Gi(x) be the Hessian of gi(x)

for i = 1,...,p.



- 5 =~
. .k
From this we can construct the Hessian of p(h ):

. p
M4 124 M4 i ~ k r
H(fk)“k)7b(uk)LFo(rk,Kk) + § xi exPergi(xk)]Gi(xk) +

i=1
(21)
.y ',\ ~k\ -1 [ L}
rkvx(zk) Y0N )H(rk,xk)Vgi(xk)] Vgi(xk) H(rk’xk)
The inverse of the matrix in the brackets exists since this matrix is positive

definite. That comes about since we assumed strict convexity for one of the

functions f(x),gl(x),. .,gp(x) and all other terms in this matrix are positive

semidefinite., Now (21) can be written as

Pk
M= H(rk,xk)Vg(xk)[§§ﬁUXQ + iil A exp[rkgi(xk)]Gi(xk)
(22)

- LI k+1 -1 [ '
+ rk&g(xk) AYON )Vgi(xk)] Vgi(xk) H(rk,xk)

To analyse (22) we now prove a simple extension of a lemma in Mangasarian [8].

Lemma 3. Let C(x) = BA@R) + B'Qﬁl))-lB' where B is a given m x n matrix of

rank m, A(xy) is an nx n matrix function on R, Q(x) is a differentiable

m+« m matrix function on R, A(x) + B'Q(x)B is positive definite for

& > 2 for some @, and for every € > O there is an a such that for
2 >a. |A(@) - Al < 2 where A + B'Q(@)B is positive definite for a > -

Then there exists a constant matrix K such that for every & > O there

is an q; with

lc@ - @@ +1) < (23)

tOI‘CL)CI,é.

Proof. Define Cl(a) = B(A + B'Q(a))-lB'. By the continuity of the inverse

of a matrix, for every & there exists an ¢ such that



lce) - C @] <8 (24)

for lA(z)—AL< 66' This means there exists anca, such that (24) holds for

8

The formula for differentiating the inverse of a matrix is

dclcl) -1 dCl(a) .1
T Cl(u) "Ea*——'Cl(a) . Differentiating Cl(a) we have
dcC, (= 1 -
G d@+rommt
d dt
-~ _or -1 d(o + B' -
= -B" (A +B'Q(@)B) (8 Ta Q@)B) (A + B'Q(a)B) lg (25)
- dQ(a)
= -C
1@ 1) ¢, @
Hence
dee) t o) 1
" = T and C, (@) = = Q@) +K . (26)
That is,
' -1
C (&) = &) + K
(3 = @) +x)7h 27
Substituting (27) into (24) we have (23).
For Ty sufificiently large there is a v < 0 where gi(xk) <y fori=1,...,p.
Letting A be the Hessian of f(x) at X and A(rk) be the Hessian of fo(rk,x)
at x, tor r, =a, we know that A(rk) -+ A as r, e Let Q(rk) = rkh(kk+1)
and let B = Vg(xk). Remembering that H(rk,ﬁk) <+ I as r, e, we have the
following theorem:
Theorem 1. If NLP satisfies 1,...,7, then the limit of rkMk as k @+ @ is
ate -1
AT
Also, we know from (9) for i=1l,...,p
k1 Lk _ Lk )
Moo oA T A Texeln gy Gg) -1 (28)
Consequent Ly,
k-+ k !
V=R vea. (29)

-1,k . k . .
Since Mk 4 AT\, we see that for large r A(A ) approximates the inverse of

the Hessian of p(\) and we have an asymptotic Newton method as defined in [8].



Conclusions

The importance of an algorithm having the asymptotic Newton structure
comes about in the following manner. First, at each iteration k the multipliers
are updated in a.way that is approximately steepest ascent on the dual function.
The rate of convergence of steepest ascent is linear with the rate improve-
ment a function of the ratio of the difference of the largest and smallest
cigenvalues of the Hessian with the sum of these eigenvalues. With the
algorithm presented here we have approximately steepest ascent within a vector
space translated by the size of the multipliers. Within the transformed
space the Hessian more closely approximates the identity matrix as 2% is
increased bringing the largest and smallest eigenvalues closer together.
This means that the factor that governs the rate of convergence
is improving as r.K increases. As a consequence an asymptotic Newton algorithm

has o superlinear convergence rate.

Whether this algorithm is superior to the algorithms that do not have the
sccond order differentiability property is not clear. There is more computa-
tional etffort at each iteration because nonbinding constraints still can affect
the calculation of the Hessian for the unconstrained minimization long after
they would have dropped out with the other algorithms. The choice of algorithm
should be dependent on whether the discontinuity is a problem. A mixed
strategy is probably best where thié penalty function is used if problems

occur with the discontinuity during an iteration.
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