~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Cohen, Claude

Working Paper
Canonical Angles and Computations in Limited
Information Maximum Likelihood Estimation

Discussion Paper, No. 109

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Cohen, Claude (1974) : Canonical Angles and Computations in Limited
Information Maximum Likelihood Estimation, Discussion Paper, No. 109, Northwestern University,

Kellogg School of Management, Center for Mathematical Studies in Economics and Management
Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/220469

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/220469
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 109

CANONICAL ANGLES AND COMPUTATIONS IN
LIMITED INFORMATION MAXIMUM
LIKELIHOOD ESTIMATION

by i
Claude Cohen "

November 1974

ol
w

Graduate School of Management, Northwestern University



Canonical Angles and Computations in Limited Information Maximum Likelihood Estimation

Claude Cohen *
Northwestern University

Abstract

Limited information maximum likelihood (LIML) estimation is presented with
an emphasis on the geometry of subspaces induced by the single equation in
the structural system. This vector space approach reveals the structure of
the LIML model in its canonical analysis form and Hooper's trace correlation
coefficient. Two numerical procedures based on the Cholesky and singular
value decompositions are described for an efficient solution of the genera-

lized symmetric eigenvalue problem.
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1. INTRODUCTION

In this paper much of what is known about limited information maximum like-
lihood (LIML) is reworked and extended with a strong emphasis on geometrical
thinking and efficient computational procedures. 1In addition to having pedago-
gical advantages, this vector space approach reveals the structure of the
model in its canonical analysis form and permits a development which is tightly
interwoven with the efficient solution of the generalized symmetric eigenvalue
problem. All preliminaries are stated in Section 2, in particular Cholesky,
Householder and the singular value decompositions. The geometry of LIML and
canonical correlations is discussed in Section 3 while in Section 4 two
numerical procedures are brought to the attention of the econometrician interested

in statistical computing.

2. PRELIMINARIES

2.1 Notation and basic results about projectors and generalized inverses

]x, the Euclidean norm of vector x, i.e. ./ Zx%
i
4
M the orthogonal complement of subspace M
A' or At the transpose of matrix A (A:m x n)
R(A) The range space of A
tr(a) the trace of A
1 the identity matrix of order n
n
P the orthogonal projector on the space M, i.e.
M
2 _ - !
Py = Pn T Py
éL the orthogonal projector on the space M, 1.e
M
L
P,=1-P



A+ the unique generalized increase (g.i.) of A satisfying the
following equations:
+ + + _ o+
AA A = A AAA = A
(1) + + + +
(AA)' = AA (AA)' =AA see, e.g. [16]
and for which we note that
+ +
2 = =
(2) A'A = Ppipny AA Pr(a)
+ -
@n and if A is of full column rank, A = (AA) 1A'

2.2 Cholesky Decomposition (CD)

The best way to compute the inverse of a symmetric positive definite
(s.p.d.) matrix A is by Cﬁoleskz decomposition such that A = LL', L lower
triangular. See e.g. [17). The matrix A, in statistical work, is usually a
variance-covariance or correlation matrix and if we denote its elements by
a.., we have

1]

then, for i = 2,...,p

j-t

zij = (aij - k§l ﬂikﬂjk)/zii j = i+l,...,p

2.3 Householder's Decomposition (HD)

If X is an n x p matrix, n > p, rank (X) = p we can obtain a decomposition
(3) X = QR

where Q is orthogonal, i.e., Q'Q = I, and
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R
(4) R =<E—-;> , R upper triangular
0.

Q is often obtained as the product of p Householder's transformations. A
square matrix of the form H = I - 2ww', where w'w = 1, is said to be a House-
holder transformation. It is easy to check that H is symmetric and orthogonal.
The matrix X, in statistical work, is usually a data matrix. An efficient
_ algorithm for solving the linear regression/least squares problem based on
HD is given in [2].

Note also that Householder's decomposition of X yields the Cholesky

decomposition of X'X, i.e., L = R', since from X = QR, X'X = R'Q'QR = R'R = R'R.

2.4 The Singular Value Decomposition (SVD)
It is well known, see e.g. [7], that if M is any p X q real matrix, p < q,

then there exist two orthogonal matrices S px p and T q x q such that

(5) S'MT = (D,0)
where D = diag (di) i=1,2,...,p
0 is the p x (q-p) matrix
>
dyzdy 2 ...2d 20

are the singular values of M (i.e., the non-negative square roots of the eigen-

values of MM'.)
Equivalently, M = S(D,0)T', and if rank®M) = k dk+1 = ,,. = dp =0 .
If we denote the columns of S and T by Si and Ti’ respéctively, then Ti's are the

eigenvectors of MM' corresponding to di and Ti = %-M'Si, i=1,...,rank(M).
i

Tj’ for j = rank(M) + 1,...,9 can be chosen so that T is orthogonal. An
efficient algorithm for SVD and its application to least squares can be found

in [10].
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2.5 Generalized Symmetric Eigenproblem (GSE)

It is well known that, if A and B are symmetric matrices

x'Ax
x'Bx

corresponds to the smallest eigenvalue of (A - AB)x = 0. If B is positive

definite the solution of the generalized symmetric eigenproblem (GSE)

(6) Ax = ABx
can be reduced to the standard symmetric eigenproblem

7 Cy = Ay

where C = L_]'AI:.-t

and y = L'x and LL' = B 1is the Cholesky decomposition of
B into upper/lower triangular matrices. Note that the eigenvalues of (6) and

(7) are the same. An efficient algorithm for solving (6) can be found in

[15]. 1In statistical work, the solution of (6) is often obtained from
(8) B_le = Ax

which is, in general, a non-symmetric eigenproblem requiring more computational

work.

2.6 Canonical Analysis and Inclination of Subspaces

Canonical correlation theory reduces the study of p X q correlations between
two sets of variates {Xl,Xz,...,Xp} and {Yl,Yz,...,YA}, P < q, (assumed without
loss of generality--to have zero means) to the study of p canonical correlationg

Xi’ i=1,...,p, between two sets of canonical variates {Ul,Uz,...,Up} and



{Vl’VZ"°"Va} which are normalized linear combinations of the Xi's and the
Yj's respectively.
If X and Y are jointly distributed with nonsingular sample variance-co-

variance matrix S partitioned as

S S
XX Xy

S S
yx ¥V

w0
]

the problem is then to find matrices A:px p and B:q x q where

I A O
P
U """" : """""
9) Var-Cov = Ao
______ ! I
v X q
O ]
for U = AXand V=3BY, A = diag(Ki) i=l,...,p, with 1 E_Kl > ... Z.Kp > 0.
The sought {Ki,Ai, i=l,...,p} are the solutions of the generalized
eigenproblem
- 2
(10) s sl A =2"s
Xy yy yx i i xx i
and
1 -1 A
(11) B, = &= S S A i=1,2,...,p

i A Tyyyx
To solve the canonical correlation problem, two numerical algorithms have appeared
in [ 4] and [ 9]. The former based on GSE performs Cholesky decomposition of
’ SXX and Syy while checking for ill-conditioning (i.e., checking for the near
dependence of the variables Xi's and Yj's). The latter is more stable
numerically, and is based on SVD; Sxx’ Syy are not computed, instead, the

X and Y data matrices are decomposed by Householder's transformations such that



12) x - o) v - o)

The canonical correlations are then the singular values of Q; Q.

In its geometrical context, the canonical analysis model can be described
as follows:

Let X and Y be full column rank data matrices of dimension nx p and nx q,
respectively, p < g £ n. Let Lx be the supspace of dimension p generated by the
columns of X and Ly of dimension q be the subspace generated by the columns of Y.

The smallest angle 61 efo, %] between L_ and Ly is defined by

cos e = max max Ulv’ \U‘ = ‘V\ =1 being column vectors
UeLX VeLy
Assume that the maximum is attained for U = U1 and V = Vl’ then 92 is defined as the
smallest angle between the orthogonal complement of Lx with respect to U1 and that

of Ly with respect to V Continuing in this way until one of the subspaces is

1°

empty, we obtain a set of p canonical angles of inclination {ei} between the sub-

spaces L_ and L
X y
(13) cos g, = max max u'v = U ¥,
UeLX VsLy
subject to lUl = ‘V‘ =1
v U, =0V, =V,V, =V U =0
i i i

J i i i
i=1,...,p §=1,...,i-1.

Note that the canonical vectors {Ui, i=1,...p}, {Vj, j =1,...p} need not be uniquely
defined but the canonical angles always are. Also, the vectors V's can be complemented

V_ so that the U's and the V's are orthonormal

with (q@ « p) orthonormal wvectors Vp+1,..., q

bases for the subspaces L, and Ly.
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We also note that the orthogonal projectors

(14) —
PLX U'U and PL = V’V ,
y
so that if Vi denotes the least-squares Predictor of y. ;
; in Lx

Vi = Vi PL

X
— 7

Vi(U U)
=X Uy

The dimension of inclination between LX and Ly is defined as

(15) dim (LX, Ly) = rank PLx PLy

and the coefficient of inclination between Lx and Ly is defined as

(16) c(L. , L) = trace P_ P
P8 y Lx Ly

(for an introduction to these concepts, we refer to [ 17. )
As an illustration of dim (-,.) and c(-,-), consider simple linear regression.
In this case, LX and Ly are the rays spanned by the vectors X and Y, respectively.
. Then,
trace P P

Ly Ly

- trace (XX (YY) by (2)

c(LX, Ly)

trace [X(X'X)'lx'][Y(Y’Y)'lY'] by (2)

XX’ Yy’
= trace TETZ TYTZ
2 2
= Xlz 9 = cos Q
RANR A

where ¢ is the angle of inclination between the vectors X and Y.

On the other hand,

0 if and only if X | ¥

dim (Lx’Ly) = {1 otherwise

denotes the number of angles of inclination between LX and Ly‘



The properties and geometric interpretations of c(*,-) and dim(-,-) carry over
in canonical analysis. The former yields Hooper's trace correlation, as is shown
in the next section, while the latter is the number of non-zero canonical correla-
tions.

3. THE GEOMETRY OF LIMITED INFORMATION
MAXIMUM LIKELIHOOD ESTIMATION

Consider the familiar structural system of stochastic equations
(17 TY-BX =E

where X is the mx n matrix of exogenous variables, Y is the kxn matrix of endogenous
variables, B is the k x m matrix to be estimated, T is the k x k non-singular matrix

to be estimated, and E is the k x n matrix of residuals.

Hooper [12, 13] has applied canonical analysis to the reduced form of (17)
(18 =0X + W,

R -1
Usinig ordinary least-squares, estimate Il by Il = YX/(XX’) = and write

~7

Q = (Y'Y)_l WW =1 - (Y'Y)'ln x'n’,
it follows that the eigenvalues of Q are equal to 1 - kiz, where ki is the ith
canonical correlation between the sets of variates X and Y. Taking Hotelling's

"yector alienation" coefficient y and "vector correlation" coefficient B [14], :

Hooper shows that

AA k
Clwwl 2.1
Q—MYY RIS
k 21
=]1-Q| =(0 X,
i=1 *

Hence, ¢ = 1 is obtained if all canonical correlations are zero (representing indepen-

dence of the variates X and Y). And B = 0 if at least one canonical correlation is



equal to 0. Noting that both ¢ and 8 tend to zero when k is large. Hooper pro-

poses taking the 'trace correlation",

==

tr(I -Q) =

—3
]
==

(19)

™M=
>

i
and concludes that"T2 can be thought of as that part of the total variance of the
jointly dependent variables that is accounted for by the systematic part of the
reduced from and 1 - TZ as the unexplained part..."

From our geometrical treatment of canonical correlation, it is easy to show that
2.1 c(LX, Ly) where LX and Ly are the subspaces generated by the rows of X and Y

k

respectively.

Proof: Let U and V be the matrices of canonical variates corresponding to X and

Y respectively. From (14) we have:

P = 11"
Ly U'v
P =V
Ly v
C(LX, Ly) tr (PLX PLy) tr(U'U V/'V)

= (@ d,0) V)

= tr (VU (1,0))

=t ((,0) (1,0))
k
= % 2

A

i=1 i
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Choose, without loss of generality, the first equation of (17)

(18) DYy = BX, = ¢

1% 7%

where Ti*, Bl* and €1 are the first rows of I, B, and €, respectively,

with elements suitably rearranged in the equation to correspond to the included
m, exogenous and k,_ endogenous variables X _ and Y _, respectively. Assume (18) is
over-identified and that Il* is normalized by having its first element set

at -]-o

To estimate 17, and B, , one could find linear combinations of the vectors

IS
Yo Yoo eees Yy and X3, X, ..., X, respectively, such that S is the
sum of a vector Bl*X* in the subspace Lx* = R(X*') and a vector €l in Lx*'

The ordinary least-squares criterion for finding Ii¢ and Bl* is to minimize

|€112 ; equivalently, the vectors 11¢Y¢ and BI*X¢ can be chosen so that
they have minimum angle 61 between them. From §2.6, it is clear that the
first pair of canonical vectors with correlation Xl has this minimal prop-

erty, i.e.,

Ve = ¥y s Up = BrX,
and if 61 denotes the least-squares preditor of V1 in Lx*’
37 = = 1 = =
v, o= VlPLxJ- v, (U'D) by (14) =AU, (cos 8, =1;)

Note, however, that this minimum angle estimation procedure does not take
into account the fact that the included endogenous variables Y, depend on the
exogenous variables X,, present in the model but excluded from the first
equation. The aim of LIML is to let the addition of excluded exogenous

variables make a minimal improvement in estimating Y, from X, .

From this vantage point, a variety of estimation procedures is possible.

Whenle*Y* is projected on Lx* it yields a residual vector Rx*’ when it is

projected on Lx’ it yields a residual vector Rx' In the context of minimum

2/ x| 2
X

variance ratio, LIML minimizes the ratio ‘R .
b &
of canonical correlation, consider the subspaces Li; with respect to Ly* and

. In the context

T ., and calculate the maximum angle of inclination between them. This is
XI\I\
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because the residuals in equation (18) should be as little correlated as

possible with X, .

The LIML procedure amounts to
1 1
r]_v‘: Yv‘: Q*Y-,‘:r]_-,‘:

(19) min ' 1
T, . Tl* Y. Q Y*Tl*
1%
where Y, isk,x n, X, ism X n
. - 1
Qv‘: =1- X‘k (Xv‘: 'Xv‘:) Xv‘:

I-X (X 'x)'lx'

Lo
1l

and

Noting that (l9) expresses the ratio of residual variation using X, to residual
variation using X, one may propose an estimation procedure that minimizes

the difference between the two residual variations, i.e.

!

Min 2'Q.Z - Z2'Qz » Z =T7.Y,
7 N 1" %
= Min 2'2Z -2'P,Z2 -2'2Z+2'PZ ,P =1-Q
Z
P.,=1 -Q,

]

Max Z'P,Z - Z'PZ
2 %

Since the second term of the expression represents variation of endogenous

variables explained by the full set of exogenous variables, one constrains the

optimization problem with IZ'PZ] = ¢, a constant.
1
Max 2 Tw? <1
Z Z'PZ

This can be solved via the eigenvalue problem
P;‘:Z = U'PZ

A simple graphical interpretation of these estimation procedures is presented

in the next page for the case of Y = {y}, X = {Xl,XZ}, X, = {Xl}.



ot X2

i
]
LIML min 7 Px‘ky = min C1x s "minimum variance",
Y'P; y € "minimum angle between residuals"
1 P -
HANNAN min Y ( X Px*)y = min €o » 'maximum angle between €% and
t pd —_—
y Px* y € S X**"
. A
max __Z_E§fz = max s » "minimum difference between
Y'PX y Y 61* and €1 "

(length of all denominator vectors = constant)
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For a comparison of LIML with other estimators and an extension of canonical
correlation to multiple equation systems, see the excellent papers of Chow [3]
and Hannan {117, respectively. A more recent minimum-distance interpretation

of LIML can also be found in [87.

4, COMPUTATIONS IN LIML ESTIMATION

Only recently has an effort been made to graft numerical algorithms of linear
algebra to statistical estimation procedures. Statisticians are just begin-
ning to recognize in numerical analysis the algorithms they need for obtaining
accurate solutions to their problems. For example, the least squares/linear

regression model has been thoroughly investigated by several authors.

The LIML procedure (19) reduces in turn to the eigenproblem

(20) (v,'Q.y, -vy'Qv) I, = 0
for which we choose the smallest eigenvalde Ymin’® then
(21) F]_';‘: = - (X:‘:'Xz‘:)_lx*'Yv': T]_-,': ¢

Noting that (20) 1is a generalized symmetric eigenproblem, it can be solved
by the method proposed in section 2.5 ( Y*'Q*Y takes the place of the matrix
A, and Y'QY takes the place of the matrix B). The smallest eigenvalue can

then be extracted by standard methods.

In a recent report [61 Dent and Golub have proposed computing LIML estimators
by Householder decomposition of the data matrices X and Y and application
of the singular value decomposition. Their approach also exhibits the equi-

valence of 2SLS (two-stage least-squares) to LIML in the case where (18) is

just identified.

It is not easy to state which computational method is preferable. In a previous
report ES], the author has discussed some of the practical considerations for

choosing between Cholesky decomposition/SGE and a Householder decomposition/SVD.
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For practical implementation in a statistical programming system*, Cholesky/
SGE has storage advantages: a compact storage scheme can be used to handle
the symmetric sum-of-squares and cross-product matrices. Provided that these
matrices are computed accurately, the method is numerically stable and
cheapest in computations. On the other hand, Householder/SVD avoids possible
ill-conditioning and provides a good global definition of the rank of the

data matrices involved. But all singular values have to be computed.

" :
Both methods are being included in SPSS (Statistical Package for the Social
Sciences) for comparison on large problems using Northwestern University's
CDC 6400 computer.
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