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ABSTRACT

This paper investigates the problem of determining the optimal loca-
tion of plants and their respective production and distribution levels, in
order to meet demand at a finite number of centers. The possible location
of the plants is restricted to a finite set of sites and the demand at the
different centers is allowed to be a random variable. The cost structure
of operating a plant is dependent on its location and is assumed to be a
piecewise linear function of the production level, though not necessarily
concave or convex. The paper is organized in three parts. In the first
part a branch and bound procedure for the general piecewise linear cost
prbblem is presented assuming that the demand is known. In the second
part a solution procedure is presented for the case when the demand is
random, assuming a linear cost of production. Finally, in the third part,
a solution procedure is presented for the general problem utilizing the
results of the earlier parts. Certain extensions, such as capacity
expansion or reduction at existing plants, and geo-political configura-

tion constraints can be easily incorporated within our framework.



1. Introduction

The facility location and related problems are of relevance in the long
range planning of a firm's operations. These problems involve the determina-
tion of the location of the facilities, their associated capacity, and the
distribution of the product from these facilities to the different demand
centers. Different aspects of this problem have been investigated by a number
of researchers under varied assumptions [2, 8, 10, 14, 15, 17]. 1In our
paper we consider a generalized version of the above problem. Specifically,
we consider the case where the location of facilities and their sizes are to
be decided upon, in order to satisfy the demand from different centers. The
demand at these different centers is assumed to be random and the cost
associated with the production at any facility is assumed to be a piece-wise
linear function though not necessarily convex or concave. In the next section

we consider the problem formulation and its motivation.

2. Model Formulation

A firm manufactures a product which is required at n different demand centers.
The demand bj (j =1,2,.. ,n), at each center, is assumed to be a random
variable whose marginal density f(bj) is assumed to be known. The firm has
the option of setting up facilities at m different sites, i, (i = 1,2,.. ,m).

The possible capacities of the facility at site i could be any one element from

the ordered set Ai’ where Ai {a f r=1,2,.. ,mi}. The first element of

ir

each of the sets a, €& Ai’ (i 1,2,.. ,m) is assumed to be 0 and corresponds

1

to the decision of not locating a facility at site i and the last element a;

.

corresponds to the maximum possible production at site i. The cost of producing



vs units at site i is fi(yi) where

0 if y; T oa; < 0
= + i < < = )
(1) fi(yi) Kir Vi Vs if a;. y; < ai,r+1 for r = 1,2,.. Mg
© if yi > aimi

Kir may be considered as the fixed component of the cost associated with setting
up a plant of maximum capacity ai,r+l’ and vir~is'the per unit variable cost.
Thus the cost structure at any particular site is a piece-wise linear function of
the quantity produced. The cost of distributing xij units from a facility at
site i to demand center j is tij xij where tij is a constant. These costs

may be considered as the discounted costs if a multi-period planning horizon

is considered. With the above notation the problem can be formulated as

follows:
m m n
(2) Minimize Z = T f,(y.) + T T t,.x,,
i=1 * Y q=1 g=1 MM
Subject to
m
3) T x.,=B. for je€J,
=1 Y
n
= < 1
4) .§ X;5 =¥y Sag for i €I,
j=1 i
where J = {1, 2,...,n}, I = {1, 2,...,m} and Bj represents the realization
of the random variable b,. In order to ensure a faasible solution we assume
n n
a. Z 2 Bj
i=1 i 371

The above formulation incorporates the problems posed by various authors.

For instance, the fixed change transportation problem [87], the location-allocation



problem [14], and the warehouse location problem [2, 17], are all special
cases of the problem posed above. A discussion of the recent research work
done in this area has been presented by White and Francis [15], and also by
Soland [14]. Our formulation is similar in some respects to that of Soland
[14]. Soland considers the case where the demand is deterministic and the

cost functions are concave. Since the demand is generally not known with

certainty as discussed in [6, 16], the consideration of this problem with
probabilistic demand appears to be more realistic. Francis and White [15]
consider probabilistic demand for a different problem viz. that of deter-
mining optimum warehouse sizes only. The problem that they consider is
different from ours, since they are not concerned with either the location,
or the distribution aspects. Essentially their problem has no constraints

of the type represented by equations (3) and (4) . The cmsideration of random
demands increases the complexity of the problem. To our knowledge, no com-
putationally satisfactory solution of this entire problem exists in the

published literature.

rurtner, the cost structure that is generally consiaered is either a fixed
cost plus a variable cost such that the total cost of production is concave,
or a general concave cost as in Soland [14]. 1In the real world, because of
indivisibilities and economies/diseconomies of scale, the cost structure is
often different. Hadley and Whitin [9, Chapter 2, p. 62 discuss quantity dis-
counts where the cost function though piece-wise linear is neither concave nor
convex. Rech and Barton [11] also consider nonconvex piece-wise linear cost
functions for solving the transportation problem. As discussed by them this
cost structure arises frequently in the real world. The location, capacity

and distribution problem with such a cost structure has not been discussed
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in the literature. In our framework such cost structures are treated.

For ease of exposition we present the solution procedure of this problem
in three phases. 1Initially we consider the case where the demand is deter-
ministic. We develop an algorithm treating Bj in (3) as known constants.

This algorithm essentially solves a deterministic facility locatiomn, capacity,
and distribution problem with a general piece-wise linear cost structure. A
branch and bound procedure wherein sub-problems are solved using operator
theory [12, 137 (an extension of para:ﬁetric programming where simultaneous
changes in the parameters of a transportation problem are investigated) .is
presented in Section 3 for the solution of this deterministic problem. 1In
Section 4 we develop an al gorithm to solve the probabilistic case when the cost
is assumed to be a linear function. The algorithm for this probabilistic demand
problem utilizes the operator theoretic approach and the Kuhn-Tucker conditionms.
Finally, in Section 5, we integrate the algorithms in Sections 3 and 4 to
develop a solution procedure for the entire problem. We show that the branch
and bound procedure of Section 3 for the entire problem, result in sub-problems
of the type cmsidered in Section 4. This three-phase approach provides
flexibility for a user to solve either the general problem or the special cases

considered in Sections 3 and 4.

3. The Deterministic Demand Model

In this section, we assume that the Bj's given in equation (3) are known
constants. The cost fi(yi) that is associated with the production of v units
at site i is assumed to be piece-wise linear. Some of the different cost
structures which arise in reality, and are permissible in our formulation are

sketched below (Figures la - le).
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To solve this problem we apply the branch and bound procedure. We first
approximate all the cost functions, fi(yi)’ by their best linear underesti-

mates.

Definition 1: A linear underestimate of the function fi(yi) over the

. . . 0
interval Ri is a linear function &  + Liyi such that

LO + Liyi < fi(yi) for all Y € R.
and

4. + - .
ot 2o = £1(3;,) wherey, € R; and y; <y, Ty, €R;

Definition 2: The best linear underestimate £0+c]._yi of the function fi(yi) over
the interval Ri is a linear underestimate such that if 20 + ziyi

is any linear underestimate of the function fi(yi) over Ri then

Illustration of the Best Linear Underestimates

Figure 2

Il
=

a
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i em— ——

0 o

Cost function is OCABCD.



As illustrated in Figure 2, OE is best linear underestimate of the cost functions
sketched in the interval [0, 33]. The best linear underestimates of the cost
function in the intervals [0, 32] and [az, a3] are OB and CD respectively.
Substituting the best initial linear underest imates 210+ciyi for each of
the function fi(yi) over the intervals [aio’ aim.] we obtain the following trans-
i

portation problem after removing the constant term, if any, from the objective

function (corresponding to node 1 in Figure 3).

m n

1
(6) Minimize Z.= 3 % (e, *+t,)x.,.
1 i=1 j=1 i 137713
subject to

m
(7) Y x,.=B, for j €J,

n+l
(8) .§ %4 =a; for i € I,

i=1 i
)] x5 2 0 for i € I and j&iU{n+1} |

where, X n+1(i =1,2,...,m) are the slack variables. Let us denote by J' the
b
set JU{n+1}. Let the optimal solution vector to this approximate problem be
X1 and its optimal cost be Zl(Xl). If Z(Xl) is the value of the original objec-

tive function (2) for the solution vector X1 then we have the following result:

Lemma. If X* is the optimal solution vector to the original problem
represented by equations (2) - (5) then the optimal value Z(X') is

1 1
bounded above by Z(X ) and bounded below by ZI(X ).

. s s 1 1 P
Proof. Since by definition 4. tc (y,) < £,(y,) over [aio,aimi], and by definition

%* * *
Y = 3z Xij’ for i € I, we have Zl(X ) < 2(X ) for any feasible X .
jel

1 * .
Further, since X 1is an optimal solution for (6) - (9), and X is a feasible

solution to that problem, we have



(10)

(11)

(12)
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1 *
<
2, (X)) <2, ()
Hence we have

1 *
Zl(X ) <Z®X)
1, ] . . . *
Again X 1is a feasible solution to the original problem and since X is an
optimal solution to the original problem
z2x) < zxh
= . Q.E.D.

If L and U denote the current lower and upper bounds, then after solving

the first approximate problem corresponding to node 1 (Figure 3), we have

1
L Zl(X ),
and

2(xY)

U

After solving the first approximate problem we partition the domain of
definition of one of the functions fi(yi) sO as to obtain better linear under-
estimates in each of the different segments of the partition. A number of
different rules could be used to determine the index i(i € I) on which to parti-
tion. Further, there is also the option of determining the number of segments
in the partition, which would equal the number of branches. 1In this paper we
provide one rule for obtaining two branches. This rule is similar to the one

proposed by Rech andBarton [11]. We determine the first index k, k € I such

that
1 1.1 1 1 1.1 1 .
fk(Yk) ckYk - sz > fi(Yi) - ciYi - £i0 , for Y i €1,
and
1 1.1 1
fk(Yk) - ckYk - £k0 >0,
where
1



(13)

(14)

(15)

The two branches that we obtain are

Yk = %k, °
and
Ve 7 3k,t
where
1
A p SV S i

Thus at each stage of the branching process we generate two additional
sub-problems which can be represented by nodes in the branching tree. These
nodes are numbered sequentially as the sub-problems are generated. These sub~
problems partition the domain of definition of fk(yk)' We substitute the best
linear approximation of fk(yk) in each of these partitions and add the relevant
constraint from the set (12)»(13) to each of the sub-problems. The resultant
problems are also transportation problems, since Vi < ay ¢ simply means that
one of the right-hand side constants in (8) is changed, whereas Vi > 3, implies
; that is, the variables x is upper bounded (when

that x - a

<
k,n+1 akmi kt

i < - - h h
we solve the resultant transportation problem xk,n+l < akmi At 1) Thus the
following changes occur in each of the branches (represented by nodes 2 and 3

k,n+1

in Figure 3)
(1) cost coefficients of all xkj’ i=1,2,...,n

differ by some constant amount-~k1 in one of

the branches and k2 in the other branch.
(ii) capacity of plant k is changed in one of the

branches and the upper bound of the slack

variable (x ) corresponding to plant

k,n+1

k is changed in the second ome.
We may remark here that the new solutions, taking into consideration the
above changes, can be generated (without resolving) by the operator theoretic

approach discussed in [12, 13]. 1If X2 and X° are the optimal solutions to the
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approximate problems generated by the branching process at nodes 2 and 3,
then we can show that the current lower béund, L, and upper bound, U, satisfy

the following: (by an argument similar to the one in Lemma 1).

L= Minimﬁm[zl(Xz)? zl(x3) > zl(xl) ,

U = Minimum(Z (1), z2x2), z&x) 7,
and

L<z®) < U.

Remark: The strict inequality L > Zl(Xl) follows from the fact that the best
linear underestimates in at least one of the partitions has to be
strictly greater than the previous best>linear underestimate since
(11) holds.

If L = Zl(XZ) we branch on the node corresponding to the solution X2 to
4

obtain nodes 4 and 5 as shown in Figure 3. If X and X5 are the solutions at

these nodes then the new current lower and upper bounds are given by

i

L Min[Zl(XA), zl(xs), zl(x3)] >

and

[on]
il

Min[Z(Xl), z(xz), z<x3), z(Xa), Z(XS)]

Thus the current lower bound, L, at any stage equals the minimum of the lower
bounds at the open nodes (nodes from where there are no branches), whereas

the current upper bound, U, is the minimum of the upper bound over all the
nodes. The algorithm terminates when the current lower bound equals the current
upper bound at the same node. This process terminates in a finite number of
steps since the number of sites is finite and since at each branch we partition
the domain of definition of the yi's into disjoint intervals. Further, since

each of the fi(yi) is a piece-wise linear function we cannot have more than mj;
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Figure 3

Branch and Bound Procedure

Solve
problem given by Current LB=L=%.(X1)
6 - (9 .
\ Find Current UB=U=Z (X")

xt,z b,z ah

Find first index k
satisfying (10) - (12)
Find ap, satisfying (15)

) 3
P
~ ° -
) Filed ) L = min[Zl(Xz),Zl(X3)] , Fl;ld 5 |
X7,2, X7),2(X7) \ e 1 2 3 X7,21(X7),Z2(X7) |
P U = min[Z2(X7),2(X7),z2(X)] % !
iusing operator theory; \ using operator theor§

\

\

N

.

Let L=Zl(X2)

Find

Find

4 4 5 5
X ’Zl(X ),2(X7) X ’Zl(X ),2(X7) Find L and U and branch if necessary

| on node k such that Zl(Xk) = L.

x // 5 Note at this stage that nodes 1,2
\\\\\\‘-r_”/’/j, \\\\\\\‘--”////, are closed and nodes 3,4,5 are open
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partition on the variable v before we have the best limear underestimate

equalling the function itself, and thereby not allowing further branching on

the variable Yy
We therefore have the following algorithm.

Algorithm I:

Step 0: For each of the functions fi(yi) substitute £i0+ ciyi, the best
linear underestimate of fi(yi) for asq f_yi < aimi' Solve the resultant
transportation problem, and create an open node corresponding to the
solution Xl. The current lower bound is Zl(Xl) and the current upper
bound is Z(Xl).

Step 1l: If the current lower bound equals the current upper bound and occur at
the same node then terminate. The optimal solution corresponds to the
solution at the node where these bounds are equal. Otherwise go to step 2.

St‘R 2? Determine the open node with the current lower bound and partition
on the index k that satisfies equations (11) - (13). <cClose this node
and generate two additional open nodes corresponding to equations (13)
and (14). Solve the two resultant transportation problems using operator
theory from the solution of the old open node. If any of the resultant
transportation problems has no feasible solution then close that node
and drop it from consideration for further branching. Let the upper
bound associated with such a node equal . Determine the current lower

bound over all the open nodes, and the current upper bound over all the

nodes. Go to Step 1.

Remark: If at a branch (node) some Vi E-akl = 0, (no plant at site k),

then in the resultant transportation problem the variables ij

for j € J' can be set to zero, or alternatively dropped.
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4. The Probabilisti¢ Model

In this section we investigate the problem in equatioms (2) - (5) with
special emphasis to the case when the demands bj’ j € J, are random and
the functions fi(yi) are linear. The demand is assumed to follow some known
multivariate distribution, which allows interaction among the demands at the

different centers. Let f(bj) represent the marginal density function of bj'

We therefore have the following problem:

(16) Min X z X, + Xz z ti’xi'

icl  jed b ojer jeg HOH
Such that

(17) Z X = b. v j E J ’
ier 3

(18) L ox, +tx, . =U Viel,
e ij i,ntl i

(19) ij >0for ViéelandjeJ,

(20) 0<x; g Su; for Vi€,

where each bj is assumed to be random with known marginal density (or mass)
function f(bj).

The solution procedure presented in this section is based on the theory
of "Two Stage Linear Programming Under Uncertainty'" also called as "Stochastic
Programming with Recourse', as proposed by Dantzig and Madansky [ 5], and

others, [4, 6, 7, 16]. 1In order to solve this problem we make the following

assumptions, which are similar to the ones used by all the above mentioned

authors.

(A1) The marginal distribution f(bj) of each bj is known.
(A2) This distribution f(bj) is independent of the choice of xij'

(A3) For every bj and any set of Xij > 0, satisfying the constraint set

(18), (20), there exists Xij satisfying the constraint set (17).
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Charnes, Cooper and Thompson {47 have shown that the two stage linear
program is equivalent to a constrained generalized median problem whose
objective function has some absolute value terms. This objective function

was shown to be equivalent to a mathematically tractable function by Garstka [7].

In this section we essentially follow the approach and notation given by
Garstka [7].

Since each bj is random, it is no longer true that all the constraints
given by equation (l7) are exactly met. We therefore assume that the firm
experiences an opportunity cost of lost demand. This cost, pj > 0, is
assumed to be linear and treated as the per unit penalty cost of not satis-
fying demand at center j. Similarly, if we have more supply than the demand,
then there may be a penalty due to holding, storing, and obsolescence. Let
us assume that this per unit penalty, dj > 0, due to overproduction is also
linear at center j. Following Charnes, Cooper and Thompson, the total

penalty costs associated with demand exceeding production is:
(21) . {Ib, - = x.. ]+ ®. - = x.07.
I e M I oser M
It can be verified easily that if the production exceeds demand, viz., if
=X,
. 1

i
associated with excess production is

3 > bj’ then the above penalty is zero. Similarly, the total penalty cost

(22) . {| = x.. -b, ] +(T x,..-b)}.
J M e 1] jer I

Hence, the objective function to be minimized for the problem given by
(16) - (20), equals the expected value of the total production costs, distribution
costs, and costs due to under and over production. The problem (16) - (20) is

therefore equivalent to:
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(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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Minimize E[ = = X, + = = ti'xi'
i€I  jel 3 jer jeg MM
+%2 % 4, {|T x..-b.l +(= x,, -b.)}
2 . . » - ra .
+3 ¢ p, {Ib, - = x|+ kb, -2 1]
2 - . P Y s - H
subject to
o ox,, +x. =0, for V i I .,
jel ij i,nt+l i €
xij >0 for ViéeTITand j€J >
0< Xi,n+1 < ui for VielI
Let us denote ¥ X,, =b, and C,, = ¢, +t,, for i €1 and j € J. It has
ic1 ij jo ij i ij

been shown by Garstka [ 7] that the objective function given in (23) can be

transformed into

Min F, +F,,
where
F, = % T c,., -p, +4dx, .,
1 i€l jed ij ] 7]
and b
[
F, = ¥ (p., t4d.) (b. - £ x,..,)f(b.)db,

where bjm is the median of the random variablé bj whose marginal density (mass)
function is f(bj).

It is seen that F1 is linear and it can be proved easily that F2 is con-
vex (see Garstka [7, page 11]). 1If Xi and M, are the dual variables corres-

ponding to constraints (17) and (20) respectively, then by the Kuhn-Tucker

* % * *
conditions the optimal solution X = {xi}} > By and Ki satisfying the following:

A

A. are unconstrained for i € 1

%

M., <0 foriel

.
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¢ Jm %
- %p, +3d, - . +d.) | f(M)db, -A.>0for Vi€Iland j €J,
(32) Ciy = 2Py sz z (pJ J) J ( J) 3 ; = h|
jed b,
jo
(33) jij' Xij = Ui for VieI,
< .
(34) xi,n+l < uy for Viel ,
(35) x;;20 for V1 €T and j¢€ i,
(36) Xiq " {left hand side of (32)} =0 fori €I and j € J.
37) X5 ntl (ﬂJi - Xi) =0 forice€l,
- = for i € I.
(38) (ui xi,n+l)ui 0 or i €

These conditions given by (30) - (38) provide a basis for solving the
stochastic capacitated transportation problem. Based on these conditions,
the following propositions Pl, P2, and P3 can be provéd. The proofs are
similar to those provided by Garstka [7].

-Pl. For any i € T and j € J, if Cij > pj, then Xij = 0,

P2. Forany j € J and all i € I, if Cij Z(pj - dj)/2, then

T x,,<b, in the optimal solution.. It may be noticed that if p, < d.,
iel 1] Jm ] J

the above inequality trivially holds since Cij > 0.

. X . + < -
P3. For any i € I and all j € J, if Cij dj 0 then jiJ' Xij Ui

In many situations the combined cost of production and transportation,
Cij’ is greater than half of the difference (pj - dj). Thus in the algorithm
given below we assume that Cij 2_(pj - dj)/2. Note, however, that if the
per unit cost of underproduction, pj, is less than that of overproduction,

dj’ then the above assumption is unnecessary. In order to solve (30) - (38)

let us pose a new deterministic transportation problem given below:
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(39) Miinimize F, = 121 jiJ —95(2cij - P + dj)xij
" such that

40) jEJ' xij = Ui for i €1

(41) 121 xij = bj* for j €J

(42) xij >0 for i € I and j € J and

(43) 0< x u, fori €1l

<
i,n+l — 71
where bj* are the realizations of bj' If Xi, ui’ and vj are the dual variables
corresponding to constraint sets (40), (43), and (41) respectively, then by

the Kuhn-Tucker conditions the optimal primal and dual variagbles satisfy:

(44) Xi R v? are unconstrained, and ui <0, fori€I, jeJ |,
(45) cij-(pj+dj)/2-x’;-v?zo, for i €I, j €T,

(46) jEJ' %53 =U, foriel ,

47 121 Xp9 = bj*’ for 3 €J ,

(48) xi,n+l f.ui, for i € I ,

(49) xijzo; for i € I and j € J' ,

(50) Xij * (left hand side of (45) ) =0 for i €¢I and j€J,
(1) b (Hy TA) T 0 for Ded,

(52) (u, - xi,n+1)“i =0 foriel

It is easy to observe the similarity of the Kuhn-Tucker conditions given
in (44) - (52) to those of the original problem. Comparing equations (32)
and (45), we see that a solution to (44) - (52) will satisfy the conditions

of the original problem (30) - (38) if
b

* e jm
53 V. = .+ d, f(b.)db,
(53) ;= (g v | (b;)db,

b,
jo
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Since, by assumption Cij Z.(Pj - dj)/2, by proposition P2 stated earlier

b. = Z x.. <b.,
J jer 74

and therefore the problem reduces to finding a set of bj*,j € J, such that

(55)

* s 17 ey
. = .+ d. f(b.,)db,
VJ (pJ ] Jb ( ] J
3%
If such a by_exist, then the optimal solutions to (16) - (20) will be

obtained by solving (39) - (43) with the bj* replacing bj in the constraint

set (17). An optimal solution can now be determined by the following

lgorithm provided C.. > , - d.)/2.
alg P ed C;y 2 (pJ J)

Algorithm II1:

Step O0: 1Initialization: Let k the number of iterations be 1. Find bjm the

Step

median of the random variable bj for V j € J, and set the initial

b, = bjm for j € J in equation (44). Find the optimal solution and
optimal cost to the deterministic transportation problem (39) - (43)
and find the dual variables Xi, My for i € T and Vj for j € J. (Though
Hi for i € I are obtained they are not directly needed.) The duals

ki and Vj are solved from the relation ki + Vj = C!. =C

.- p., td,
i3 "1 " Py/, T

/2
for (i,j) in the optimal basis. For k = 1 let the basis set be denoted
by B1 = {(i,j)‘xij > 01} and Al = {Xilthe optimal values of the dual
variables for i € I} and V1 = {Vﬁlthe optimal value of the dual variables
for 3 € J}. Let bﬁ* = bj* for j € J.

1: TIteration Procedure: Find from the following (newsboy type)

pktl
Jn

relationship:
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k jm
(56) vi= eyt ay | ALY
j*
Step 2: If b?:l = b?* for every j € J, then an optimal solution to the

stochastic transportation problem (16) - (20) is found and hence STOP,

otherwise go to Step 3.
k+1 k+1 k .
Step 3: Area Rim Operator Application: Let Bj = bj* - bj*’ for j €17

and let ai = 0 for i € I. Following the algorithm given by Srinivasan

and Thompson [12, page 2157, apply the area operator éRA with & = 1 and

the above computed &y and Bj to generate the new optimal solution for the

k+1
(k+1)th'pr0b1em. Let the new duals set be A . Let k = kt+l and go to

+ k .
step (1). (Note that if Vk t and V are the same for every j, then
bk+1 = b?* so that the iteration can be stopped.)

j'k

The convergence proof of this algorithm is based on the results derived
by Charnes and Cooper [3] and Charnes, Cooper, Thompson [47. Garstka {77 has
given a proof based on [3, 4] and since the proof for our algorithm is similar
to that given by Garstka [7] we are providing an outline of the proof. It can

be shown that FZ(bj) is convex in b. so that F1 + F2 in (27) is also convex.

+
Further, it can be shown that b§*1 S_b?*, and thus the b?* are monotone and
' 1 ) ) k+1 k D
bounded by bj* = bjm' With the relationship between b and Vj which is
w Jn‘

one to one, and due to montonicity, and convexity, and convergence is

established.

5. The General Model and Extensions

In this section we provide a solution procedure for the problem, for-
mulated in Section 2 given by equations (2) - (5). In Section 3 we provided
Algorithm 1 based on a branch and bound procedure, to solve the above problem

with bj's being deterministic. At every branch in this algorithm, we are
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faced with a deterministic transportation problem, where the right hand sides
in the constraint set (3) and (4) change from branch to branch and the cost
coefficients in (6) also change. However, due to the operator theory

[12, 137, the optimal solutions at each branch are obtained in a computationally
efficient manner. Let us represent for each of exposition, the costs and

the right hand sides of a branch V as C}, U‘i’, and u‘i’ for i € I. Now, to
consider the problem (2) - (5) in its entirety it is enought, if we intro-
duce the randomness in the b,'s, j € J. This leads us directly into Section
4, where these appropriate costs and right hand sides mentioned above

replaces the corresponding ones in equations (16) - (20). Thus, Algorithm

I1 is directly applicable to this new stochastic transportation problem where
the costs and right hand sides of the branch being considered replace the
costs and right hand side of (16) - (20), provided Assumptions Al - A3

hold. It is to be noticed that tij’ pj's and dj's do not change. Assumptions
Al and A2 are unrestrictive and can be expected to be true in most practical
situations. Since the plant capacities (uZ) differ among branches we need

to check Assumption A3 before applying Algorithm IT. If Assumption A3 does
not hold at a branch, then there is no feasible solution at that branch, and
we can therefore close that node and set the upper bound equal to «. This
check of Assumption A3, therefore, reduces the number of potential branches.
We now present the following unified Algorithm III to solve the original prob-
lem posed by equations (2) - (6) by utilizing Algorithm I first and applying

Algorithm II to each branch of Algorithm I.
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Algorithm III:

S O0: F h of the f ti £, (v.) bstitut ll + cly the best
tep O: or each o e functions f, (y,) substitute % iYi0

<a, - Solve the resultant
i

stochastic transportation problem (6) ~ (9) with the assumption that

linear underestimate of fi(yi) for a;q <y
b? for j € J in (7) as random, utilizing Algorithm II. Create an
open node corresponding to this optimal solution Xl to the stochastic
transportation problem. Denote the current lower bound as Zl(Xl)
and from the actual objectivé function Z given in (2), get the upper
bound Z(Xl).

Step l: Same as Step 1 of Algorithm I.

Step 2: Determine that open néde with the current lower bound and partition
on the index k that satisfies equations (10) - (13). Close this open
node and generate two new open nodes as branches, corresponding to (13)

and (14). Note that the problem at each of these branches is a stochastic

transportation problem which can be solved using Algorithm II provided assump-
tion A3 holds. This assumption can be checked by determining that the resul-
tant transportation problem has a feasible sllution. If assumption A3 does
not hold, then close that node and set the upper bound equal to «. Determine
the current lower bound over all the open nodes, and the current upper bound
over all the nodes. Go to Step L.
Remark: Since Algorithm IIT above is the unification of Algorithms I and II,
the convergence follows due to the convergence of the earlier two
algorithms.
Our algorithms facilitate easy consideration of certain extensions to the
problem formulated in Section 2 such as
(1) Inclusion of constraints requiring mandatory operation

of certain plants.
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(2) Capacity expansion or reduction at existing plants.
(3) Geo-political consideration requiring the operation of
plants at mutually exclusive or mutually dependent plant
sites.
Consideration of extension (1) and (2) follows from the fact that agi
and a, for each i € T are arbitrary, while extensions 2 and 3 can be imposed

when branching occurs.
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