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Abstract

The solution of the generalized symmetric eigenproblem Ax = ABx is
required in many multivariate statistical models, viz. canonical correla-
tion, discriminant analysis, multivariate linear model, limited informa-
tion maximum likelihood. The problem can be solved by two efficient num-
erical algorithms: Cholesky decomposition or singular value decomposition.

Practical considerations for implementation are also discussed.
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1. INTRODUCTION AND PRELIMINARIES

The increasing practical use of multivariate statistical models is linked
with the availability of many statistical programming systems. For a
survey, see [17]. At times, however, and with no forewarning, computer
programs which implement estimation procedures will produce unreasonable
results from reasonable data. Only recently has an effort been made to
graft numerical algorithms of linear algebra to statistical procedures.

The literature concerning numerical linear algebra has vastly grown. For

a perspective on the state of the art, see [20]. Statisticians are just
beginning to recognize in the numerical analyst's world the algorithms

they need. The least-squares/linear regression problem has been thoroughly
investigated by several authors and an evaluation of some of the problems
encountered can be found in [19]. The purpose of this paper is to approach
the models of canonical correlation, discriminant analysis, multivariate
linear hypothesis, and limited information maximum likelihood as extremum
eigenvalue problems and make use of computationally efficient algorithms

familiar to numerical analysts.

1.1 If X is a nx p matrix, n= p, rank (X) = p and a vector y are given,

the least-squares/linear regression problem
(1) min || Xb - y ||
b

(where l]...li denotes Euclidean norm) can be solved by Householder's

transformation to obtain a decomposition

(2) X = QR



where Q is orthogonal, i.e. Q'Q = 1 and

(3 R = , R upper triangular.

An efficient algorithm for solving ( 1 ) is giveu in <, where § is obtained
as the product of p Householder transformations. A square matrix of the
form H = I - 2ww’', where w'w = 1, is said to be a Householder transformation.
It is easy to check that H is a symmetric, orthogonal transformation. The
problem min||Xb - y|| is transformed to min\\Q'Xb - Q’'y|| which reduces

b b

to solving a triangular system of equations.

~

4) Rb =2z , z=Q'y

-1
In statistical work, the solution of (1) is computed as b = (X'X) XY,
where the computation of the cross-product matrix and its inverse may lead

to serious numerical difficulties. The best way to compute (X'X)—1 is by

Cholesky decomposition (CD) such that (X'X) = LL’, L lower triangular. See

e.g. [20]. Denoting the elements of (X'X) by a5, e have

£11 =/ ajq , 111 = ai1/£11 i=2,...,p

then, for i = 2,...,p

=
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=
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(5)
j-1
v - - S = ia .
Lij ( 355 k§1 iijk)/zii j=1i+l,...,p

~

Note that Householder's transformation of X yields L = R’ since

~

R'’R = (Q'X)'Q'x =x'x



1.2 It is well known that, if A and B are symmetric matrices

TAx
(6) min x.
=1 *P

corresponds to the smallest eigenvalue of (A - AB)x = 0. 1If B is positive

definite the solution of the generalized symmetric eigenproblem (GSE)

(7) Ax = )ABx
can be reduced to the standard symmetric eigenproblem

(8 Cy = Ay

4{ 1

where C =1~ AL_t and y = L'x and LL' = B 1is the Cholesky decomposition

of B into upper/lower triangular matrices. Note that the eigenvalues of
(7) and (8) are the same. An efficient algorithm for solving (7) can be
found in [13]. 1In statistical work, the solution of (7) is often obtained

from

(9) B'le = \X

which is, in general, a non-symmetric eigenproblem requiring more computa-~

tional work.

1.3 If M is any px q real matrix, p < q, then there exist two ortho-

gonal matrices § and T such that

(10) S'MT = (D,0)

* -t , -
We use 1 instead of the cumbersome (L 1)'.



where D = diag (di) i=1,...,p
0 is the p x (g-p) zero matrix

and d.=2d, =2 ... 2 dP =z 0

are the singular values of M, i.e. the non-negative square roots of the

eigenvalues of MM'. S and T are the eigenvector matrices of MM' and M'M

respectively. Equivalently,

(11) M = §(D,0)T"'

and if rankM) = k, dk+1 = ... = dp = 0. See [5,6].

An efficient algorithm to obtain the singular value decomposition (SVD)

of M can be found in [11].
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2. STATISTICAL APPLICATIONS

2.1 Canonical Correlation

Canonical analysis considers the relationship between two sets of variables

1 2,...,Yq > P £ q and reduces the study of px q corre-

lations to the study of p canonical correlations kl,...,KP between two

Xl’XZ""’Xp and Y. ,Y
. . 1

sets of canonical variables Ul’UZ""’Up and Vl,Vz,...,Vq. If the Xi ]

and Yj's are jointly distributed with sample variance-covariance matrix

S partitioned as

Sxx Sx
S = 7
S S
yX yy
then the variance-covariance matrix of U, =¢' X and V, =8', Y, where
i (1) j (3
a(i) and B(j) are column vectors, can be written as
I A 0
(12) p
A I A =‘d1ag(Ki) i=l,...,p .
— q
0

The sought (Xi’a(i)) are the solutions of

- 2
(13) Sxyyyoyx ¥ (1) T MiSxx ¥ (1)
and 1 -1
= gt
P (1) Ay vy yx (D)

To solve (13) numerical algorithms based on CD and SVD have appeared in
[ 3] and [10] respectively. The former performs a Cholesky decomposition
of Sxx (and Syy) while checking for ill-conditioning, i.e. checking for
the near-dependence of the variables Xi's (and Yj's). The latter is more

stable numerically: Sxx and Syy are not computed, instead the X and Y
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data matrices, of size nx p and n x q, respectively, are decomposed via

Householder's method such that
R il
X = Qx X and Y = Qy Y.

0 0

The canonical correlations are then the singular values of Q;Qy.

2.2 Discriminant Analysis

The problem of discrimination [12] arises in the study of G, G= 2
a priori defined groups of populations assumed to have equal variance-
covariance matrices. It involves finding linear combinations (discriminant
functions) of the p variates that enable the experimenter to 'best"
represent the groups by maximizing among-group relative to within-group

variability. The discriminant functions d

(1)’ i=1,2,...,r where
r = min(p,G-1) are usually found by solving the problem
d,. . 'Bd d,. . 'Bd,.
2 _ (@) ~d)y | (1) (i)
(14) max A= § g d (W + B)d
41 CORCY (1) (1)

where W, B, T denote the within groups, between groups, and total sum of

squares and cross-product matrices. (14) reduces to solving

1 B-yW)yd, ., =0
(15) (B - YW) d ;)
2
where Y = —)‘——2-
1 -2

is the largest eigenvalue of W-lB. Clearly, the GSE algorithm can be used

to solve (15). If we now define q = G-1 dummy variables Yi’ i=1l,...,q

such that 1 if the th-observation belongs to the

ith group

otherwise
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then the set of variables Xl’XZ""’Xp and Yl’YZ"'

in the canonical analysis framework of % 2.1. 1In discriminant analysis,

.,Yq can now be used

it is usual that q << p so that the SVD should operate of Q}’,Qx to yield

the singular values Ki , i=1,...,q.

2.3 The Multivariate Linear Model

A multivariate linear model is of the form
(16) Y=XB +U

where Y is an nx q matrix of observed values of ¢ variates, X is an nxp
matrix of observed values of p non-stochastic variables, or is a design
matrix , B is a p X q matrix of unknown parameters to be estimated and U
is an n x q matrix of errors where Ui is multivariate normal (0,%) and
E(UiU&) = 0 for i#j. A multivariate linear hypothesis is of the form
Ho: CB = 0 where C is a p x p matrix with unity on the diagonals corres-
ponding to the columns omitted from X to yield Xo’ the restricted design

matrix, and zeroes elsewhere. All the tests for Ho require the formation

of the matrices (see e.g. 1)

(17) E = Y'QY

and

(18) H=Y"( - PO)Y
where

Q=I-7,P=xx0X ;

-1
P =X (X'x) X!
o] o 0 o o

Several criteria for testing Ho have been put forward and they are the
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results of invariant transformations, see, in particular, [ 1]. The test

statistics which are associated with them depend on the eigenvalues of

(19) Hv=AEv

If the test criteria are based on A ., (or ) ) then we can proceed as

min max
in 1.2 and compute the smallest (or largest) eigenvalue by standard methods.
If the criteria involve all the eigenvalues A's then SVD can be used with

the ideas of [16] transferred to Householder's and Cholesky's decomposition.

2.4 Limited Information Maximum Likelihood

A system of stochastic equations is usually written as
(20) GY - FX = E

where Y is the q x n matrix of endogenous variables, X is the p x n matrix
of exogenous variables, E is the q x n matrix of random errors, and G

qxq and F qx p are both unknown matrices. See e.g. [9]

Before estimating the elements of the matrices G and F, the model must be
identified. Econometric theory generally provides a priori information in
that we often know that certain variables do not appear in certain equations
(i.e. certain elements of G and F are restricted to be zero). Without loss

of generality, consider the first equation of (20)

gyt - Fy®e T e

with the elements of g(l) and f(l) suitably rearranged to correspond to

the included exogenous and endogenous X, and Y, variables, respectively.
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It is also assumed that the coefficient of the first endogenous variable
is equal to 1 (normalization rule). 1If this particular equation is
over-identified, the limited information maximum likelihood procedure

amounts to

&) Y QY 8(1)

(21) min T T
g Y. Qv 8
g1y S(1) (1)
where Y.isq.x n , X 1isp xn

-1
— ' [
Q* =1- X*(X*X*) X*

1 - X(X'X)'lx'

L
I

and (21) reduces in turn to the eigenproblem
(22) (Y;Q*Y* -y Y'QY) g(l) =0

for which we choose the smallest eigenvalue Ymin® Then

— ' '1|
(23) f(l) = -XXD Xeli8 (1)

CD can be used to solve (22) and extract only the smallest eigenvalue by

standard methods. SVD cannot be used to extract only the smallest singular

value, Rather, all singular values are computed as proposed in [ 4] where

the authors work with the data matrices X and Yi instead of cross product

matrices.

The following table summarizes the four eigenvalues problems associated

with the multivariate models and the test criteria which have been proposed

in the literature.
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3. PRACTICAL CONSIDERATIONS AND CONCLUSIONS

3.1 The choice between a Cholesky decomposition for SGE and a Householder
decomposition for SVD is important to note for practical implementation.
Typically, the difference is between operating with symmetric p x p matrices
or rectangular matrices, say n x p, n 2 p. In the former case, the matrices
- are usually sample correlation or variance-covariance matrices. 1In the
latter case, the matrices represent the 'raw' data to which Householder's
transformations are applied. The number of multiplications required for
s . 1 3 2 . s .

a Cholesky decomposition is about G P (plus np~/2 multiplications to
obtain the correlation or covariance matrix) whereas the number of multi-

. . L . . 2 3
plications for a Householder decomposition is approximately np~ - p /3.

Thus, for "tall" data matrices n >> p, CD is more economical.

3.2 Storage considerations may not permit an in-core data matrix but

will favor a compact storage scheme for the symmetric matrices which are
needed for other statistical computations. The design philosophy of many
statistical packages, e.g., SPSS[ 15], is to handle n x p data matrices
with unlimited number of observations. The data matrix resides on disk,
while the correlation matrix resides in central memory. This precludes

the use of HD for all but small size problems. It is possible, of course,
to perform HD on very tall matrices by annihilating rows p + 1, p + 2,...,n,

one at the time,provided that the (p + 1) x p matrix fits in core.
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3.3 An important requirement of mathematical software is the reliability
of its numerical algorithms. 1In the previous section, we have indicated
how linear algebra algorithms apply to multivariate statistical models.

In eigen-analysis, the researcher is fortunate to have the EISPACK [ 7]
subroutines developed at Argonne Laboratories, and based on the pioneering
work of Wilkinson and others[ 20] for inclusion in a statistical programming
system.* There are instances when a user inputs one or more correlation

or variance-~covariance matrices into the statistical package. (SPSS
provides this convenient feature.) These previously computed matrices

can be ill-conditioned if the original variables are almost linearly
dependent. Or they can fail the test for positive definiteness if missing
data in the original variables lead to computiﬁg pairwise correlation
coefficients with differing number of degrees of freedom in the correlation
matrix. These difficulties can be detected in a Cholesky decomposition.

In a recent paper [ g]the problem of an ill-conditioned GSE Ax = ABx has

been studied for the cases when A or B or both are perturbed or are ill-

conditioned, and their effect on the stability of the eigenvalues ) .

% At Northwestern University's Vogelback Computing Center, the algorithms
for canonical correlation and discriminant analysis based on SGE have been

implemented in the SPSS package for CDC 6000 machines [ 18].
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3.4 In sum, if variance-covariance/correlation matrices are computed
accurately, Cholesky decomposition/SGE is numerically stable and cheapest.
If not, Householder's decomposition will avoid possible ill-comditioning
and SVD will also provide a good global definition of the rank of the

data matrices involved.

The purpose of this paper has been to bring to the attention of statis-
ticians numerically acceptable procedures and encourage statistical
programmers to take advantage of the advar:ces made by numerical analysts
in recent years. The existence of statistical packages has made it too
easy to go to the computer for data analysis and produce sense or nonsense
at an astonishing rate. If we believe that we study the right model then
we certainly wish that the results are obtained with greatest working

accuracy.
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