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0. INTRODUCTION

In this paper I present a generalization of the non-tatonnement model
considered, among others, by Arrow and Hahn and by Hahn and Negishi. The
generalization explicitly introduces a communication process into the
analysis, in the spirit of Hurwicz (1960), which allows for a form of de-
centralized price formation and decentralized trading. Two specific examples
are considered in which the messages of consumers are prices they report they
are willing to pay. Market prices are viewed as an average, over all consumers,
of their individually reported prices.

In the first example, it is assumed that consumers adjust their reported
prices in proportion to their own excess demands for commodities evaluated at
market prices. While it is not clear why consumers should behave in this
manner, if they do then market prices (the average prices) will imitate the
behavior of a Walrasian auctioneer's prices. That is, they will look like they
ad just proportionately to aggregate excess demand even though there is no
auctioneer. Utilizing this mechanism we point out a difficulty with the
general model of Arrow and Hahn (p. 326). In particular we show that even
if market prices converge to equilibrium values and remain at these wvalues,
it is still possible that equilibrium allocations are never attained. 1In the
second example we consider, the reported prices of the consumers are their true
maximum buying-minimum selling prices. These prices are,in effect, the consumer's
marginal rates of substitutions given his current contractual obligations. 1In
some respects, this model is similar to that of Dreze and Vallee Poussin.

Given this behavior on the part of consumers(which contains an element of



incentive compatibility) it can be shown that the resulting non-tatonnement
process is globally (quasi) stable, Pareto-satisfactory, and informationally
decentralized for a large class of exchange economies. In particular, this
is true whenever preferences are representable by utility functions with
continuous second derivatives, and when there exists a commodity which is
always desired by all consumers. This is a larger class of economies than
those for which other decentralized non-tatonnement adjust processes have

been proven to possess global (quasi) stability and to be Pareto-satisfactory.



1. THE GENERAL STRUCTURE OF ADJUSTMENT

We assume there are N consumers, indexed by i =1,...,N, and K

commodities, indexed by k = 1....,K. We let x1 = (Xi,...,x;) be the
K, i s s
R | x> 0} be the admissible con-

. : i
consumption of i and we let {x ¢

sumption set for i. Each i 1is presumed to own initial endowments

i i i i
w = Gnl,...,wK) such that w.. > 0 for all i and k. Consumption will
occur by combining initial endowments with net trades. Tfet

i K i i i . .
d e R be a vector of net trades, then x = + d . Finally, each i

is assumed to have a wutility function, Ui(xi). We will
assume that Ui e C2 (that is, it has continuous second derivatives) although
many of our results hold under weaker conditioms.

Our notion of a non-tatonnement adjustment mechanism is a generalization
of that contained, for example, in Arrow and Hahn. In particular, we make the
process of communication explicit in much the same way that Hurwicz (1960)
does. Each consumer will send a message concerning the tra'es he is willing
to make. This message may be coded in the sense that he might send the
maximum prices he is willing to buy at and/or the minimum prices he is willing
to sell at rather than the explicit trades he is willing to agree to. After
these messages are sent and received, the process transforms these into trade
agreements which are then formalized into contracts. The process then
repeats itself, For ease of exposition we will think of this sequence of
events as occuring continuously through time.

We let M be a "language' or a set of messages. mi ¢ M will be the

message of consumer 1. We then formalize a non-tatonnement process by

i

(la) m £(m,d";eh) Yoiel

(1b)  d* = g (m,d) v i



-l

where tl is the characteristic of Mr, i, (that is, €l= (wl, Ul)\, and
m = (ml,...,mn). We will assume throughout that at t = O, d* = 0 and

we will require that the process be consistent. That is,

N «i

i
o

i=1

That this structure represents a generalization of the model of Arrow and

. . K . 1 N i
Hahn is realtively easy to show. Let M=R and let [i(m) = N 2m. Let
. i=1
e(H,dl;El) be the excess demand of i at the "prices" Il given the
i . i i i . i
current contractural agreements d . That is e(l,d ;¢7) = a iff a solves

maximize U'[w® + d* + a']

al

subject to I -d' < 0.
i

Assume U is strictly quasi-concave, then e(ﬂ,dl;el) is a function. We

can now define an Arrow-Hahn non-tatonnement process (A-H,N-T) as:

mt = e[N(m),d:et] Vi

(0]
—

and

™
—~

d” = gi[ﬂ(m),d] Y oi

For the moment we will leave g wunspecified. Since T(m) = Ziml, this

2z =

system reduces to:

(2a) T == 5. _ e(,d"; &b

(2b) d = g(li(m),d)

which is identical to that of Arrow and Hahn (p. 326).



Define an equilibrium of (2) as (m,d) such that e(1@@),Io:el) = 0
and gl[H(E), d] = 0 for all i. 1It is easy to show, under our assumptions

— 1 =1 —
that the allocation x = (w + d ,...,wN + dN) is Pareto-optimal. Therefore,

the question of interest is stability.
It is established in Arrow and Hahn (pp. 327-28) that the dynamic behavior
of prices in (2) inherits its stability properties from the dynamic behavior

of prices in the usual tatonnement model where

(3) T =Eg® and E() = Newi;el).
i=1

For example, they show that under the assumption of gross substitutes, if the
i . i
functions g satisfy the property that I -gl(H,d) = 0, then as t + «

E(T,d) = EN e[H,dl;Gl] -+ 0, Thus T -+ 0 and, since Ek(H,d) = EE(BER/ZUE) UE’

i=1
then é <+ 0. Thus, prices converge to equilibrium prices and, once there,
remain unchanged. However, it is entirely possible that gi(ﬂ,d) does not
converge and, therefore, that equilibrium contracts are never attained. To

show this we construct an example of an (A-H, N-T).

3. A PARTICULAR ARROW-HAHN TYPE PROCESS

Let (%7a) remain as above except that we will normalize prices. Let

4

M= {me R i M, = 1}. We write our system as:



(4a) mi = ek(n,dl,el) Yk=1,...,K1
.i
(4b) Mg = 0 Y= 1,0,
(4c) d; = mi - Ty YK=1,...,K-1
¥ i=1, ,N
-i k-1 i
4d) dyg = - Tl MGy = M) Y i=1,...,N

Commodity K 1s a '"numeraire'" for which trade occurs in a residual manner.
. . “ 4 T . i

In particular, given (dl,...,dK_l), dK is chosen so that T .d” = 0, or

so that individual budgets balance. 1t is also easy to show that, under the

Noosi i
rules (4c¢) and (&4d), Ti=1 d"= 0 along the path because Il = % Z§=l m'.

Thus, this process satisfies all the conditions of Arrow and Hahn.

Now let us assume that we have a point (m“,d“) such that

:§:1E(H*)d“1; 61) = 0. Since this implies that ﬁw= 0, we can write our system
as
(5a) m; = e;1 = d; k=1,...,K-1
i=1, ,N
i i % _
(5b) dk = o - Hk k=1,...,K-1
i=1, s N
5y at = - K lpFal g -1 N
K k=1 "k T Tk . s
and
° i .
(5d) my =0 i=1,...,N,

where e = e(H“,d ;€Y - d . We note that for each i, the rules of



-7-
i i . h .h .
motion for (m ,d ) are independent of (m ,d ) for any h # i. Thus,

1.1
without loss of generality, we can look at the behavior of (m ,d ). The

1 1

behavior of d; is determined entirely by the behavior of (dl,...,dK_l).

can, therefore, look at the system
(6a) m=d + el
66y dt =ml - 7"
where ;l = (;l mt ) and 51 = (51 51 ) The h f
EEEETLVEDF n IEEEEFL DR e homogeneous part o
this linear system is
1 1
m i 0 IK-l m
1 1
d IK-l 0 d
which is not stable since it has K-1 characteristic roots equal to 1 and

K-1 characteristic roots equal to ~-1. Thus, we cannot expect, in general, that

the mechanism described in (4) will converge to equilibrium contracts even if

prices converge to equilibrium prices. If K = 2, this is immediately obvious,
since the solution of (6) 1is then
1 -t *
= + i
m c.e c, e + 1
dl =c et - c e-t s el
1 2 ¢
where cl = % [mxl - U: + e~l + dkl]
and c, = % [mwl T - e‘l + dxl]
1 1 .
Thus, unless ¢, = 0, m =+ -® and d =+ - . It is easy to show that
%] % %1 % % E3 *
m -0 +e  +d L need not be equal to zero, even though Z?_l(m L I+e L

+ 4"

1

)=0
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This example also emphasizes the fact that the rules (4c-d) for
altering contracts do not ensure that xi = mi + di is always an admissible
consumption vector. Our next example of a non-tatonnement process will,
however, correct this fault,.

In the next section, we will show that by altering the communication

system, while leaving the rules for trading alone that it is possible to

"create" a process which yields a globally quasi-stable system.

4. A GENERALIZED NON-TATONNEMENT SYSTEM

In this section we alter the rules by which messages are calculated.

Assume that for all wl + d* such that Ul(ml + dl) > Ulin) it is true that

aUl/axi >~ § > 0 when evaluated at x' = ml + d. TFor the purposes of this
K

paper, this assumption need hold only on the set of attainable consumptions

i 1 N, , 1
for i (i.e. the projection on {xl} of {x,...,x) | x >0 and
N i _ N i i, iy _ o i i i */ i
Tio¥ T LW }). Let MRS (x) = [U1’°"’UK—1]/UK evaluated at x .

MRS' is merely a vector of marginal rates of substitution of commodity K

for commodity k.

1 i

The process we wish to consider is (where [l = Z§=1 N ml):
i . .

(7a) m, = MRS [w + d] i=1,...,N

:'c/ 7 .
~' We use Ui to indicate aUl/a i



(7b) mll<=1 i=1,...,N
oi B i ~
(7¢) dk =mo- ‘“k k=1, ,K-1
i=1,...,N
°i K-1 i
= - m - T =
(7d) dy P C IR i=1,...,N

Note that (7c¢-d) are identical to (4c-d). The differsnce between (4)
and (7) occurs in the (a) equations. In (&), mi was basically an
indirect controller of the system, yielding price behavior that 1is
inertial. In (7), mi becomes a direct control thus eliminating the
inertial nature of prices.,.

The mechanism described by (7) has several desirable properties.

First, the utility of any individual is never decreasing along the path of

. el _ 1 i oei
the system. It is easy to show that U T =19 dk =
i K-1, 4 .2
UK [L£=1(Mmsz "2) 1>0.
We now assume that {xl >0 i U(xl) > U(wl)} o {xl % x; >0 Y k=1,...,K}.

That is, consumptions preferred or indifferent to the initial endowment must
contain positive amounts of all commodities. With this assumption and the
fact that 6i > 0 we will be assured that along the path of the process

wi + di(t) will always be an admissible consumption.

Thus, A.13.1 of Arrow and Hahn (p. 328) 1is satisfied. Another process
with this property is the Edgeworth Barter Process of Uzawa. However, that
system has an undesirable property in that it requires some centralized

N

1 .
communication through the use of a social welfare function, S(U ,...,U ). This

leads to the second desirable property of (7). It is informationally
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decentralized in the sense of Hurwicz (1960). That is, each i mneeds to

~

i . .t . L. i
know (to compute his m and his d") only his own characteristic, ¢, and
1 i . .
an aggregate of the others messages Il = X >m . In addition, each i
i
sends a message which is dimensionally equivalent to a price vector.
One can provide the following interpretation of the rules embodied in
(7). Each agent is sending a vector of individualized relative prices
indicating his maximum buying (minimum selling) price of good k in terms
of good K. He is then allocated commodities in proportion to the difference
i
between the prices he is willing to pay, m , and the '"market" or average
price, 1. Whether one can actually formalize a parable in discrete time
which would yield (7c and d) as the allocating mechanism, in the limit, is
still an open question.
A third property of this mechanism is that it contains incentive-
compatible rules in a restricted sense. 1In particular, it is true that
. . 2 N
given arbitrary sequences of messages of the other agents, say m (t),...,m (t),

1
the only way that Mr. 1 can ensure that U > 0 is for him to send

1 . .
m (t) = MRS (wl + dl(t)). This is easy to see since

1 1. K-1 1 <1 <1
= + =
U Ug [7,2y MRS, d, + d.]
1 _K-1 1 i
Ug 7poq GRS, = T,)(my - 1)

" For example, in a random search model without a centralized Walrasian market,
one might expect that people with radically differing MRS's might trade
larger quantities with each other than with those with similar MRS's. Thus,
on average, one might expect to see behavior as described in (7). It
seems hardly necessary to add that this is only wild speculation on my
part.
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Thus, if 1 is unknown, a priori, ml = MRSl will ensure ﬁl > 0. This
type of incentive compatibility is identical to that of Dreze and de 1la
Vallee Poussin (1971). It is important to note, however, that incentive
compatibility in the sense of Hurwicz (1970) does not obtain in either (7)
or in Dreze-Vallee Poussin. That is, if 1 knows (or can predict from
2
knowledge of preferences) the sequences m (t),...,mN(t), then he can by
. 1 1, 1 i . L. 1.1 1
sending m (t) # MRS (w + d (t)) ensure that in the limit U [w + d (=)]

will be greater than he would get by sending ml(t) = MRSl(t).

2
To see this consider the following problem: given m (t),...,mN(t),
-1 .. 1; 1 1 h
for all t > 0, choose m (t) to maximize U [w> + d"(»)] where
S | 1 ‘1 1 1N i
d (®») = ti: d (t) where d (t) solves dk = mk(t) "N aizlmk(t); for
‘1 x-1,1 N i 1 1N i o

k =1,...,K-1 and dK = - Lk=l<N Ai:lmk(t))(mk(t) v “i=lmk<t)]' This is an

1
optimal control problem where d is the state variable and ml is the
control variable. It is fairly easy to show that the optimal solution to
) ) -1 3 . 1. i
this problem is mk(t) = ék/oK + (N “i#lmk)(z N/N-1) where

= Ui[wl + dl(w)]. It is highly unlikely that ;l = MRSl along this path.

b K K

k

1 _ .
m, = ék/éK is constant

[For N = 2 the solution is particularly simple since
2
along the optimal path no matter what m (t) 1is.] It is possible to assume
2 N . .
that 1 knows U s-..,U0 and solves the problem above subject to equations

(7a) for i =2,...,N and (7b-d) for i = 1,...,N. However, this is

extremely messy and really leads to no new insights.
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Finally, the system described in (7) is globally quasi-stable under the

This follows directly from some of the previously

N i
mentioned properties. 1In particular, let W(d) = Ei=laiU [w

assumptions we have made.

L4 dl] where

5 dt =0 and b +4al > 0.
i
W - W(d). V() > 0. Now along the path generated by

n\

a; > 0 Vi. Let W = max W(d) subject to

W exists. Let V(d)

i}

4

. i 1 . 2
(M), V() =-Tal=-Taly [ @RS -0)°1. It is easy to
i i K#K

see that V <« 0 wunless T, = MRSi Yi=1,....N and every k = 1,...,K-1.

It is also obvious that d

r

=

MR

1l

0 for all k = 1,...,K. Thus,

, i
| 0 iff MRS - T
V<O and V=0 iff d =0 for all i. Thus,the global quasi-stability of (7)

can be established by using V as a Lyapunov function since the sequence

d(t) belongs to a compact set.

To summarize, the system (7) 1is a globally quasi-stable, Pareto-

satisfactory, informationally decentralized, non-tatonnement adjustment

process which possesses a limited form of incentive compatability.



