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ON THE CONTINUITY OF

CARTESIAN PRODUCT AND FACTORISATION

by

Prem Prakash and Murat R. Sertel

Given a topdogical space X, we denote the set of non-
empty subsets of X by [X], the set of open nonempty sub-
sets of X by 0[X], and the set of compact nonempty sub-
sets of X by K[X]. Given a family {Xal aeA} = (X 1},
of topological spaces, we sometimes abbreviate gxa to

XB (B <« A); we denote

B[{x },] = {§p | P _e[x ] for each acAl,
BO[{x },] = {§P | P _e0[x ] for each «ceAl,
BK[{Xa}A] = {RPal PaeK[Xa] for each «acAl.

The maps whose continuity we study are the Cartesian
product map

s glx] » 8Lk 3] = [x,]
defined by n({Pa}A) = JP, = P, ({Pa}A € R[Xa]) and

factorisation, i.e., = 1. (Clearly, =« and ! are

bijections.) 1In doing this, we always equip hyperspaces



(i.e., spaces of subsets) with the finite topology [1].

Given a topological space Y, by the finite topology on [Y]
is meant the topology generated by taking as a basis for open
collections in [Y]| all collections of the form
<Uil ieM> = {Pe(Y]| P c.HUi and, for each ieM,
PN Ui #@#} with M a finite set and Ui = Y open for each
ieM. Given any hyperspace H[Y]| < [Y], the finite topology
on H[i] is then the subspace topology on H[Y] determined
by the finite topology on [Y].

Let {Xa}A be a family of topological spaces.

1. BROPOSITION: Factorisation r ': B[{X_},]

~ I [X,] is continuous (i.e. = is an open map).

Proof: Let W<« R[Xa] be a sub~basic open set, i.e., a set

of the form W = W, x 0 [Xa]

open, and assume furthermore that W is basic, i.e., of

with geA and U, c [XBJ

B
the form wB = <w1| ieM> with M finite and W'c XB open
for each ieM. It suffices to show that (ﬂ_1)-1(W)

= 1(W) < B[{Xa}A] = [XA] is open. Defining

i i .
Vo = W x A{{B} Xac: XA for each ieM, we see that the
collection V = <Vv'| ieM> < [XA] is open and that

Vn B[{xa}A] =7 (W). ¢



2. LEMMA: Let P, ¢ BK[{X },] and let WeX, be

any open set with P, < W. Then there is an open “tube"

T = RT c W (with T = X for all but a finite set
A a —— a a -

Nc A of indices) such that P, < T,.

Proof: For each x ¢ PA find an open tube nbd T(x) of x

with T(x) <« W, so that, for each x ¢ P Ta(x) = Xa

A'
for all but a finite set N(x) ¢ A of indices.

{T(x) ] xeP,}, being an open cover of the compact P

Al
admits a finite subcover ({T(x,) | ieM} of P,. Define
= U = i
N= 14 N(xi) and V H TN(xi)' Now V < X 1is open with

PN < V and, since PN is compact and N finite, there is

an open box TNC:XN with PN<: TN < V. Writing

TA = TNXXA\N . TA is thus an open tube of the desired

sort. ¢

3. THEOREM: Cartesian product = is continuous on

) K[xa] and so this space is homeomorphic to

BK[{XG}A].

Proof: =7 being a bijection, and noting that
W(R K[Xa]) = BK[{Xa}A]' the above proposition leaves only the
continuity of = on [ K[Xa] to show. Take any
_ i,
(P}, ¢ RK[Xa] and let W = <W~ | ieM> n BK[{XG}A; be a

basic open nbd of PA = "({Pa}A) with M= {1, ..., m}.



By the lemma above, there is an open tube TA = TN x XA\N

such that P = T < W= Hw where N <« A is finite and
= i X. For each ieM let
TN ﬁTac: XN is an open bo ., '
i j i i
pl e W N PA' and find an open tube nbd TA of p
j 1
contained in W' n TA' Now defining Uu = <Tu, Ta, ceey

T:> n K[Xu] for each aeN, and writing
(ﬁua) x Al K[Xa]’ Uc ' K[Xa]’ is an open
nbd of {Pa}A and =#(lU) © W, so we conclude that = is

continuous. ¢

4. PROPOSITION: lﬁ A 1is a finite set, then Cartesian

product = is continuous on J O[X ] and so this

space is homeomorphic to BO[{X },].

Proof: 1Imitate the last proof. ¢

5. APPLICATIONS: Let X, Y be topological spaces and

consider an application of X to Y, i.e., a continuous

map f§: X x Y + Y. Then the map 4*: [x x Y] + [Y], defined
by 6*(5) = {§(s)| seS} (Se[x x Y]), is continuous (see
Theorem 5.10.1, pp. 170, of [1]), so that the restriction of
§* to B[X, Y] = [X x Y] is also continuous. Let

Hy = [X] and H, = (Y], and define F: Hy x Hy + [¥]
through F(P, Q) = 4*(p x Q) (p ¢ He» Q € H). Now F

is continuous if ® is continuous on HX x Hy, since F

. - *
is the composition § «r ; and F is actually an

application if furthermore F(HX x HY) < HY



Examples: (1) If X is a topological semigroup, then so
is K[X]. (2) If X 1is a topological semigroup whose
multiplication is an open map, then 0[X] is also a
topological semigroup. (3) If X is a topological vector -
space, then the space of convex compact nonempty subsets of
X forms a topological semivector space (see 2.1

of [2]), and this allows us to embed it in a topological

vector space (see Theorem 3.1 of [2]).
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