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ABSTRACT

A nonlinear generalization of square matrices with non-
positive off-diagonal elements is presented, and an algorithm
to solve the corresponding complementarity problem is suggested.
It is shown that the existence of a feasible solution implies
the existence of a least solution which is also a complementary
solution. A potential application of this nonlinear setup in

extending the well-known linear Leontief input-output systems

is discussed.
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Introduction

n
Given a mapping f : R+ + R" and a vector a in Rn, the comple-

mentarity problem is to find x in R™ such that

x>0, f(x) +q >0 (1)
and

x'(£(x) + q) =0 (2)

If x satisfies (1) it is called a feasible solution, and if

it also satisfies (2) it is a complementary solution.

In this paper we consider a nonlinear generalization of
Z-matrices (i.e. square matrices with nonpositive off-diagonal
elements), called Z-functions,as well as a generalization of
M-matrices (i.e. Z matrices with positive principal minors) known
as M-functions. We discuss properties of these classes of functions
and then develop a scheme to solve the complementarity problem (1) -
(2) defined by members of the classes. The scheme is a modification
of an algorithm suggested by Chandrasekaran [1] for the solution of
linear complementarity problems defined by Z-matrices.

It is shown that the modified algorithm produces a complementary
solution to problem (1) - (2), provided one exists. In addition
such a solution is the least element of the feasible set defined by
(1); that is, the complementary solution x determined in the algorithm
satisfies 0 < x <y for all y > 9 such that f(y) + ¢ > 0. This re-
sult extends a theorem recently proved by Cottle and Veinott [2] for

M-matrices.



In [8] the author shows that if additional assumptions are
imposed on the Z-functions, yielding continuous surjective M-
functions, then the algorithm can be viewed as a principal pivoting
scheme. This approach leads to a natural extension of the Schur
complement concept, defined with respect to square matrices. In
[8]) this extension is used to prove the nonlinear equivalent of
the theorem which states that a Schur complement of an M-matrix is
also an M-matrix. The iterative processes of Gauss-Seidel and
Jacobi have a key role in the development and derivation of the
complementarity algorithm.

Existing and potential applications of Z~functions and
M-functions are included at the end of the paper.

While Z-matrices and M-matrices, also known as Minkowski matrices,
have been studied extensively in the literature regarding both
applied and theoretical aspects (see the work of Fiedler and
Ptak [3], where most of the known results are included), it seems
that very little attention has been given to nonlinear generalizations.
One generalization that we focus on has been developed by Rheinboldt
(7], whose motivation was to apply iterative schemes to nonlinear systems

of equations. Rheinboldt's generalization is also studied by More (41].

We start by introducing the classes of Z-functions and M-functions.

Definitions and Preliminary Results

In this study we consider off-diagonally antitone functions,

first introduced by Rheinboldt [7]. For our purposes a mapping f(x)

from RE into R"™ with components fi(x), i=1,...,n, is off-diagonally
antitone if for all x in Ri and i # j, i,j=1,...,n the scalar functions
Fyy R. -+ Rl defined by

Fig(t) = £;(x + ted)
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. . . . . . n . .
are nonincreasing. eJ is the Jth unit vector in R. £f(x) is said to

be (strictly) diagonally isotone if for all x in RE the scalar

functions

Fi(t) = f.(x + te™), i=1,...,n

are (increasing) nondecreasing.
We define the classes of Z- and M-functions corresponding to

Z- and M-matrices.

Definition (1). Let f be a mapping from Rﬁ into R".

(a) f is said to be a Z-function if it is off-diagonally

antitone on Ri

(b) f is an M-function if it is a Z-function as well as

. . n . .
inverse isotone on R, (i.e. for any x and y in Ri

f(x) < £(y) implies that x < y).

Rheinboldt has studied M-functions and their application to
nonlinear network flows. In this work we explore the Z- and
M-functions in the context of complementarity theory and develop
an algorithm to solve complementarity problems associated with
these classes of functions.

In the algorithm which is later derived, we use the following

nonlinear generalization of a principal submatrix due to Rheinboldt

[71].

Definition (2). Let f be a mapping from Rz to R" and consider a

permutation (m(l),...,m(n)) of (1,...,n). Given an integer number

P, 1 < p <n, and real numbers Cp+1""’cn’ we define the principal

sub-function of dimension p, mapping RE to Rp;

p . n . .
gi(Xl,...,X ) = fm(i) ( flxjem(J) + j=§+lcjem(J)), l=1,...,p (3)
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For example, if (m(1l),...,m(n)) = (1,...,n), then for any

1 < p <n we get the leading principal function of dimension p

gi(xl,...,xp) = fi(xl"'”Xp’cp+l”"’cn)’ i=1,...,p

Note that unlike the linear case, the dependence of a principatl
function on the constant terms (Cp+l""’cn) cannot in general be
represented as a separable term. Thus every principal function
depends parametrically on the set of constants associated with it.
A result concerning this dependence is given in [8].

For convenience of presentation the following notation is used
to denote principal functions. If (m(l),...,m(n)) is a permutation

of (1,...,n) and c¢ -,C, are given constants, then the cor-

NEERE
responding principal function will be denoted by fI(XI’CJ) where
I={m(l),...,m(p)} and J = {m(p+1l),...,m(n)}. In most cases
Cotr1 = ... =c = 0, and we shall say that the corresponding
principal function fI(XI’O) is defined by the set of indices I.

The following result is an obvious consequence of the definition

of a Z-function.

Lemma (1). Any principal function of a Z-function is in itself a
Z-function.
The next lemma shows that principal functions preserve also

the inverse isotonicity property.
Lemma (2). Any principal function of an M-function is an M-function.

This lemma was first proved by More and Rheinboldt (6], and
independently by Tamir [8], who used a different approach.
It is interesting to note that in fact the inverse isotonicity
principal functions of dimension 1,2 and n induce the same property on

principal functions of any dimension p, p=1,...,n.
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Lemma (3). Let f be a continuous function from RE to R". If f
is strictly diagonally isotone and every principal function of

dimension 2 is inverse isotone, then f is a Z-function.

Proof: Assume on the contrary that there exists indices i < j,

vector x in RE, and scalars s and t such that

fi(xl""’xj-l’s’xj+1"'"Xn) > fi(xl""’xj-l’t’xj+1’°'"Xn)

and s > t.

Clearly s > t. Using the strictly diagonal isotonicity property

we have
fj(xl""’Xj-l’s’xj+1""’Xn) > fj(xl""’Xj-l’t’xj+1""’xn)'

The continuity assumption assures that the two strict inequalities
are maintained if the i coordinate of COTITRT NN RS
Xs5 is increased somewhat to get vy > X5 Using the inverse
isotoniticy property of the principal function defined by {i,j}, and
the set of constants (Xl""’Xi—l’xi+1""’Xj—l’xj+1""’xn)’ we

get the contradiction
(Xi,S) zZ (yi’t)
Note that Lemma 3 extends Proposition 1 of [2], that deals

with M-matrices.

As a consequence of the lemma we have the following

Theorem (1). Let f be a continuous strictly diagonally isotone

function from RE to R". 1If f is inverse isotone and every principal
function of dimension 2 is inverse isotone, then principal functions

of any dimension are inverse isotone and f is an M-function.



The next lemma, dealing with principal functions of surjective
(onto) M-functions, is proved by Rheinboldt in [7]. It should be
observed, however, that this result is applicable only to functions
which are defined and satisfy the M-property on the entire space

n

R". The proof is based on the application of iterative solution

procedures.

Lemma (4). Let £ : R® =+ R" be continuous  surjective,

off-diagonally antitone and inverse isotone on R". Then every
principal function of f is continuous, surjective, off-diagonally

antitone and inverse isotone on the corresponding subspace.
Notice that continuity is not assumed in Lemma 1 and Lemma 2.

Before turning to complementarity aspects related to the
Z-functions and M-functions, we present two well known iterative
processes used for the solution of systems of equations.

Consider the following n-dimensional system of equations, in

the variables XpseeerX

fl(xl,..,xn) = a
) ) (4)

fn(xl""’xn) = a,

The (underrelaxed) Gauss-Seidel iteration for the solution of

(4) is defined as follows

k1 k1 k Ky _
Solve fi(xl ""’Xi-l’xi’xi+l""’xn) = a; for X

(5)

k+1 k .
Set X, = (l-wk)xi + WX i=1l,...,n, k =0,1,2,....
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The corresponding (underrelaxed) Jacobi iteration is:

k k k k
Solve fi(xl""’xi-l’xi’xi+1""’xn) = a; for X, .
(6)
Set x§+1 = (1-wk)x§ + W) Xs o i=1l,...,n k=0,1,2,...

In both processes {wk} is a given sequence of relaxation factors,
where ¢ < Wy < 1,k = 0,1,2,... for some ¢ > O.

Rheinboldt [7], provides sufficient conditions for the
applicability of Gauss-Seidel and Jacobi processes to systems
of equations defined by strictly diagonally isotone and continuous
Z-functions. The strict diagonal isotonicity property is necessary
to guarantee the uniqueness of the iterates {xk} and {yk} defined
by the Gauss-Seicdel and Jacobi schemes. To obtain 2 result which
applies ito 7-iunctions as well, we define modified versions of

these two iterative procedures.

Given the system of equations fi(xl""’xn) = a,, i=1l,...,n,
and xO in Rn, the forward (unrelaxed) Jacobi iterates, {xk}, are
given by

Find x% = minimum Xs
i

. k
subject to X 2 Xy
k k k k
and fi(xl"'"Xi—l’xi’xi+l”"’xn) = a;. (7)
Set X1f+1 = xf, i=l,...,n, k=0,1,2,...

For a given yo in R® the backward (unrelaxed) Jacobi iterates

(v} are defined by



Find y; = maximum y.

subject to y; < y?
k k k ky _
and fi(yl""’yi-l’yi’yi+1""’yn) = a5 (8)
set yitl=y¥,  i=1,...,n, k=0,1,2,...

The analogous definitions of the modified Gruss-Seidel iteration
as well as those corresponding to the underrelaxed cases are clear,
and we omit their formulation. It should be noted that all subse-
quent results, proved for the modified (unrelaxed) Jacobi process,
are valid for the Gauss-Seidel iteration as well as for underrelaxed
cases.

The modified process allows us to omit the strictly diagonal
isotonicity property, required by Rheinboldt [7], and to establish
the following theorem, which is applicable to continuous off-diagonally

antitone functions.

Theorem (2). Let f : Ri + R™ be a continuous, off-diagonally
antitone function. Suppose that for some z in R" there exist

0 0

vectors xo and y~ in RE such that x < yO and f(xo) < z< f(yo).
Then the corresponding (unrelaxed) Jacobi iterates {yk} and {xk},
given by (7) and (8) and starting from yo and xo, respectively, are
uniquely defined and satisfy

XO k k+1 k+1 k O’ f(xk) <z< f(yk), K

<x 2x "<y "<y =y = 0,1,2,...

as well as

Hh
~
X’
N
il
H
~
k<’
N
Il
N



The proof of this theorem is achieved by introducing slight
modifications into the proof given by Rheinboldt to the case
where the Z-function is also strictly diagonally isotone. There-
fore we omit the proof.

We also point out that the result of Theorem (2) holds for the
modified underrelaxed Jacobi process as well as for the corresponding
modification of the Gauss-Seidel procedure.

Theorem (2) is the key result used to prove the validity
of the following algorithm, which is applicable to complementarity

problems corresponding to Z-functions.

The Complementarity Algorithm and the Main Results

Assume that f : RE + R" is a continuous Z-function and that

. . n
q is any vector in R,

Algorithm
Step 0. Let I(1l) = {i\qi + fi(O) < 0} in the initial form.
Step 1. If I(l) is empty, stop; x = 0 is a complementary
solution. Otherwise, set Wg(l) = 0 and go to Step 2.
Step 2. Consider the principal function, fI(xI,O), defined
by the current set of indices I = I(t) and the set
of constants {c; = O|i £ I}. Let the corresponding

system of equations be
k

(2 x, e?@)y = o g .0, §=1,....k (9)
fi) ge1 3 Q)

where T = T(t) = {i(1),...,i(K)}, i(j) < i(3+1),
j=1,...,k-1.

Apply the forward Jacobi process, (7), starting at
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wg to the system (9) defined by fI(XI’O)' If the
system of equations (9) has no solution, stop; the
complementarity problem has no solution. Otherwise,

let xg be the (positive) solution and go to Step 3.

Step 3. Let I (t) = {ili £ I(t), £ (x3,0)+ q; < O}.

If Il(t) is empty, stop; x = Z X etV is a
j=1
complementary solution. Otherwise, define I(t+l) =
. . . . 0
I(t) U Il(t) = {i(1),...,i(k),...,i(m)}. Define WI(t+1)

by the following

wg = x? if 1 <j <k and w? =0 k<j<m

Set t+l -+ t and go to Step 2.

The next lemma leads to the proof of the validity of Algorithm

for continuous Z-functions.

Lemma (5). Let y be any feasible solution to the complementarity
problem defined by the continuous Z-function f and a vector q (i.e.
f(y) + q >0, y >0), and t be the cycle index. If xg(t) denotes
the solution generated by the modified Jacobi process in Step 2

at the tth cycle, then

xj >0, j=1, ,k
and k .
y > x = X xo el(J)

where I(t) = {i(1),...,i(k)}.
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Supposing that the algorithm terminates in r. cycles and
setting Il(O) = I(1), I(0) = @, Il(r) = @ and I(r+l) = I(r), we
define wg(r+1) = X?(r)' Note that for 1 <t < r, Wg(t) is defined
in Step 3 of the algorithm. Following this definition, the proof

of the theorem will be complete if it is shown that for every t,

0 . f
l1<t<r+1, WI(t) satisfies

- 0 Lot e 2
Vi) 2 V3 =)=

0 0 _ .-
Low) > 05 £ gy ()0 + a5y =0 1<3<E \ (10)

0 _ ) 0
k WB =0 ; fi(j) (WI(t)’O) + qi(j) <0

~1

<jsk

-

where I(t) = I(t-1) U Il(t-l) = {i(1),...,i(k)} U {i(+1),...,i(k)}.
From Step 1 of the algorithm it is clear that (10) holds for t=1.
Suppose that (10) holds for some t > 1, where I(t) = TI(t-1) U Il(t—l)
= fi(l),...,i(k)} U {i(k+1),...,i(k)}.

Let I(t+1l) = I(t) U Il(t) = {1i(1),...,i(k)} U {fi(k+1l),...,i(m)} be
the set of indices generated in Step 3. We note that the principal

. =_.0 el = -
function fI(t)(',O) and the k-vectors x = Wice)? Y T Yi(eyr 2 T T91(r)
satisfy the assumptions of Theorem (2). The inequalities x < y and
fI(t)<;’O) < =91 (£) are implied by the induction hypothesis, while
fI(t)(§,O) > 41 (t) follows from the feasibility of y and the off-

diagonal antitonicity

fI(t) (v, > fI(t) (y) > -qI(t)

Thus we can apply Theorem (2), yielding a solution Xg(t) that

satisfies fI(t)(Xg(t)’O) = "91(p) and 9 =< wg(t) =< Xg(t) < YI(t) "

wi(t41y is defined by
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W? = x? if 1< j < k and w? =0 for k < j £ m.

0 ) 0
Therefore yi(j) > wj, 1 <3 < mand fi(wI(t+l)’O) + q; = 0 for

i ¢ I(t). Furthermore, from the definition of Il(t) we have

0 h
I(t+1)?

component, 1 < j < k, of w2<t+1) is positive, we prove that x? > 0,

£, (w 0) + q; < 0 for i ¢ I;(t). To show that the 5t
1 <3<k The inducti hypothesis and x0 > wO ield the
< j < k. e induction hyp 1(t) 2 Yi(t) y

positivity of x? for 1 < j < k. Assume that x?==0 and k < j < k, then

0 , 0
9= £ Cre),D T um = fig) T, T )

. . . 0
follows from the off-diagonal antitonicity and Xg(t) > wI(t)' But

the nonnegativity of the right hand side contradicts the induction
hypothesis for k < j < k. Thus the theorem follows.
The validity of Algorithm is a straight forward consequence of

the last lemma.

n

Theorem (3). Let f : R+

q be an arbitrary vector in R™. Then Algorithm when applied to the

+ R™ be a continuous Z-function, and let

corresponding complementarity problem, finds a complementary solution

or indicates that no feasible solution exists in at most n cycles.

Infeasibility of (1) is indicated either by an unbounded sequence of
iterates {xk} or by infeasibility of (7) for some iteration k,

k=1,2,.... and component index i, i=1l,...,n.

Proof: Assume first that the complementarity problem is feasible
and let y be a nonnegative vector which satisfies f(y) + g > 0.
Lemma (5) assures that the systems of equations defined in Step 2
have positive solutions which are obtained by applying the modified
Jacobi scheme (7). The set of indices, corresponding to positive
components of an arbitrary complementary solution, is increased

every time Step 3 is visited; hence the process terminates in at

most n cycles.
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Lemma (5) implies also that a failure of the modified Jacobi
process to converge to a positive solution indicates that the
complementarity problem is not feasible. Specifically, the
sequence[xkj generated by the forward Jacobi process is monotone
increasing. Therefore, a failure to converge implies that for some
iteration k, k=1,2,..., and component index i, i=1l,...,n, (7)
is infeasible, or that {xk}, k=1,2,..., is unbounded. Moreover,
such a failure must occur in at most n cycles, provided the
complementarity problem is not feasible.

We note that indeed each of the two indications of failure to
converge may occur. The scalar linear function f(x) = -x with q = -1
and starting point xO = 0 is an example of the first possibility,
while the linear function f(xl’XZ) = (xl-xz, - x1+x2) with q = (-1,-1)
and starting point x0 = 0 demonstrates the second.

Another important and immediate conszquence of Lemma (5) is the

following minimality property satisfied by the complementary

solution produced by Algorithm.

Corollary (1). Let f : Ri

q € R". Denote the feasible set defined by £ and q by

+ RM be a continuous Z-function and let

X = (x|£(x) + a 20, x>0}

If X' is not empty and x is the complementary solution produced
by Algorithm, then x <y for all y in X:.

As demonstrated by the next two results a certain surjectivity
property guarantees the existence of complementary solutions to
(1) - (2) for all q in Rn, while inverse isotonocity assures the

existence of at most one complementary solution.
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Theorem (4) Let f be a continuous Z-function. (1) - (2) has a

solution for any g in R" if and only if {x|x > f(0)} < f(RE).

Proof: Sufficiency. From Corollary (1) it is sufficient to show that
for any g in R" there exists x in Ri such that f(x) + q > 0. 1In
fact it is sufficient to consider vectors q, satisfying q < - £(0) only.
But if g < - £(0) then the surjectivity property yields the existence
of x > 0 such that £f(x) + q = 0.

Necessity. Consider u in R" such that u > £()). Then there

exists y in RE such that f(y) - u > 9 and y(f(y)-u) = 0. We prove
that £ = u. i - =
(y) u. Suppose first that y; > 0 then y(f(y)-u) = 0

implies fi(y) =u;. If y, =0, we use the off-diagonal antitonicity

property to obtain 0 2 fi(O) - u, > fi(y) - u,

i 2 ; 2 93 hence fi(y) = u,.

i
We note that a sufficient condition, (which is not necessary),

for the existence of a complementary solution to {1) ~ (2) for

all g in Rn, is presented by More [5]. He assumes that the continuous

Z-function is order coercive, i.e. for each unbounded increasing

sequence {xk} in RE

k
lim fi(x ) =+ =« for some index 1i.
ko

The last theorem shows that order coercivity of continuous Z-functions
implies {x|x > £(0)} < f(Ri). To see that this condition is not
necessary (i.e. that {x|x = £(0)} < f(RE) is indeed weaker than

order coercivity for continuous Z-functions),we consider the scalar
function f(x) = x sin x. This function satisfies Ri < f(Ri) since

£((2n + %)H) + o, but it is not order coercive (f(2n M) = 0 for all n).
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Corollary (2): If f is a continuous M-function then for any q in

R" (1) - (2) has at most one complementary solution.

Proof: Let y ¢ R" be a solution to (1) - (2) corresponding to a
vector q in Rn, and define I = {ilyi > 0}. Following the preceding
corollary, let x be the minimal element in XZ. Then x; =0, i £ I
Considering the principal function defined by the set of indices I

and zero constants, we obtain
ap + £, (7,00 = 0 < £ (x,0) + qp

where the equality sign follows from the complementarity condition
yl(f(y) + q) = 0. 1Inverse isotonicity of the principal function
yields y < x; hence x = y.

Several comments are in order. First, note that when f is an
M-function the surjectivity property {x|x > £(0)} < f(Rz) (which
reduces to Ri = f(Ri) if £(0) = 0) is equivalent to order coercivity.
This is established by combining Theorem (4) and Corollary (2) of this
study with Theorem 4.8 of [5]. When the off~diagonal antitonicity
property is relaxed, order coercivity does not necessarily imply
the surjectivity condition. As an example consider the function
f : Ri -+ R2 defined by f(xl,xz) = % (x1+x2, x1+x2).

Finally, as pointed out by a referee, a result stronger than Cor-
ollary (2) is contained (implicitly) in [4] and [6]. Theorem 4.4
of [6] and Theorem 2.3 of [4] imply that Corollary (2) is true even
when continuity is not assumed.

We mention several simplifications of the algorithm when applied

to continuous M-functions. Note first that the forward and backward

Gauss-Seidel and Jacobi schemes coincide with the original processes

since f is strictly diagonally isotone. As any principal function
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of an M-function is injective (one-to-one) the system of equations
defined in Step 2 has at most one solution in Rz. Hence any wvalid
procedure, rather than the Gauss-Seidel and Jacobi iterative pro-

cedures, can be utilized to obtain the unique solution in Ri, pro-
vided one exists. When the Z-function is linear a finite procedure
is applied to solve the linear equations (see [11]).

Suppose that f is continuous, off-diagonally antitone and
inverse isotone on R" (rather than RE). We observe that if f is
surjective then the equations system defined by (9), has a unique
positive solution. This is implied by the surjectivity of the
principal functions of f (Lemma (4)).

While studying polyhedral sets having a least element, Cottle
and Veinott [2] proved the following theorem characterizing M-matrices

in terms of complementary minimum solutions.

Theorem (5). If A is an nyn matrix, the following are equivalent:

(1) A is an M-matrix.
(2) For each q in R the polyhedral set

X+ = {x|Ax + ¢ > 0, x > 0} has a least element

q
xg (L.e. x4 € XZ and x5 < x for all x € XZ) and x

is the only vector of X: satisfying x' (Ax+q) = 0.

Corollary (1) provides a nonlinear generalization of the implica-

tion (1) = (2), when Ax is replaced by any continuous M-function
and (2) is replaced by (2') to assure the nonemptiness of XZ .
(2') For each q € R™ such that the feasible set
X: = {x|f(x) + a > 0, x> 0} is nonempty,
tﬂere exists a least element in XZ which is

the only vector of XZ satisfying x' {(f(x) + q) = 0.
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Corollary (1) can be used to establish a characterization of

Z-matrices in the spirit of Theorem (5).

Theorem (6). 1If A is an nyn matrix the following are equivalent

(1) A is a Z-matrix.

(2) For each g in R" for which the polyhedral set
X; = {x|Ax + ¢ > 0, x > 0} is not émpty, there
exists a least vector x in X: satisfying

x! (Ax + q) = 0.

Proof: The implication (1) = (2) follows from Corollary (1). To
prove the converse statement we show that the off-diagonal elements
of A are nonpositive. Assume, on the contrary, that for some

i # j the (i,j) entry, aij’ is positive and consider the vector

q defined to be the negative of the jth column of A, i.e.

q= - (alja---aanj). The vector ej, the jth unit vector, belongs
to X:. In fact it belongs to X; for any vector p > q. Consider
the §ector p=gqg+ ej and let x be the least element of X;. Thus
6 < x < ej, which yields x, = 0 for any k # j. This, in turn,
implies that x5 = 1, since (Ax)i - a5 > 0. x is a complementary
solution and thus requires

((Ax). - a.. + 1) = x.(x. a.. - a.. +1) =0
Xy ((Ax) 5 - agy ) = x50y 8545 = a5y )

which contradicts xj = 1.
We note that the implication (2) = (1), proved in Theorem (6)
for Z-matrices, does not necessarily hold for nonlinear continuous

Z-functions. This is illustrated by the following
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Example Let f : R2 - R2 be defined as

fl(xl,xz) = - %

fZ(Xl’Xz) = g(Xl) R

where - Xy for 0 <xy <1
g(xl) = -2+ Xq for 1 < Xy < 2
0 otherwise

The set XZ = {x|f(x) + ¢ > 0, x > 0} is nonempty if and only
if a > 0. For q > 0, x = 0 is the least element in XZ and it
satisfies x'(£f(x) + q) = 0. To see that f is not off-diagonally
antitone, notice that f2(1,0) < f2(2,0).

It is of interest to observe that Algorithm when applied
to linear functions, reduces to the algorithm suggested by
Chandrasekaran [1]. It should be noted, however, that the modified
Jacobi process used in Step 2 is replaced there by a linear system
of equations which has a unique nonnegative solution or none at all.
In fact the matrix associated with this linear system is a (surjective)
M-matrix provided a nonnegative solution exists. Hence, it follows
that the Jacobi iteration will converge to the unique nonnegative
solution of the relevant system provided one exists.

Corollary (1) implies that Chandrasekaran's algorithm finds the
least solution to the linear complementarity problem defined by a

Z-matrix.

Applications of Z-functions

We conclude this paper by discussing a potential application of
Z -functions in extending well known linear Leontief input-output

systems. We describe the simple Leontief Interindustry Model as
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follows. Consider n industries, each with one type of output

(type i for industry 1) during a given time period for production.

Let aij’ 1 < i, j <n be the number of units of type i required per
unit of type j (aij > 0) and let bi’ i=1,...,n, be the number

of units of type i required exogenously (e.g. a demand vector).

A negative bi is interpreted as availability of bi units. If Xs
denotes the number of units of type i to be produced, then the feasible

production set is given by the polyhedral set

i=1,...,n. (11)

Setting A = (aij)’ b = (bl,...,bn) and x = (xl,...,xn), (11) be-
comes in matrix form

(I-A)x >b, x > 0.

The ith row of (I-A)x characterizes the net output of type i produced
by the n industries, when Xj’ j=1,...,n units of type j are
produced.

Motivated by the linear model we consider an interindustry

system that produces n items. Suppose that fi(xl”"’xn)’ i=1,...,n,
is the net output of type i, i = 1,...,n, produced by the system
when the gross production is given by x = (xl,...,xn). For a given

demand vector the feasible production set is given by the solutions
to
x >0, fi(x) > bi’ i=1,...,n. (12)

Assume as in the linear case, that the mapping f : RT 4 R"

4
defined by the components fi(x), i=1,...,n is off-diagonally
antitone, continuous and maps the zero vector into itself. (The
latter assumption is simply the fact that the net production is zero
whenever there is no gross production.) We note that the off-

diagonal antitonicity property and f(0) = 0 assure that if there

is a positive demand of item i, bi’ then the system has to produce
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a positive gross production, Xs s of item 1.

Given a demand vector b we can then apply Algorithm to yield
a feasible production if one exists. Furthermore, the solution
provided by Algorithm satisfies interesting minimality and
complementarity properties (Corollary (1)). If we denote by %0
the solution obtained by Algorithm, then xo < x for any feasible
production x satisfying (12).

We also observe that the least solution minimizes any isotone
objective function g : Ri - Rl, (i.e. x <y implies g(x) < g(y)),
defined on the set of feasible productions.

It is our belief that the proposed nonlinear generalization of
Leontief input-output model will be more applicable to real life
situations where linearity assumptions have been found to be
invalid. The author is currently engaged in a study which extends
the above model to situations where several industries may produce
the same type of product and thus face some competitive problems.

A different application of M-functions has been presented by

Rheinboldt [7] who discussed the connection between nonlinear network

flows and the class of M-functions.
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FOOTNOTES

Presented at the 8th International Symposium on Mathematical

Programming, Stanford University, 1973

After this research was completed, Professor J. J. More
informed the author that he had obtained a few of the results

independently, but by different means. (See [4] and [5]).



