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Abstract

Solving the '"Marketing Mix" Problem

Using Geometric Programming

This paper investigates the optimal allocation of the marketing budget
within the marketing-mix decision variables so that sales {or profit) is
maximized in a planning horizon. Since the influénce of marketing mix
variables upon sales are, in reality, non-linear and interactive, a
geometric programming algorithm is used that solve this problem. An estima-
tion procedure to estimate a functional of sales on the marketing wmix and
environmental variables utilizaing tne experienéed judgments of the firm's
executives and the raw data is provided. The derived functional is later
optimized by the Geometric Programming algorithm under a constraint set
consisting of budget and strategy restrictions imposed by a firm's market-
ing environment, and conditions under which the optimal solutien is either local
or global are identified. An empirical application for a large midwestern
brewery is provided which utilizes and illustrates both the estimation and

optimization procedures.






I. Introduction

Many industries are currently in a situation in which relative.produc-
tion and financial capacities no longer provide particular firms within the
industry with significant competitive advantages over their rivals. 1In
these industries the marketing capabilities increasinglv determine the rel-
ative success among the rival firms.

There are a number of marketing decision variables. to mention a few:
price, quality, and advertising, that can be used to influence the customer's
perceived utilit;. ”Mérketing mix" is defined as the intzrrelationship among
the marketing decision variables [3]. One of the most challenging questions
facing marketing analysts and planners is to determine the optimum marketing
mix. It is the essense of marketing strategy. Should & firm increase qual-
ity, lower price, increase advertising, or increase the oaumber of salesman?
Dollars will be spent on some combination of these marketing decision vari-
ables. But, what is the optimum combination?

To answer these questions, sales must be defined as a function of pre-
dictor variables and then hopefully a method of optimiziwng the sales function
can be applied. Most of the previous work on this problem either a priori
ignored a number of potentially relevant marketing mix variables [7, 22] or
proposes a simple linear or exponencial [4, p. 45] functional forms which
are tailored for easy optimization but are unrealistic representation of
reality [17, p. 80). This paper estimates a real world functional relationship
between sales and predictor variables consisting of n terms, each term being
a set of interacting variables, where the interaction among the variables is
often nonlinear. Kotler [17, p. 68] summarizes previous work which suggests
that the effects of marketing mix variables are both nomlinear and interactive.
Geometric programming is a method for optimizing the above functional form

subject to constraints on the coefficients associated with each term. The



practical problem-is in generating the above type of sales equation from
historical sales data and experienced egecutive judgments. The requirement
of all pos;tive coefficients prevents the direct application of the known
nonlinear regression techniques [8]. In fact, there is no known method of
searching the response surface to find a global optimum for the type of
functional form described above. Therefore, a heuristic approach is proposed
which starts with the raw data and, utilizing executive judgment and a modi-
fied stepwise regression approach, estimates a functional form which can bc
solved by geometric programming and in estimating the parameter values of
that defined functional form.

This paper is divided into four sections. .First, the relevant literature
is reviewed. Second, a relevant set of marketing decision variables are de-
fined and suggestions are made as to how a firm can obtain quantitative meas-
ures of these variables. Third, since the model was developed in conjunction
wigh a large midwestern brewery, the estimation of the functional form will
be explained in the context of the brewery example. Finally, the functional
form is converted into the objective function of a geometric programming

model and solved.

1I. Review of Literature

The authors are not aware of any solution procedures to solve the market-
ing mix problem if the functional is nonlinear, interactive, and nonconvex.
Philip Kotler [17, pp 56-63] defines the sales functional Q as Q = f(xl---
xi-—-xn) where the xi's are markéting mix variables. He then suggests using
the Dorfman and Steiner [7] method of solution which essentially takes the
first partial derivatives of Q with respect to each X sets them to zero

and solves for xi's. Because these conditions are only necessary but not

sufficient, the global optimality of the solutions cannot be guaranteed. The
approach is severely limited in that it doesn't give consideration to constraints

that are associated with these variables. Thus, solutions generated by this



approach can call for managerial actions that are not feasible or rational,
such as having negative advertising expenditures.

Nerlove and Arrow [21] extended the Dorfman-Steiner paper from a static
to a dynamic formulation. Their procedure is td integrate a net revenue
function over time where demand is a function of price, advertising, and an
environmental variable. The environmental variable is used to represent all
variables not under control of the firm such as.a consumer income, population
size, and competitive actions. The problem with this calculus approach is
that in order to obtain optimal results the sales functional must be limited
to two or, under very restrictive conditions, three variables. Thus, the
basic calculus approach is not designed to optimize a functional containing
more than three interacting variables.

Summarizing the literature on the marketing mix problem, there does not

appear to be anv work done that actually used empirical or real world data.
The two suggested approaches to the problem are a general formulation lacking
sufficiency conditions, hence allowing infeasible management solutions, and a
very restrictive calculus formation that limits the number of relevant vari-
ables to two or three.

For a constrained maximization problem, the necessary and sufficient con-

dition for any local optimum to be globally optimal, is that the objective

function to be maximized is pseudoconcave and the constraints are quasi-concave
(with > 0 as right-hand side in the constraints) with certain added constraint)
qualifications [23, p. 43]. These conditions are taken care of if the problem
can be formulated in the format of geometric programming [13, chapter 3]. The
discussion of the marketing mix variables in the next section indicates that
for most real world marketing mix problems there are usuallv more than two or

three relevant variables.



III. The Relevant Variables

The variables which influence demand can essentially be divided into two
sets. First, "marketing mix" variables such as price, advertising. sales-
men's salaries, and product quality, which may be adjusted at the discretion
of the firm. Second, environmental variables such as disposable income, age
composition, and population growth, which are essentially outside the contrel
of the firm.

A number of authors have provided lists of "marketing mix'" variables
[3, 14, 17, 19, 20]}. Some of the suggested variables are specific to a par-
ticular product, others are abstract and difficult to measure. We will now
proceed to define a basic set of ten quantifiable “"marketing mix" variables, in-
dicating the data needed for quantification. OQur aim is to define a set that
is relatively universal and complete. Product differences will vary the
degree to whicﬁ the basic marketing decision variables are relevant, but the
defined set contains the key decision variables with which most marketing
executives seek to maximize their goals of profit, sales volume, and market
‘share. 1In quantifying the variables a ratio format is used to take into
account the influences of competition and time. The ratio format directly
introduces the influence of competition, tends to adjust for seasonal and
trend influences, and results in a dimensionless number which makes the esti-
mation of the functional form and the interpretation of the geometric pro-
gramming results straightforward. The functional forms of the ten marketing
mix variables are summarized in the appendix. For notational consistency each
variable is time subscripted although, as will be explained later, not gll of
the variables were actually lagged in analyzing the data.

Relative advertising expenditure (At) is defined as the ratio of dollars
spent on advertising by the particular firm during a given time period to the

total industry advertising effort in dollars spent There are a number of



sources such as Nielson, Starch, Advertising Age, etc., that report on the

amoung of advertising done by firms and industries. Furthermore, many firms
set this year's advertising budget as a function of last year's sales. Thus
competitive advertising budgets are often highly predictable. From some com-
bination of the above sources most firms have the capability of measuring At'

Relative In-Store Promotion (It\ is defined as the ratio of dollars spent
on in-store promotion by the particular firm, during a given time period. to
the total industries' in-store effort in dollars spent. In-store promotion
includes such irems as displays, signs, and small customer gifts. This vari-
able is formulated in the same manner as the relative advertising effective-
ness variable described above. Salesmen often provide a detailed listing of
competitive in-store promotions.

Relative price (Pt) is the retail price of the firm's product divided by
the average price charged by competing firms. Retail prices are highly visible
and are easily obtainable for most firms. 1In some industries it might be ad-
visable to weigh each competitive firm's price by quantity sold in determining
the average industry price. A second aspect of price, which we have defined
as a separate variable, is the firm's relative price differential from the
previous time period (Ct). For many products a small change in retail price
is a highly visual cue to consumers, Thus, we examine the dollar change in
retail price from one time period to the next, divided by the average retail
price change in the.industry. For computational eonvenience a zero value in
either the numerator or denominator was converted to .001 and the range of
Ct was restricted to (.001, 10).

The deals or special discounts a firm allows its wholesalers and retailers
(Tt) and the salesman's effort representing total salary and commissions (St)

are internal values known by the firm. Both of these variables should be con-

verted to relative terms to account for the effect of competition. In general,



since it is very difficult to obtain reliable current estimates of the dollar
amounts spent by each competitor on Tt and St’ it is advisable to use the
dimensionless form shown in the Appendix.

Distribution (Dt\ should represent the availability of the firm's pro-
duct this utility can be extremely important for less expensive convenience
type goods. The retail outlets within the defined geographic market are
weighted by the quantity of the product sold in each outlet.

Thus Dt represented the percentage of weighted retail ouirlecs that carriud

+he firm's brand.

Relative customer service (wt) which represents the warranty and
service backing for a given product, relative packaging appeal (Bt) and
relative quality (Qt), should be estimated from test market or panel
data. One might argue that design engineers within the firm should pro-
vide the estimates of the relative quality, varranty valueg, and functional
evaluation of the packaging as the engineers can more accurately measure
these variables than a housewife. We reject this idea and stress that it
is the perceived quality, packaging, and service that really affect the
purchase rate.

The prior theoretical papers dealing with the concept of marketing mix
variables [ 4, 7, 17] conclude by relating sales to some functional form
of the marketing mix variables. We suggest that environmental variables
should also be considered. Clearly, the marketing mix variables may inter-
act with environmmental variables such as G.N.P., personable disposable
income, industrial production, age composition of population. Therefore,
if one is attempting to explain sales in terms of marketing mix variables
only, he can easily misinterpret what is really happening. By failing to
include environmental variables, such as population size in the analysis, a
researcher quite easily may be led to the erroneous conclusion that by

immediately hiring more salesmen he will increase sales.



The Survey of Current Business provides information on a number of

standard environmental variables. Since the list is quite expensive and the
relevance of the variables is highly product dependent no attempt will be
made to identify a standardized set of envirommental variables. Rather we
simply suggest that when sales are functionally related to the set of market-
ing mix variables a researcher should consider environmental variables as

supplementary predictor variables.

IV. Deriving a Funciional Form and Estimating the Parameter

The method for deriving the functional form and estimating the para-
meters developed in this paper is clearly a general approach applicable to
many other problem areas, However, instead of first abstractly explaining
the approach and then applying it, we will develop the approach in terms of
the beer example in order to conserve space and provide a concrete example
which is easier for the reader to follow, In our beer example, we initially
had seven years of historical data on a monthly basis (84 data points per
variable)., Subsequently, over the course of the model development, am additional
18 data points have become available, All of our estimates as to functional
form and parameter values are in terms of the original 84 data points. The
18 new data points are used for model validétion.

Much of the actual data used in our case example, such as budget limits
and elasticities, were felt to be proprietary information. 1In compliance

»
with the wishes of the brewery supplying our data, we will not reveal the
actual numbers used, We will use symbols whenever possible and in the next

section, where actual numbers are provided so as to illustrate a numerical

solution, these numbers have been modified from real data,



The model defined in this paper is for one geographic market segment.
Obviously, through the use of additional subscripts on the variables, the

model can be expanded to include m interacting market segments,

In addition to the ten standard marketing mix variables, it was felt
that relevant environmental variables should also be included in the functional
used to predict sales, .

In order to determine relevant environmental variables, beer sales were
log and linearly regressed on a number of environmental variables both
singularly and in combinations, The two environmental variables that appeared
to have some relationship with total beer sales are age composition of the
population and disposable personal income, The age composition variable was
finally defined as the percentage of the total population within the geographic
market between 18 and 24 years of age. Age composition (Act) was dealt with
as a dimensionless number in that the percentage of the population between
18 and 24 in period t was divided by the average percentage in this age
bracket over the 84 time periods used in our parameter estimation., Personal
disposal income (Int) was converted into a pure number by dividing the observed
value by the de-trended estimate of (In) for period t by its average for the
84 time periods. Since the concept of warranfy and service backing (wt) for
beer is not relevant, we a priori dropped this variable from our analysis.,

We now have eleven variables.from which we wish to construct a functional
to predict sales, The following terminology used to describe sales' functionals
will be used throughout the remainder of this paper: a variable will refer to
the one of the eleven variables defined above;a term will be a product of one

or more variables; eclasticity will be an exponent of a variable; and, coefiicicnt

will be the linear weight associated with each term in the sales' functional,



A straight linear regression, where each variable represents a term of
the functional, is appropriate if one assumes that the effect of each variable
on sales is lincar and independent of the other ten. On the other hand, if
one assumes each of the variables interacts with all of the other independent
variables, a log regression of the data is appropriate. In the log re-
gression, the regression coefficients become the elasticities of the variables
in the function form: e.g., log salest = log k + b2 log At + b2 log Bt + b3
log Ct is trans&ormed.into the functional form Sales = Atl 322 023, where

by, b

29 and b3 are the regression coefficients. The constant k is removed

by shifting to a zero intercept before making the transformation., For beer
sales, the linear regression yields an R2 of .42 and the log regression yields
an RZ of .36.

However, the functional form of the estimating equation provided by the
two regression approaches mentioned above are not consistent with our a priori
view of reality in that we susfect ithe eleven predictor variables are neither
completely independent nor completely interactive, A more realistic functional
form would be a polynomial consisting of terms representing higher order inter-

action among sets of the variables where the interactions are nonlinear and the

i . + blb +
total fumction could be noncercave. For example, Sales = _ CI(A- Q 2)t N

b3 b4 + bs . .
<, (A-°p ™ <, S t implies that dollars spent on advertising interact with
£ -

the relative price and preceived quality of the product but not with the dollars
spent on salesmen's compensation. Also, advertising may interact quite differently
with Pt than Qt thus b1 # b3 is often the situation. One would expect a poly-

nomial expressing sales in terms of a number of marketing mix and environmental
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variables to be rather complicated and the number of constraints associated
with the variables representing budget iimits and strategy considerations
to be rather numerous.

Suppose, for a moment, that the true polynomial relating sales to envir-
onmental and marketing mix variables was interactive, nonlingar, and noncon-
cave and is known. How could the marketing manager use this information to
optimize his allocation of marketing dollars? In general, this polynomial
is too big and too complex to be optimized by the known nonlinear programs.
Even a simple trial and error apprcach to increase sales through improved
budget allocation would be difficult in view of interactions and nonlineari-
ties. One would think that knowledge of the true polynomial by which the
marketing mix variables are related to sales would be extremely valuable in-
formation for a marketing executive, yet because of the higher order inter-
actions among the variables, he would, in general, be very limited in his
ability to improve his budget allocation.

There is, however, one large subset of the general polynomial described
above for which an optimization program is available. Geometric programming
can optimize the general polynomiai, subject to numerous budget and strategy
constraints, iﬁ the linear coefficients (Ci) associated with each term are
nonnegative in the context of minimization. Thus, one reasonable approach to

dealing with this problem, without removing its reality through simplifying

assumptions, would be to find a posynomial (a polynomial with positive

coefficients) which is a reasonable estimator of sales and then optimize the
functional using geometric programming.

This approach raises two basic philosophical research issues which the
reader should be aware of. Functionals relating decision variables to manage-
ment goals are scldom known with certainty; usually the function is an esti-
mate. Because of the number of relevant variables and their rather compli-

cated interactions, even the best estimated functions often leave substantial
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unexplained variance of the management goal. The first issue is: Should an
optimizing program be applied to these management functionals? Clearly, ifb
the estimated functional differs from the true functional, the results of the
optimization program may suggest management decisions that are suboptimal or
even counterproductive. On the other hand, to argue that optimizing algori:hms
should not be applied to estimation functionals essentially restricts math pro-
gramming to engineering design tvpe problems and precludes its use on most cf
the interesting marketing and management science allocation problems. Further-
more, in the real world, a marketing manager cannot avoid decision making Ba-
cause he lacks perfect information. He makes marketing mix decisions that
implicitly or explicitly are based upon a sales functional which he believes

to be realistic. We are suggesting that the functional be made explicit and
then math programming be utilized to suggest the best decisions for the

decision maker's view of reality.

The second issue concerns the selection of an estimation function
which is posyﬁomial in form. Note that the marketing mix variables as
defined in the appendix are non-negative variables where the values of the
variables all tend to increase as the firm increases its utilization of the
variable. Intuitively one expects that sales will usually respond in the
same direction but to different degrees to equal changes in particular
marketing mix variables. Thus a sales functional where the linear weights
all have the same sign is intuitively appealing. However, it is possible
for a variable or more particularly for a term containing a number of non-
linear and interactive variables to have a linear weight opposite in sign
from the other terms. We will show in step four of our data analysis approach
how the information contained in a term with a linear weight opposite in sign
from the others can be brought into a posynomiél. If a posynomial cennot be

developed, or if one wishes to investigate functionals with negative terms,
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we suggest seeking the general polynomial with the maximum R2 value using a
modified Gauss-Newton method as suggested by H. Q. Hartley [16}. 1In the next
section we indicate how this general polynomial can be analyzed for local
optimum.

In attempting to generate a reasonable posynomial, there are two basic
sources of information; the experiencea judgment of the executives, and the
historical raw data on the variables. One obvious approach is to have the
executives estimate a reasonable posynomial and then, using the historical
data in sensitiﬁity testing, try to improve on this estimate. In practice,
this is asking gquite a bit from an executive. 1In our experience we found the
executives relatively good at indicating which variables interacted together
but needed help in identifying the type ard number of terms which would con-
tribute relatively independent information to the estimating posynomial.

We decided to analyze the raw data prior to asking the executives to try
and specify a reasonable sales functional so as not to be constrained too
severely by their first estimate and in the hope we could develop some insight
which would supplement and improve the executive's estimate. In order to get
some feel for the raw data with respect to appropriate elasticities and which
sets of variables fit together, we developed the following two-state regression
procedure, consisting of four steps.

Step One - Log Regression

From the data, log sales were regressed on the logs of all singles, pairs,
and triples (231 terms) of the eleven predictor variables. Also, terms were
included representing combinations of variables that the marketing department
felt a priori to be useful. The log regression coefficients gave the elas-
ticities.

Step Two

Those terms which yielded unreasonable elasticities, like a negative



13

elasticity for advertising or a positive elasticity for price, were modified
or dropped. Similarly, those terms that the executives felt unreasonable
were also dropped. The formal geometric programming problem is stated in
terms of minimization of a posynomial. 1In our case we wish to maximize
sales. Thus we wish to treat the increased use of a marketing mix variable
as essentially a cost to the firm. We thus change all of the signs on the
terms from positive to negative. This will change the direction of the

relationship between sales and the marketing mix terms but not the form of

the relationship.

Step Three

The useful terms (each term being a product of variables with associated
elasticities as exponents) are to be combined into a linear model. For that,
one needs independence of the selected terms. It is possible that a partic-
ular variable may be present in two terms, possibly with different elastici-

ties which were estimated independently in the first stage. Combining these

two terms into a linear model now is valid if the terms are independent of
each other. Thus, at this point we look at matrix of correlation among the
terms from step two. In the beer sales matrix almost all the correlations
had an absoclute value < .33,(|rl < .33). We therefore felt we could pro-
ceed with step four. 1If the correlations among terms had been high we would
then have proceeded to Hartley's procedure [16].

Step Four - Stepwise Multiple Regression

This stepwise regression procedure of sales on terms of step two is
based on a code available as BMDO2R [6, pp. 233-247]. 1In this we impose two
conditions: 1) when additional terms are included in the derived functional,
the adjusted §2 {22, p. 311} should not decrease. Secondly, since we wish
to use the derived functional in a maximization formulation, we will esti-

mate a functional with a most one positive regression coefficient of a term

(constant term excluded). This facilitates the geometric programming
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procedure to yield a global optimum at no sacrifice of the solution space
or interpretation. The combination of terms is valid due to their independ-
ence. In a regression approach, the sign of the coefficient depends upon
the direct or inverse relationship taken pairwise. The variables as defined
in the appendix are non-negative dimensionless variables, which have primar-
ily a direct relationship with sales. UWe therefore changed the direction

of the relationship in step two prior to the stepwise regression, thus gen-
erating functionals with almost exclusively negative regression coefficients.
However, there were some terms, primarily because of interaction among the
variables within the term, for which the original relationship with.sales
was believed to be inverse by the executives. There were also some terms
for which the executives were unsure if the original relationship was direct
or inverse. We could accommodate one of these terms in our estimation
functional in the following manner. The multiple regression program selects
the regressor having the highest absolute correlétion after the effect of
the first regressor is eliminated from sales. At this step, the program is
interrupted and we inspect for the sign of the coefficients. If both the
coefficients are positive (no matter what the sign of the constant term is),

we redefine the last regressor entering as its reciprocal, thus guaranteeing

a negative coefficient for this regressor if the reciprocal enters the
functional. This will not change the earlier coefficeints as built-in by
the stepwise regression procedure. (If both are negative, or ohe negative
and the other positive, no interruption is made and the program proceeds to
include a next regressor). Thus, the procedure of redefining a regressor by
its receiprocal is followed at every successive step if that variable yields
the second positive regression coefficient. This scheme is continued until
either one of the two following cases materialized: (i) all the regressors

L. =2 .
of Stage Two are exhaused; or, (ii) the adusted R starts decreasing. Only



15

functionals with terms that are relatively independent and reasonable (if
inverted terms were included) are retained.

Using the modified stepwise régression program, a number of regressions
were run to get a feel for which terms tended to fit together. The maximum

R”™ we attained was .46, and this functional consisted of four terms:

b b, b b b b b
(AC)tl, (1 2P 3)t, Sta, and (C > Q 6 D 7)t. Having attempted, through

the above statistical analvsis of raw data, to get some feel for the raw data,
we now approached the executives with these results in the hope that they

. ' L . . =2 . .
could provide some insights which would improve the R of our sales functional.

The marketing executives of the beer firm noted that advertising was

not in the maximum functional nor was it very prevalent in the list of
. . . . =2 .

regression equations with lower adjusted R . They felt quite strongly
that advertising was a significant marketing mix variable, particularly for
the geographic market we were investigating, because of the historically
high proportion of beer purchased by people in the 18-24 age range within
this territory., Their theory was that people in this age range were more

sensitive to advertising.,

We proceeded to supplement our purely statistically generated results

with the judgménts andvsuggestionsvof the executivés. The first thing we did

was to time lag At’ I Pt, Tt, and St for up to four months and Ct for two

t,
months, Because of the nature of the data and the extremely large number

C . 27 . .
of combinations possible, [ 3 for the 3 tuple alone] it was not possible
to search this entire space optimally. We, thus, used a trial and error heuristic
search procedure and eventually found some time lagged combinations that

improved the regression equation to an adjusted §2 of .54, The manner in

which we quantified Ay also became a source of concern., While the use of
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dollar amounts is the obvious method of quantification of the advertising

variable, this assumes that the firm is consistently efficient and that all

firms have the same efficiency per dollar spent, that all advertising messages
generate the same response.
Krishnan and Gupta [18] suggest judgmental coefficients (v values)

representing the firm's effectiveness be used to-modify the dollar amounts,
We found that the use of efficiency coefficients, while theoretically appealing,
was difficult to implement practically because of a wide variance in the scts
of Gi proposed by various executives

It was at this point we decided to account for differences in advertising
content by separating At into three variables, The firm had magazine adver-
tisements representing the various beer adveftising campaigns of its rivals
enabling us to classify the themes into three groups; Alt represents adver-
tising emphasizing price, A2t represents "mood' or image advertising and A3t
represents advertising emphasizing the quality of the brand., Each of these

variables was ratio estimated in the same form as the original Ay variable,

Segmenting the advertising variable so as to include message content in the
analysis enabled us to substantially improve our regression. The following

functional form transposed into linear variables gave an adjusted ﬁz = .72.

(1) sales = b, + b, [(Al)t_l (PTC)t] + b, [(A?_)t_l Bt]-*- by (Ac Q) +

b, [It st_l'J + by (PD),

where bO,...,b5 are the regression coefficients. This functional was de-
rived from the original 84 data points. While most of the terms in the final

functional were identified by the executives, it is interesting to note that

one term found in the analysis of raw data supplemented the executive judgment
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providing additional explaining power for the functional and a new insight for

the executives.

Eighteen new observations were used in model validation, Repeating the
above procedure, we found the above terms to again be significant using the
new data, Running the new data through the original functional yields an
ﬁz of .66. The dual weights associated with these terms, which under the
normality condition indicate the relative contribution of each term, also v reo
very consistent from one data set (84 points) to the other (18 points).

In summary, the regression approach used in this paper is a heuristic
approach requiring subjective judgments by the researchers, Use of both log
and linear regression may at first appear to be a piecemeal method of obtaining
the functional form and elasticities; upon reflection, one realizes that as
one treats the terms in the above equation as independent, the estimates of
the elasticities associated with the variables in each term should not be
influenced by the presence of the other independent terms in the linear
regression, We contend that the modified stepwise regression approach is a
reasonable method for obtaining a posynomial functional form and pafameter

estimates directly from data,

V. Marketing Mix Optimization Utilizing Geometric Programming

In this section, solution prqcedure for soiving the marketing mix decision
variables by optimizing the functional derived in the earlier section, subject
to a set of constraints is provided. Two cases are identified in this context:
(A) The case when the functional and the constraints are not compatible with
the geometric programming requirements (e.g., the functional is a signomial
[11] so that the solution may be optimal only locally; (B) The case when the

functional and the constraints are, or can be converted to, a format where
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geometric programming [13] can be used yielding a solution ;hat is globally.
optimal. This provides a general procedure for solving a marketing mix prob-
lem for any firm. Finally, optimization of the sales functional generated in
our beer example (equation (1) with added constraints) is given with its
interpretation as a model exercise.

A good introduction to geometric programmipg can be obtained from Duffin,
et al. [13]. Later modifications to "Signomials," {1l1], "Linearizing Geometric
Programs'" [9], "Harmonized Geometric Programs" [1l0], "Geometric Programs
Treated with Slack Variables" [12] are finer frills available in the litera-
ture but cannot always guarantee global optimality. We are assuming that the
reader is familiar with [13]. Certain computer codes exist to solve geometric

programming procedures [2].

A) When the functional and constraints are not compatibl'e with geometric pro-
p g

gramming requirements: This case arises when the condition of statistical

independence of the terms (each term is a product of a certain subset of
marketing mix variables wiﬁh estimated elasticities from the first stage of log
regression) is violated. Thus, the second stage of linear regression to combine
the terms estimated earlier is invalid. This ig because the elasticities of
each of the variables in a term were computgd in the first stage independent

of any other tgrms that might be in the final sales functional.. Thus, the
elasticities of the variables do nct reflect the possible influences of other
independent terms in the sales functional. In such a situation, it is possible
to estimate the functional all at one stage. H. O. Hartley [16] has provided

a method by which one can estimate the elasticities and the coefficients of
each term all at one stage. Here each term can be a single variable or an -
interaction term which is a product of certain variables. Thus, a polynomial
functional could be estimated by this method. It is to be emphasized here

that the regression coefficients that are estimated for each term need not be
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all or all but one negagive.‘ If it éo happens that either ali coefficients
or all but one are negative, this functional satisfies the geometric programﬁ—
ing requirement which can yield globally optimal solutién (case B). 1If not,
we are lead to the case of a functional which has signomial ferms (both posi-
tive and negative coefficients). The procedure given by Duffin and Peterscn
[11] for signomials, or the one given by Avriel and Williams [1] utilizing
"Complementary Geometric Programming' can be used to deal with signomials but

lead only to a local cptimum.

(B) Case when functional is, or can be converted into acceptable geometric

programming format: The estimated functional Q and the constraints under

which an optimization by geometric programming (G-P) must be posynomials for a
minimization problem. However, since we are maximizing Q@ in the context of
sales, this requires the functional to carry negative coefficients in each
term without constraining the constant term. Generally, one requires all
terms in the G-P minimization to be strictly positive. We will relax this
condition to allow for one negative term. To satisfy the G-P requirements,
the sales function Q to be maximized in terms of the regressors of Section 3,
is to satisfy the following requirements: a) a constant term (positive or
negative); b) at most, one positive reg;ession coefficient; <¢) all other
terms have either zero’or negative regression coefficients. (Note: The
exponents of the terms can be positive or negative.)

Since the basic four step procedure used in the beer sales example sat-
isfied the requirements of case (B), we are ensured of a regression function
of beer sales with, at most, one term having a positive linear coefficient.

This will enable us to guarantee for global optimality as we have avoided

signomials [11] or approximate solutions as given by Charnes and Cooper [5].
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’

We now will solve the estimated functional in terms of the values given below.

(2) Max. Sales = 16.212 + 3.937 A2t;21 Bi'“ - .00021 Al;?s p;'68 T;:8‘+ C;-QS
00305 AC;.IS Q4tr1.76  oo4s 1;'9 S:il 0053 P;.76 0;1'12
Let u(t) = 3.937 42701 817 and
f(e = - [.0021 f\“l;iS P;.es T;.sa C;.zs 00305 ACEIS Qi.76
L 0046 1;'9 S:il . 0053 P;.76 p-1-12.]

t

This is equivaleunt to the posyncmial (G-P) P: Min tél; S.T. tO/u(£)+ £(t)/u(t)
<1; £t > 0. Ve will now actually solve the above -equation for these given
values. Sales are in million dollar units. The equivalence is established be-
low. Due to the way in which the regression model was obtained, we have at

most one positive term., If the vector of variables is defined as t and the

Sales function as S(t) we have the objective function: Maximize S(t) = u(r)

- f(t); where wu(t) and £(t) are posynomials with wu(t) having only one term.

Since Sales cannot be negative, maximizing S(t) is equivalent to minimizing
, . NI * o .
- 8(t), if and only if, % = [u(t¥), tl’ tz,..., tm] maximizes the function:
g(T) = ty subject to the censtraint: ty *+ £(£) - u(r) < 0.
It is obvious that this maximization problem is equivalent to the primal
program {(P) that consists of minimizing: h(1) = 1/g(7) = 1/t0. Subject to
the consistent constraint: to/u(g) + [£(t)/u(t)] £ 1. Thus the original

(regression function) objective function on Sales (3) will be the same as given

as (4) in the geometric programming format.
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The following are the budget constraints. These are imposed as policy

constraints by the management on the marketing mix variables. The given dollar

budgets of the firmis are converted into the dimensionless indices given in

the appendix yielding the following constraints:

I. Advertising: Alt- > W10; A2, 1 > .10 and Alt-l + Azt_l < .35
AL > .10; A2 > .10 and Al_ + 42, < .35
II. Relative Instcre Promotion: 2 < L. < .35
I1I. Relative Price: .7 < Pt < 1.35
IV. Relative Price Chauge: 6 < Ct < 1.3
V. Trade Allowances: | 6 <T, | < 1.3
6 ST S 1.3
VI. Salesmen Effort: .8 < St—l < 1.25
.8 <5, < l.2s
VII. Distribution: 3 < pt < .8
VIIT. Relative Packaging Appeal: : 6 < Bt < 1.8
IX. Relative Product Quality 8 < Qt < 1;8

In addition, a constraint for age composition, in the relative market and
two other strategy constraints are also laid out.
(x) Age composition .8 _<__Act < 1.3
(xi) Strategies:- At + It <.6; (where A,
is the current advertising index)

(xii) s+ 7T, <2.

Representing these variables in a vector form t where

L G A L TY

/ 13 AN
(to’ XCc’ APt-l’ t t-1’ A‘{c-l’ APt’ !

A

t-

1)
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equation (4) and the constraints are given below in the geometric programming

format:

Minimize to ,

>0 and

Subject to the following constraints t
-.91 _-1.31 | =91 -1.317 -.95 -.68 -.84 -.28
{.25 t, %1 t5 + .00083 LA t, t, t, 5 6
-,91 ~1.31 -,18 +1.7¢ . -.91 -1.31 -.9 -1l.1
(5) + .012 tl4 t, t1 t, + .0018 tlg t7 tS c9
-.91 -1,31 -,76 ~-1.12, .
+ .0020 e, 77ty t, t <1
We converted each of the policy constraints of the form .2 < It < .35
. 2
into the following two constrsints: lower bound is .2 < It’ that is I = 1
I t
- t :
which equals .2 t81 < 1; upper bound is It < .35, that is 33 < 1 which
equals 2.86 t, < 1. Similarly, the upper and lower bounds of the policy con-

8

straints are derived.
The transformed strategy constraints are:
2.86 t, +2.8 t,, <1

3 14

2.86 t . +2.86 t <1

1.66 tl1 + 1.66 t8

5oty t W5ty <1

IN

1

There are 18 variables, 26 budget constraints, 4 strategy constraints and a
constraint due to the formulation of maximizing sales function into geometric
programming format. The total number of terms are 40 which yields a degree of
difficulty of (40-18-1) = 21 [14) which shows that dual solution is contained
in a space of 21 dimensions. The dual problem can be expressed for equation 5
as shown in [14] and solved. This problem was solved by the code developed by
W. Gochet and Y. Smeers [16] which yielded the following solution vector which

minimized equation (5). The solution vector t 1is given below:
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From the above it is seen that the following variables: ACt, AP P, C

t-1° "t t’

D are at their lcwer bounds, while the following variables:

£ Te-1
B , Sr are at their upper bounds,

Note that AHt and At are not attaining either of their bounds. Though
At can take a maximum of .4 as A + It < .6 with It = .2, 1it has only
taken a value of ,225, This indicates that sales can be increased by taking
the .175 of At that is not productive and aftgr transforming this back into
dollar buidget terms, subtracting the transformed .175 from the advertising

budget and adding.it to either Q Bt’ or St - thus raising the upper bounds of

t’
_these variables. Further sensitivity testing would indicate the optimal trans-
fer of funds from advertising to product quality, packaging, and salesmen's
effort. In a similar manner the above results enable us to suggest better

budget ranges than are curreantly used, by distributing the saved dollars from

the lower bounded variables into those which reach their upper bounds.

To suvme degree this exzuple is dynamic in that there are decisions for per-
fods t and t-1l. Naturally the model would be much richer in a dynamic sense
if more than two periods were in the objective function, thus yielding insignts
into strategics fortiming the allocation of a variable's budget over successive
perlods. Llooking at St-l and St' we see that when salesmen's effort reaches

its lower bound of .8, the model suggests that an intensive effort be made in the

next period. The maxicum sales under the present set of budget and strategy

constraints for the values used in this example was found to be. 17. 489

million dollars.
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In conclusion we have suggested a reasonable method for generating a
functional form and elasticities from raw data in a manner that allows a
practitioner to make use of the mathematically powerful technique of
geometric programming. A theoretical contribution was made in relaxing the
requirement that the non-linear polynomial terms must be restricted to posy-
nomials. The wmethods discussed in this paper have been empirically applied,
yielding results which executives of a major brewery found insightful and
useful. Actual management decisions to change the budget size of advertis-
ing appear to have beeﬁ decisions influenced by this model. Through the
use of additional subscripts the model described in this paper can be

extended to deal with m markets and p products.
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APPENDIX

The Ten Marketing Mix Variables

1. Relative Advertising Expenditure (A_)
[

where At = The firm's relative advertising expenditure for time period t,

AF == Advertising Dollavrs spent by the firm in time period t. (dollars)

AT, = Adveritising Pollzars spent by dindustry ia time period t. (dollars:

2. RKelative In-Store Prouwoticn (It>

where It = The firm's relative in-store promotional expenditure for time
period t,.

IF = In-store promotion dollars spent by the firm in time period t.
(dollars)

IT1,= In-store promoticn dollars spent by the industry in time period
t. {(dollars)

3. Relative Price (Pt)

_ PFt
P 7o
(E 25, -1y
=1
J#i
where Pt = Relative price of the firm in time period t.
PF. = Retail price charged by the firm in time period t
(dollars/case.)

Pj e Retail price charged by the jth firm in time period "t

3

(dollars/case.)



4.

5.

6.

Relative Price Change (Ct)

where

P,
]

Trade Allowances (Tt‘

T

where

0

PFt

L t-1

Ot if Ot > PFt - PFt-l <0
PR PFt-l ol if 0. >0, PF
- : ¢ 1L O s t-PFt-1>0
T (P, .- Pj t-1) Ct = 1 if Ot = 0
=1 ’ .001 if Ot <0, PFt - PFt-l >0
J#i 10 if Ot > 10 or Ot <0,
PFt - PFt_l <0
= An Operator
= Retail price charged by the ith firm in time period ¢t
(dollars /casc).
= Retail price charged by the jth firm in time period ¢t-1

(dollars/case).

/

_ R ey
t n -
T (R, + W, .)/ntl
. i i-1
i=0
Tt = Trade allowance for time period t.
Rt = Trade allowances granted retailers in time period t (dollars).
wt—l = Trade allowances granted wholesalers in time period t-1 (dollars).
R1 = Trade allowances granted retailers in time period i (dollars)
(1 = 0,i00ee,n). (Here n=84, but in order to get a first data
point for W,_l we had to go back to th= 85th cbservation, thus
the division"by n+l instead of n).
wi-l = Trade allowances granted wholesalers in time period 1i-1 (dollars)

Salesman's Effort (St)

where

198
w

SSt

i

+ SCt
(i

ao-t, ...n)

i

Salesman's effort in tire pericod t.

= Total salessan's salary paid iu time period t (dollars).

Total salesman's commissions credited to salesman for time
period t (dollars).



