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A RELAXATION ALGORITHM FOR A CLASS OF
DECOMPOSABLE POSYNOMIAL PROGRAMMING PROBLEMS

Part I

by

Kemil A. Rizk-Aziz*©

Arthur P. Hurter, Jr.

ABSTRACT

A large scale posyncmial programming problem amenable to decom-
positicn is considered. It exhibits a vector of coupling variables
z which tie together N disjoint vectors of subsystem variables
(t7, £ =1, 2,...,%). The problem is similar to that considzared by
Hevrann and Avriel {6 but subsvstem posyncmial problems of degrees
of difficulty greater than zero are permitted here. The relaxaticn
algorithm, originally develcped by Benders _ 1) for mixed integer
linear programs, is cxtended tc the class of posynomial programs
describasd above. A result similar to the Farkas lemma for linear

equalities and inecualities is derived for posynomial inegualities.

* The authors gratefully acknowledge support of the National Science
Foundation and the Urban Systems Engineering Center, Northwestern

University.



INTEODUCTION:

The literature on cptimization problems includes a substantial class
of problems referred to as ''large-scale programming problems". These are
characterized by a large number of constraints and variables and often
exhibit a special constraint set structure.

The stratecy for the solution of these problems involves the adven-
tageous usage of the structure of the ceastraint set., It is commen to
find a structure that combines variables that belong uniquely to subsystems

with variables which tie togsther the different subsystems. The former

are rererred to as '"subsvstem variables' and the latter as '"coupling

variables". A decomposition procedure miay be applied to these problems,

reducing

perl

the solution of the problem to a solution of a series of smaller
problems combined teogether in different ways.

Analogous probiems also appear in posynomial programming (i.e.,

geometric prozramaing _2,%1). Zener .12, decomposed certain cost mini-
mization problems with a special structure by minimizing the cost of
specific cverlapping systems. leviann aad Avriel [ 6] extended Zencr's
results to a large class of posvnomial programming problems. Howover,

their results are limited tc problems where the structure permits only

subsystem problems vhich are themselves posynomial programming prcblems

with c<re degrecs of difficulty. This paper develops a relaxation algorithm
to solve problems of the samc general structure., However, there is no

restricticn on the conerality of the subsystem, i.e., subproblems which
are posvacnial pregrauvming probless with degrees eof difficulty different
from zero are allewed.

Doconposition procedures for more general geometric programming

problecme (i.e., not necessarily posynomial programming problems ) have



recently been developed by Peterson [10.. The procedures in this paper

exploit the special features of posynomial programming problems,

The Problen:

A general posvnomial programming problem consisting of N+1 interrelated
subsvstems is censidered. Two kinds of variables are present; '"coupling"
variables z and "subsystems' variables t. The vector of coupling variables
z is cormon to all subsystem - («£=1,2,...,N).

Associated with each subsystem L («+=1, 2,..., N) there is a vector

A

of variables t" which appears only in subsystem .. The vector of subsystems

. . . ; ) v s
variables t is defined by the vectors t7, 2 =1, 2,..., N, i.e.,

1 2 N . . .
(t", t ,..., t/). Tne vector of variables (z,t) will be indexed as

It~

follevs: m(0) 2nd n(0) are the indices given to the first and last

elements in the vector of coupling varisables z respectively. For each

()

"
A

t

=

=1, 2,..., N, m({) and n(zx) are the indices given to the first

oY

and last elements in t7, respectively. 7The following vectors of variables

. . . . . 1 2 N
will be indexed sequentially in the order given: z, t, t ,...,t°.

n

m(0) 1, and n(0) is the number of z variables involved. m(1) n(0)+1 Thus

. . 1
and n(1) - m(l) is the number of variables in t.

N

ne-

In general, ¢ and w(l)=n(l-1)+1 for 2=1,2,...,N.

Cagyr o Fa’
)

The tetal numuer of variegbles in (z,%) is the index of the last variable
3

in th, i.,e., t_, ., or n(¥) = .

DEFINITION 2,1 A pesyvnomial term, u,(x) ic an ewpresion of the form
- i

vihore ¢, is & positive scaiar

aij’ for all j are arbitrarv real numbers



and the xj, for all j, are positive variables.

Here, . indicates product over the j's.

DEFINITION 2.2: A posvnemial function g(x) is the sum of posynomial

terms, i.e.

1

1.~

<
g(x) ~oc,ilx
i

Each subsvstem has a posvnomial objective function and 'prototype'
posynomial constraints i.e. (posynomial functions kept less than or
equal to 1). The subsystem whose objective function and constraints depend
only on the z variables, is termed subsystem O, and those subsystems
having objective function and constraints depending on the z and the t
variables arc termed subsystem X, for i=1, 2,..., N.

For- the purpose of exposing the structure of the problem, it is
convenient to identify those functicns belonging te different subsystems.

5

Thus, let go(z) and gi(z,tﬁ), i=1, 2,..., N be the posynomial objective
functicns corresponding to subsystems [ =0, 1, 2,.,., N respectively.

- L - , .
Let gk(z), for k<P, and g (2z,t7), for k&P, {=1, 2,...,N be the
S

0

posynomial censtreint functions corresponding to subsystems i=0, 1, 2,...,N.

P,, (#=0,1,2,..,,8) are the index sets of the constraints functions

¥

belonging to subsvstem {, (L=0,1,2,..,N and vill be defirned below.

v

ror notational simplilication and because of the structure of dual
posynomial programs, it is also convinient to index secquentieally (1) the
posynemial functions and (2} the posvnomial terms of the objective functions

and constraints belonzing ro different subsystems.



(1)

Hl=

Let & 0,1,2,...,N} be the index sct identifying the N+ 1 posynomial

v .

objective functions corresponding to subsystems {=0,1,2,...,N.

>

Let P

0 {mé, m6+1,...,n'\ be the index set of the n! -m! constraint

0J 0 0

. . . A . .
functions of subsystem 0, while P, = ym', mi+l,...,n£} is the corresponding
==actions 2 2 =

index set of the n! -m! constraint functions of subsystem £, £=1,2,...,N.
ya

X

The posvnomial functions will be indexed sequentially by ordering

the index sets defined above, as follows:

5 P, P, P,
: ’h\' T—T/\_—_\v ' [ ! [ 1)
10,1,2,...,¥ mo,m0+1,...,n » o Mpseeenlyy aeene, mN,mN+1,...,nN)
A A
Thus , m6?2‘1+ 1, mi EnE)+1 and in general, mzén}’_l+1 4=1,2,...,N.

The total number of posynomial functions p +1 is given by the index
. . . y & .
assigned to the last element in PV plus one, i.e., ng=p- The index k
2 =

is used to identify & particular posynomial function. Thus, if k€C,

k identifies the posvnomial objective function of subsystem k. If k&P

4

N)

for some & £ 2, k identifles a particular posynomial constraint function
L
which belonzs to the constraint set P, of subsystem f. Let P = Pleﬁu...uP
A Z
then = . P= CUP JP, U....UPR = 10,1,2,...,pl.

Each k€ identifies a posynocmial function of the objective function
and each K% P identifies a particular censtraint function.

Recall that each posyneomial function g is defined as the sum of a number

of "posynemial terms" (see derfinition 2.2), Consider the function gp,

for any k€2 <P, and define o and 0 to be the indices of the first

and last po=vnomial terms of respectively. The index set of the

X

posynonial terms of 2 ic defined by

1

T

'
ne->

.

Lk " o e ,...,TLkJ



~
L

Tk is called '"block k'"{2,9).Fach posynomial function gk,l<6v <P has
an associated block of indices [k} which index the posynomial terms of
which it is fomnad.

The indices representing posyncmial terms are ordered in much the

same way posynomial functions were ordered. The ordering of blocks (k)

will follow the ordering of the functions k, i.e.

o [Po]
(003,700,020, [edd,Imbe 1, fatl, o,
r
‘PN]
T ] g 10, Eod 1 =0p3)
'A!' ] :; 1 A -
here, m!=N+1 and m) = n} .+1 £=0,1,2,...,N
0 £ L-1
[ Ar—,,r A Fil A [ IR | 3 [ ial I
and (G = LCoull . 20d, . 0lNd EP.] = EszULmZ'*']-JU---'VLn,J

The subsvsteus cobjective functions vere ordered before the constraints.

~

Therefore, blocks of terms corresponding to each objective function

8g: Zys -+ B aTE orcdered sequentially as:
4 ay
- - .-
Lo (1 0
r 2 m +1 m,+1 n T m _,m _+1 }
S A D R of m, LG ce e ass n__,m e ki
- g tgT s L 1°™1 s S 2 s NN s )nN
A u _l ~ -~ Y
here, m, =1 anc o, = n_ + 1 ke 5={0,1,2,...,N)
0 3 K
f. i the szt of indices identifving all the "posynomial terms" in the

objective function. The index sets P, for the conctraints of subsystem
s

L (£=0,1,2,...,7) vere defined as

P, =«ml, ni+l,...,n!} £=0,1,2,...,0
P A A X
- - R [ . - ) o
Then v'+3j. 2w, ., o, +l,...,n , .% ddentify all the terms in the
£ [ ! mn,+j wm.+]
A z

constraint k=nl+j of subsystem I, wvherem! < m!l+j <n
a A X b



-6-

The vecter of indices for all the "terms" in all the functions gk,

kT LUP is;:
[a: (1] N
. ) N
(Fupl = [mo m0+1,...,no, ml,ml+l,...,nl, g2t mN,..,nN,
[PO]
. 7 - N
(=g [og+1] [ny] EP1]
q,,...,nh,, ,_Ll,...,nm TR mn,,...,nn,,.. m,,...,nn',
~0 ) REoE 0 0 0 1 1
(p fp 0
“PZ‘ LPn,
ST T B D
IR ') .« s ey 1y e sy 1 - -
2 2 ™ "N P
vhere o' = N+1, m! & n +1 £=1,2,...,N
’ 0 > i1
A A . A
m =1, w0, +1 L=1,2,...,N wm, =n,*1 $=0,1,2,...,N
) i-1 Bl My
and TP.] = U LK] £=0,1,2,...,%
g:Pﬁ
HCINE SR ICTRY _plj utpzj ... ui-:;.

The index iis used to refer to "term i'" in some '"block k' i.e. 1 € [k],
ig¢s a particular posynowial term of a posynomizl function g -
11 1£ .3}, i icentifies a particular ferm in the objective functicn. If
i< ‘Pr], i identifies a particular terwm in the constraint functions

oi subzvsten L. Supposc index 1 refers to the p-th term of the j-th

censtraint of subsystes . Then it would be denoted (m_, .
m! + 3

+p). Thus,

index i runmng cover _m'+ i, that is, over the terms of constraint k=m! +j
A

i
(o]
-
]
N
-
=4
Nt
b

where k<€ Pi. Finally, for subsyetems 1, (£ = ; identifies

5]
m
lae]

the objective fuuction of subsystem { and k identifies the constraint

functions of subsystem {£.

ne>

P.J {L} which identify all the

It is useful to define sets P ,
X X



posvnomial functions corresponding to subsystem f (objective function

A .
ETp U1 identifies all the

i
- ” -
X

and constraints). Additionally EPij

osvnonial terms of all functions belonging to subsystem £ (£ =0,1,2,...,N).
p o+ils 2 s Ly &y ’

The posvnomial terms corresponding to subsystem O are a function

of the z variables only, hence according to definition 2.1,

(2.1) w(2) 2, 1z 1] i€ [P

Each posvnomial function in subsvstem 0 is defined in definition 2.1 as

a sum of posynomial terms involving the z variables (i.e. 2.1)

2 2 5 €
(2.2) gk(Z) L _ui(Z) k €P

For any subsvsten & (L =1,2,...,N) the posynomial terms are a function

.
; Z ) .
of the z variables as well as the t7 variables, i.e.

F A n(0) a,, nL) a,,
(2.3) v (z,t") 2e L oz, oo, M ie[p)]
=t g

Note that, (2.3) can be written as

AR n(d) 2y
y = . -
(2.4) v (z,t”) Tu (z) L t, °° i¢ [p']
i i PPN Z
j=m(z)
I1f one defines
n(0) a
) 1 -
(2.5) u (z)y Ec, T z, M i€ [p']
i, j X
j=1
lloreover, the posvmomial functions ¢f subsveten 4 (§=1,2,...,N) arc
, oA < f - '
{(2.6) oozt ) B v, (2,t7) k & P!
=k R Z

Because of (2.1) and (2.3), there exists a posvmemial term u{(z) for

~’6-~ Pi-veer et 7 ., l.e., for every term in every posynomial

function cefinod.  Indexing the posvnomial terrs ui(z) indexes the compound



. L
posynomial terms wi(z,t ).
Using (2.1) - (2.6) the problem of interest can now be written:

Program A:

N
(2.7) min gy(2) + g (z,th)
P £
=1
Subject to
(2.8) gk(z) <1 k € PO
2
(2.9) g (2,t7) 5 1 k€ P, £=1,2,...,N
wi th 2> 0, t'>0, t2>0,...,t7>0

Each posynomial term ui(z), i €[{CUP) i.e. in the objective function and
in each constraint, gives rise to an independent dual variable labeled
§., i1i€T0UP]. The sum of the posynomial terms of the objective
function and each posynomial g , k € P, gives rise to dependent dual
k
. Loay B ; - .
variables a.(8) = 25 &, and A (%) & 2, 3., k£P respectively. The
(-

- i oy
icios ici k]
geometric programming dual associated with pregram A is program B [2,9]:

Prozram B:

PR A G
(2.10) max v(§) £ - o0 £ ) e A (6) 5
Si=1" Vi k&P
subject to:
(2.11) 5iéo ie Gur) ={1,2,...,n}
(2.12) (5 8 20 5, =1
S 1
o~
n
lod 2 S“ = =
(2.13) Doags 0 i=1,2,...,n(0)
i=1
(2.14) 25 a, 5, =0 J=Em(4),. .. ,n(d)
iefpty 1



8y = 8 k € P

where A - 5
.oy
ic kg

L

The following assumptions are made:

(i) Program A and its dual B are canonical programs, ie., there exists
a vector £>0 satisfying the constraints of program B [2,9].

(ii) Program A is superconsistent £2,9], i.e., there is at least one

~1

R )
vector (z, t, t

,...,EN) with positive components satisfying the
constraints of program A, with strict inequality.
The strong duality tneorem for geometric programming [2,9] guarantees a
finite optimal scluticn for program A and its dual B under assumptions
(i) and (ii).
Program A can be rewritten using a projection procedure described
by Geoffrion [3). Projection into the z variables yields:
Program IL\:

N
(2.15) Min g.(z) + Z»;L(z"»

0 2=1
subject to:
(2.16) z € Z'
2.17 z) < £
(2.17) gL( ) 1 k PO
where
L N
Z' = nz
. 1
2=1
and
Lo, 4 - o -
Zk = z>0 there exists t“ > 02 ¢ (2,t") =1 k &€ P )

Each of the subsystem objectives after projection, the ¢,(z) in (2.15)
4,

-

is defined by prosram SA,(z) for each { =1, 2,...,N.
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Prosram SA (z): Given z > 0, find
1

A
:2(2) = INF gz(z,tﬂ) subject to gk(z,tz) =1, k¢ PQ
t£> 0

The potential advantage of this alternative formulation of program A
becomes apparent when it is observed that, for a given z > 0, satisfying
(2.15) and (2.17), (2.15) decomposes into the solution of N independent
subproblems SA;(Z), 2=1,2,...,N. The solutions to program MA and to

program A are related through the use of the projection theorem f47.

THEOREM 2.1: If (z*, t*) is optimal in program A then z¥* solves program
MA. If z* is optimal in program MA and (tz)* achieves the
minimum in SAZ(Z*) for ¢ =1,2,...,N, then (z%, t%*) is

optimal in program A.

An algorithm for the solution to program A is developed using program MA
and subproblems SA,(z), £ = 1,2,...,K, Theorem 2.1 specifies the conditions
A
which ensure a solution to program & as well.
In programrNA, dual representations of GL(Z) and 22’ for each 2=1,2,...,N
are necessary. Sections 3 and 4 eare addressed to these dual represen-
tations respectively. In what follows, a program is consistent iff there

exists a point satisfving its constraints.

1)

Since ¢ is a parameter in .(z) and Z), the fellowing simplifying
X &

nctation is helpful.

DEFINITION 2.3: Let

-

[

and g, (c ) E gk(z,tL) k£ P, Ul P.', where
L Z
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j=n(L) a.,
u, m e, k € P!
i€lk] * ojem(e)

954

(2.18) g (t")
Using (2.18), the program SAE(z) and the set Zé are rewritten below.

Program SA .(z): Given z > 0, find
A

(tz) subject to gk(tﬂ) <1 k€P

\
- = IN g
CL(Z) INF ¢ 2

7 2
t >0

and

ZE = {z > 0 there exists a t:jZ > 0 s.t. gk(tz) =1, k€ Pé}

REPRESENTATION OF Qz(g):

The dual representation of @E(z) can be obtained by the geometric dual

pregrem of SA,(z), denoted by SB,(z) where
£ &

Prooram SBL(Z): Given z > 0, find

2
- - A (87)=
A f i~ <
“ (z) = SUP . a7 El \ N Xk(éz) : ]
x S1€TRIIL 8, ) T hkep,
£ i “
subject to
st 20
L eh E D s =0
L €73 7
}S a0, = 0 j=m(i),...,n(L)
1ELP£] J
wvhere
A s g’f =/ crpr
A = R S =1C,, LP
kk( ) e 5i s rl 1 L}2
and P, =P, U {2}
Az X



In comparing SBi(z) and B note the use of u, in a role similar to that
of cs in B. This is explained below. Lerma 3.1 makes use of assumptions
(i) and (ii) concerning programs A and B to show that for each ¢£=1,2,...,N,

SAz(z) and SBL(Z) are canonical programs.

lerzma 3.1t Yor each 2 =1,2,...,N;

Programs SA ,(z) and SBﬂ(z) are canonical Programs.
L

Proof: Programs A and B are canonical programs by assumption (i). Hence
there exists a & > 0 satisfying the constraints of Dual program B.
For each £ = 1,2,...,N, 52 > 0 satisfies the constraints of Dual

programs SBz(z) where

Ont

- A
(1) £, 2 —& for i€ [P, UT[2] =(pP']
i x (3) £ £
2
and
% (8) L 0%
A = pa S,
£ iely] *
As shown below: For each Z = 1,2,...,N
(a) g. >0 ie [P since 6. > 0 ie[P'] and X (3) > 0
i £ i 4 i
(b) L éi = Z:_ f = 1 by definition
i€l i’ i€7e X, (8)
yi
A 5,
) = a i, = ¥ a,,—=—=0 j=u(),...,n(L)
ielptl Mt qerpnr M (s)
1" S A 2

2 a5 =0 for j = m(4),...,n(2) and x£<3) >0 .



~

. 2 R .
Hence, since £° > 0 satisfies the constraints of SBz(z) for each

£ =1,2,...,N, then the pairs of programs SAz(z), SBl(z), for each

L 1,2,...,N are canonical programs. The lemma is proved.

Given z > 0, program SB,(z) is alwvays consistent. However, for some
X

values of z, SAﬁ(z) can be inconsistent, i.e., no t)2 can be found with t%>0
and the constraints satisfied. The strong duality theorem of Ceometric
Programming for canonical programs ([2,9], applied to SAz(z) and SBi(z)
asserts that program 832(2) can be either unbounded or finite and positive.
If it is unbounded SAL(Z) is inconsistent. If it is finite and positive,
SAﬁ(z) is consistent and the optimal values of SAE(Z) and SBz(z) are equal.
In program MA, the choice of z € Z' insures the consistency of every
subproblem SAZ(Z). Hence, if z £ Z' the optimal values of SAz(z) and
ite dual SBL(Z); £ =1,2,...,N are finite positive and equal.

”

. 1 & . . .
Define 4, to be the set of I~ satisfying the dual constraints of

L

program SB,(z):
£

e
ra

<30l T oy, =1, Yoa.t. =0 j=m(i),...,n(2):.
2 is[P)] g
X

If z is chosen to be in Z!, then the optimal values of SAz(z) and SBz(z)

are finite and positive and gz(z) = (z).
X
Hence
£
- TR 0 M-
(3.1) ¢, (z) = HAX I | =) M, G5 |
* Y - i€[ P! 1 - k‘EPﬁ 4

In (3.1) replace ug by its value given in definition 2.1 and let
5 A
” :. r' _ / Ci '-_\ 1.~ l )\-1\(5 )’]l
r@Er) = Lol oA ()
ie{P)} Y *~1 /7 --kepr, " -
X
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Then,
) n(0) a,.§, .
(3.2) c,(z) = MAX | KGT) T I 25 Tt i
X A o~ 1 P
5LEA£ 1:LP£] j=1
2 ai.5i
n(0) a s n(0) iefpp J
Notice that o T oz, I - oz,
iefp'l j=1 J j=1 4
Z
Now, define §'(5{) = 3 a. .t j=1,2,...,n(0) and then write
3T erpy 1
X
(3.2) as 9
c o, @ zieh
(3.3) co2) = M KGD Ig J }
=1
6£EA£ J

vhich is, the desired dual representation of «,(z) for each ¢ =1,2,...,N.
X

REPRESENTATION QF 2

X
A N
Recall that Z' = N Z! and
)= %
1=1
A 0 2
Z' = .z>0, c Rn( ) l 2 a t">0 such that g_(tﬂ) <1 kQPo}

Treating z as a parameter is equivalent to treating u as a parameter and

the set Z) can be replaced by the set UE where

i
g i, OUF) : L
Uy = fu® >0, uver - l?at‘>05uchthatgk(t)sl kP,
o(fr,2),
9 - 1 . .
with R = space of real numbers of dimension o({P,]) where o([P,])
X e

. - . - 3
is the number of elements in LP,f.
2

For the balance of section 4, consider a set U' instead of UL obtained

A

by replacing t with an arbitrary vector (tj, j=1,2,...,m') and Pi by an
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arbitrary set This notational change is for ease of

exposition'only. Then

A ld '
U'={u>0,uc R .| 3at>0 such that g, (8) =1 k=1,2,...,p')

U' is the set of all "admissible".coefficients for the set of posynomial

inequalities gk(t), k=1,2,...,p'

<

where g, (&) = 2 v, (t) k=1,2,...,p'
N ie-k—‘ l
a a a
A . . . e . A . .
and wo(£) S uty 11t2 2z o £ n 1€7TK]; K21,...,p"1801,2, ... 03,

Each aij is an arbitrary real number and is an element of the exponent

matrix A defined by

aA="fa..] i=1,2,...,n' , j=1,2,...,m".
1]
Censider the set D' defined to be the intersection of the non-negative

orthant with the null space of the exponent matrix A , i.e.

’ 1 n
— ~ LN A
| S— b _ —_ 1
D' ={ 20, vIR Za.,y., =0 j=1,...,m"}
i=1 17°'1

Concitions for U' to be non-empty are given in theorem 4.1.

N

TEEORD! 4,1 Suppose there exists 5 £D', = Qi>'0 for i = 1,2,...,n".
Then v € U', i.e., there exists t > 0 such that gk(t) =1

for k = 1,2,...,p" 1iff

y
, ntoup i SASY ,
4.1 sup T — oA ) - 1
VED' “is1t Vi kel ’
.
where kk(w) = ijq/i
ig k!

in which case the sup is a max.
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PROOF: The strategy of the proof involves formulation of a posynomial

program which has a dual of the form given by (4.1).

Consider a posynomial program in which

(1) MIN g (t) =1 subject to gk(t) =1 k=1,2,...,p"

The geometric dval of (1) is:

Subject to:

e
1t
vhere ky(y) = Y
N i€7k;
'UO ho)
Prozram (2) can be rewritten noting that (f‘A = 1, as
ST
~nt o iop! AL )
(3) sup - I T—=} o \k(x) i
vED' Ti=1 i k=1 ’
Since 3. &€ D' 5 $i> 0 for i = 1,2,...,n" and v, = 1, programs

(1) and (2) are canonical programs (by assumption), the main Duality
theorem in Gecretric Prograsming .2,9. insures that the optimal values
of programs (1) and (2) are equal. Since the optimal value of (1) is by

definition equal to 1, then the optimal value of (2) is zalso 1. Turther,
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the duality theorem additionally states that program (1) is consistent,
i.e. u <z

(1

since the optimal value of (2) is finite and positive, i.e., equal to 1,

U' iff the optimal value of (2) is finite and positive, hence

n',u ip! MONN
sup o= I 1k(y) ro=1
vED' ti=17 Vi k=1 ’
iff there exists a t > 0 such that
gk(t) =1 k=1,2,...,p'.
The theorem iIs proved.

Theorem 4.1 states that u € U' iff (4.1) holds, hence the following
lemma is icmediate.

Lerma 4.1: u< U iff u £ U where
, iy n' u, i p' kk(y)
(4.2) U= u>0, ugRr ! T Ioh () <
i=1" "1 k=1
4

Lemma 4.2 also follows irmediately,

since if u ¢ U'

program (1) in the
proof of thecorem 4.1 is inconsistent se (2) is unbounded.
Lema 4.2

1 B \y/- - !
n', u, ip X, (v) -
! o [ - k'’ -
If v #U" then sup- I — ' T lk(y) > =t e
v€D't =1 Vi k=l -
A third lewmz, useiul in later work, reguires proof.
Lerma £.3: A vector v £ U iff x € X where
Ay n' o' b’ \ |
XN =<« x <R LN, =20 2. ~v.log v, - ) (v)log a, (v) ! for all v€D'
\ . 11 v vspryn L 1 k™’ k
i=1 k=1 ig{ k;
and x, T log u, i=1,2 n'
i o i ) ’ 3

;
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Proof: Using (4.2) u £ U implies
n', u, Vi p' A 6
(1) LT 3 Xk(y) =1 for ally ¢ D'
i=1° Vi k=1

Taking logarithm of both sides of (1) yields

n n p'
(2) Eiyi log u, - flvi log ~, + . 2 () log a (\) =0 for all y&D'
i=] i=1 k=1~
. N , N
Since -~ _k_, k=1,2,..,p'J =-1,2,...,n"'+ , (2) can be written as
. v .
n' o' \
(3) Dy, logu = T T vology, - A\ (y) log x (v) } for all v&D'
i=1 % Lok=1t sl b ' k
A
Define X £ log ug i=1,2,...,n'" , then
n' Pl \
—~ f . :
(4) E:Vixi = 2 Z:-V= log vy oo Xk(v) log kk(y) . for all y¢D!
i=1 k=1 igTk] *

e~

finally; let X {ox \ () is satisfied } , then u € U iff x € X. The
lerma is proved.

For programs (1) and (2), as defined in the proof of Thecrem 4.1,
to be canornical, the existence of < € D' such that Qi > 0 is required.
This is not restrictive since otherwise programs (1) and (2) are partially
degenerate programs. Two canonical programs can be derived from ther by
deleting scme of their terms. These two programs, termed, the 'reduced

(3]

forms" of pregrams (1) and (2) are defined and explained in references

2,9.. CQCuvserve that a restatement of lemma 4.3 in the follewing form

shows its parallel with the ¥Yarkas lerma for linear equalities .2).

Lermma 4.4: There exists 2 vector t > 0 satisfying

where T a,.

T
==
—~
[md
~—r
=
[
o
o
(-]
()
e
1
—
p¥]
el
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if and only if

n‘ p'
, ’ - £ + bY . _5_
i:l\ixi . log vy églAk(y) log kk(y) 0

for every (yi, i=1,2,...,n'") satisfying

v.=20 1i=1,2,...,n'

and

- = )
log uy 1 1,2,...,n

The set X as defined in lemma 4.3 can be written as

L
~
£

(4.3) X={x | <x,y>s f (v]|X) for ally € D' }

where g\

)

1
;
i

>

A
2 v, log Vi A () log ay (V)

k=1 Y el *
%
Theorem Al in appendix A (after Part II) shows that f (le) is a non-

negative, positivelv hemozenecus, convex function of v for v € {VZO}.

Additionally at any point % > 0, f is a differentialble function and
vE (v]X) < 0.

Since f*(g[X) is a positively homogeneous convex function, X is a
convex set and f*(vix) is its support function at v £D'., (See corollary
13.2.1 f11). Additionally, X is not a polyhedral set since f*(y{X) is
not a polyhedral functicn (see corollary 19.2.1 [11,). Moreover, X is a
convex set zenerated by an infinite number of supports, one for each

in D'. Observe that D' is a polvhedral cone.

Lemma 4.3 indicates the equivalence of the set X and the set U as

definad by (4.2), and Lemma 4.1 established the equivalence between the

set U and the set U' for which a dual representation was desired. U is



the desired dual representation of the set U'. Recall that at the
beginning of this section, there was for each £ =1,2,...,N a set

Ué similar in nature to U', but with the vector t replaced by tl, the set
{1,2,...,n'} replaced by { i € Tkl, k= 1,2,...,p"' } and the set

The correspending dual representations U

©1,2,...,p'! replaced by P ,

IE
and Xi for U! are given by lemmas 4.1 and 4.3 respectively once the correct
A

changes in variables and index sets are taken into consideration, that is,

r " O(:ij) /u' Vi )\ (Y)
U, =y d>o0, Fer 4 I K—i\ 1A 6) K77 21 for each
c e F 1 ‘.‘/ =
1\;P£J k“Pi
. R
€ D >
E vos L
A I O(LPz]) - . 3
where D, = 20, \ €R |~ a, v, =0 j= m(2),...,n(2);
s iefp ] 11
. )
Ciidern ) g 2 ) 10g 2 ()
and X, =+ x€ L vy.X, = v. log v, - X, (v) log X (y >
¢ SR S 1k K

N
for all YE € D, |

. - . ceo e £ 3
tinally by writing the definition of u in terms ¢f z and the equivalence

of Z! and Ué, the original set Z! can be dually represented, as follows:
A s
£ ; £
u £ Ul iff u & UL that is, u £ U)2 iff (4.4) holds where
U, v, ()
, - TTiINTD k !
{(&.4) el 2 00D = 1 for each yb€ D,
i€ P,0 i kzP,
X X
: n(0) a.. p
Since uz = ¢ 5t z, J izeg [PLi’ then v“ ¢ U. iff z satisfies (4.5)
.. J A
i=1
where = a,. ..
/cjxvi 2 () n(0) 12l ] L P
(4.5) I _\f”» I K?(v) ) Iz, * = 1, for each vy €D,
iE'\.PC\_ l LEPZ N J'_'l J .



\
, c.\ 1 n (y)
.6) Let c.¥) = = (;i\ 160 F T and gj(Y‘) & 2 v
comp 1N D er
i< PLJ i k_;z l“PE]

. , £ . e
for each j = 1,2,...,n(0). Using (4.6), u € Uz iff z satisfies
(4.7) where

- £
. n(0) I.(7) :
(4.7) cer) o 2, ] = 1 for each v'€ D,

Using (4.7) the dual representation of the set Zé for each £-=1,2,...,N

fed

is the set ZZ where

[YAY}

n(0) ()
AT £
ey z, 27 250,2er0 JeehHr 2.3 =21 for a11 Jlep }
£ 1 5=1 3 2

Observe that the following Lerma is immediate:

/]
Lomma 4.5: z €2, iff o £ U iff x°€ X,
2 i 2
where x? = log e i€ [Pp,]
1 1 X
pp MO ey
u c, Iz, ig LPEJ
1 J=1 ]

TUE MASTER FR0CRAM:

Using the dual representations of SAﬁ(z) and Zé given by (3.3) and

(£.8) respectively program MA can be written as follows:

)
N ., 0 21GY),
(5.1) NI gg(=) + T MaX o R(3") T z 3 )i
£=1 i, ° =1 J
. ~ \L_zﬂ
subject to
. &
. n(0) 7. ()
(5.2) c."y 2,9 =1 for all v'¢ D, 2 =1,2,...,0
. ] £
j=1
[« ] <l
(5.2) gk(z) =1 k € PO



Program MA can be further transformed thrcough the introduction of new

variables (y., £ = 1,2,...,N) yielding
A

Procram MTA:

N
(5.4) MIN g (z) + ‘? ¥,
£=1
subject to:
-1, L
g n(0) T1(57) ‘ :
(5.5) RK(3) ™ z.° =y for every £°¢ A and £=1,2,...,N
=1 3 L J2
J
- £
, n(0) 2.G7) 2
(5.6) cCG)n =z, =1 for every v ¢ Dﬁ and £=1,2,...,N
=1
(5.7) gk(z) =1
(5.8) .z> 0, y> 0.

Y

Program }7A is a posynomial programming problem in the variables

z = (zl,...,zn(o)) and v = (yl,...,yN) with one term posynomial cons-
traint (5.5) for every feasible solution to SBL(Z), i =1,2,...,N; and

one term posynomial constraint (5.6) for every vector in the polyhedral
cone D£ for each { = 1,2,...,8. There are a very large number of these

constraints.

Perhaps it is useful to review our procedure at this point. Program A
is the original problem and program 3 is its dual. A projection technique
is used whereby preogram A is rewritten as program A, Two things are
irportant about (MA): (i) the constraints z £ Z2' and (ii) the subrproblems
(SA;(Z), L o=1,2,...,K) it cernecrates. In the subprcblems, z is treated

as a parameter. If z € 2', a {inite optimzl solution to each of the



subproblems can be found. It becoumes important, then, to find a useful
characterization of Z'. The equivalence of treating the u; and z as
parameters, since the uy depends only on the elements of z and some
constants, 1is recognized. Sets (LU,;, £=1,2,...,N) are then defined

. e )
representing the sets of values of u that leave subproblem £ consistent,
for each 2= 1,2,...,N. Conditions for U} to be non-empty and for

A
u"€ UE were given in Theorem 4.1. These conditions were transformed
into posynomial type constraints in Lemma 4.1 and 4.2. The constraints
were further transformed by taking logs in lemma 4.3 with the introduc-
£

log v . The results are convex sets Xz for
jy iff e X £ h £ =1,2 Y
Lﬂ 1 x <X, or eac =1,2,...,N.

I

tion of variables x

4%}

£ =1,2,...,N. Then uz

Lertra 4 demonstrates the equivalence between consistency of SAﬁ(z) and

2 . ' . , .
x € X.. All these manimpulations result in constraints (5.2).
A

The posynomial dual problems SBL(z) of SAL(z), £ =1,2,...,N provide
a dual representation of SAﬁ(z) , £ = 1,2,...,17 given by (3.3). (5.2)
and (3.3) ultirmately result in (5.5) and (5.6) in prograwm Mia. Of
course, only the soluticon for each z € Z' that minimizes (5.1) is of

ultirate interest. When (5.1) is transfermed to (5.4) in program MTA,

a constraint (3.5) appears for each feasible sclution of subproblems

o develop a manageable algorithm for program !TA, a

I
o]
<
0.
o
=
o

relaxation procedure' ic employed which is begun by ignoring some or
all of the constraints (5.5) and (5.%5) and sclving the relaxed version

way are used in each of the

&2

of WTA. The solutions obtained in thi
subproblems to test whether a solution to the relaxed version of MIA

is optimal for A according to Theorem 2.1. This procedure has been
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suzzested by Geoffrion 4. and Lasdon [8., and was developed by Benders [1]
for mixed integer programs.

Assume (Z, y¥) is an optimal solution to a relaxed version of MTA
at a certain step of the algorithm. The following illustrates the test
for optimalitv. The first step is to solve SBL(E), £ =1,2,...,N; then
eithier the value of ;2(2) is finite positive or unbounded for £ = 1,2,...,N.

On the one hand, assume that ,,(z) is finite and positive for
A

.
AL

So=1,2,...,8. Let (¥, i =1,2,...,N) solve SB?(E), L =1,2,...,N. 1If

>

for each 2 = 1,2,...,N,

&

TR

) n(0) I!
(5.9) KGRy 1 z.d
j=1

1A
<)
s

" o~ - ~L
then (z, y) is optimal in MTA. Tet t = (£, £ = 1,...,N) solve the
corresponding primal subproblems SA.(z), £ = 1,2,...,N. Theorem 2.1
X

assures that (z, ;) solves program A.

ne

[ O]

=1L =71,2,...,8}, (5.9) is violated,

A “

o)

However, 1f for some subset
then the set of censtraints to be added to the relaxed form of MTA at the

next iteration is

n(0) 7' (%)
N J y

j 2

\

(5.10) K(Ei)

N
it
xa
m
w

[

MTA which includcs constrainte (5.10).

On the other hand, suppose ..(z) is unbounded, for some subset S
A

0

of ths gubs-aters that is, the correspending program SA,(z) is feasible
X
- c ~£ 0
for z = z. Tind the gencrator, -, for each cone D. such that -ﬂ(z) is
by

unbrunded. Add the folleowing constraints to the relaxed version of lTA,
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.m0 TG

. . - ,,J -
(5.11) C(7) S oEy =1 L € SD

A new value of (z,y) is then obtained that minimizes the modified version
of MTA.
Observe that in order to generate (5.11) the algorithm to solve the
dual subdbproblems $3.(z) should be able to develop the generator vector §£
A
thiat makes _;(z) unbounded, in case that for a given z, SAE(Z) is inconsis-
tent. Most dual type algorithms addressed to solve SA,(z) by means of
£
solving SB,(z) will produce ;ﬂ as a byproduct. The procedure is further
s

described in the fellowing algorithm:

THE ALGORITH:

Step 1: 1Initiate the procedure by solving MTA with only a few (or no) constra-
ints (5.5) and (5.€). Set y = y > 0, a lower bound for vector vy.
0 0
Let (z ,y ) solve the relaxed MTA. Set I = 0.

Ste

v

2: Solve subproblems SAﬁ(zI), SBJ(zI), £ =1,2,...,N.
X A

. I . ;
Step Z.1: 1f 7. (27) > 0 finite for every i = 1,2,...,N, let

I and tI’Q solve respectively SBE(zI) and SAl(zI) for each

L =1,2,...,N. Then

(i) If (5.9) is satisfied for (5I£, zI, yI”; L=1,2,...,0),

I I
,t7) solves

I I, . . . ;
then (z ,y") is opntimal in program MIA and (z
program A, hence, terminate.
(ii) If (5.9) is not satisiied for a subset S,, generate a set
A
. - . ~I’J . )
of constraints (5.10) with £77; 2 € S, ; update the relaxed
[}

version of MTA. Go to Stepn 3,

1
1f ;£(2 ) =t e

Fh

or £ € S

w
or
0
e
2
to

D’

(i) Let SIL and LIL solves SBﬁ(zI) and SAﬁ(zI) for £ € SD'
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If (5.9) is not satisfied for a subset S: L
. . L2
generate a set of constraints (5.10) with 27, £ € S"',

.

I
(ii) For each [ € SD’ find -~ * i.e., the generator of the cone

D

’ and generate a set of constraints (5.11). With constraints

generated at (i) and (ii), update the relaxed version of MTA.

- . R I+1  I+1 .
Stenp 3: Solve the neir relaxed version of MTA. Let (z sy ) be optimal
in the currcnt relazed version of MTA, Let I = I+1l. Go to Step 2.

Nete that preocram MIA is a minimization problem and at each
iteration constraints are added to the relaxed version of MTA.
Therefore, the value of the objective function increases or remains
the same at each subsequent step in the algorithm. Thus, a non-

decreasing sequence

1 N
g,(z7) + >y I=0,1,2,.00...
Q K

2=1
is generated. At each step when (5.9) is violated,

)

J
g z,I > I , 4
j=r

. n(0)
ket -

oy
M
%

>

hence an upper bound on the value of the Yy variable at iteration M

exists, i.e.,

The segquence generated by the algorithm is bounded above and
non-decreasing; hence the algorithm converges to an optimal solution

cf pr am MiIa. lHowever, an optimal solution of MTA may not be

©
a2
Il

btained in a finite nuiber of iterations since it takes an infinite

O
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nusber of supports (5.6) to completely characterize each set (ZE’ £=1,2,...,N).

The algorithm can lead to expenditures of a great deal of time in step 2.2

in an attempt to remain feasible while disregarding the minimization of (5.4).
This difficulty can be avoided when MTA is a linear program. This

is the special case described in part II, where inner-linearization of

the set Xﬂ is emploved to permit removal of step 2.2 completely. This

implies more work when solving the relaxed master programs since the

optimal z will be forced to lie inside of Zé. In part II a special case

of progream A, labeled program D, is considered. This program has the

attribute that MNTA is a linear program. An algorithm for this special

case is developed using inner linearization of the sets Xg' Relaxation

is applied to constraints (5.5) only.



