

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Cohen, Claude

Working Paper

Design of an Optimization System for University Use

Discussion Paper, No. 48

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management Science, Northwestern University

Suggested Citation: Cohen, Claude (1974): Design of an Optimization System for University Use, Discussion Paper, No. 48, Northwestern University, Kellogg School of Management, Center for Mathematical Studies in Economics and Management Science, Evanston, IL

This Version is available at: https://hdl.handle.net/10419/220408

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

DISCUSSION PAPER NO. 48

DESIGN OF AN OPTIMIZATION SYSTEM FOR UNIVERSITY USE

Claude Cohen*†
Michael D. Reagan*
Jack R. Stein*

Revised April 1974

*Vogelback Computing Center †Dept. of Managerial Economics and Decision Sciences, Graduate School of Management

This paper was prepared for presentation at the 8th International Mathematical Programming Symposium, August 27-31, 1973, Stanford University, California

"Design of an Optimization System for University Use"

C. Cohen, M. Reagan, J. Stein Northwestern University, Evanston, Illinois 60201

ABSTRACT

An optimization system for university use is quite different from MPSX or OPTIMA. This paper deals with the design and development of a Multi Purpose Optimization System (MPOS) now in use on Northwestern University's CDC 6400, which has evolved in the following stages:

- a) the "stand-alone" program library which includes over twenty linear, integer and non-linear programming algorithms,
- b) the "batch" MP system developed to permit the user to state LP/QP/IP problems in English and standard MP notation. The system, coded in FORTRAN, consists of a language pre-processor and individual overlays corresponding to the various solution algorithms,
- c) the "online" MP system designed to be used interactively at a teletype.

Our design objectives have been to stress ease of use, expandability and interactive optimization. The system's modular design allows for incorporation of new or improved algorithms. They, in turn, can be tested with an archive of test problems. Usage statistics are collected to better plan for future software development or improvement.

The advantages of interactive optimization are indicated: maximize the utility in real time between the user and the computational process, facilitate the learning of basic principles (e.g., pivoting, cuts), provide options to interrupt computation and permit the user to interpose decisions based on his experience and intuition and to spend more time on the modelling aspects of optimization.

1. <u>Introduction</u>

The essential role of a university computer center is to provide the university community the maximum opportunity for making use of the computer as a problem-solving or information-processing tool. A person with an optimization problem is especially eager to have dependable computer codes requiring a minimum of concern for system details outside the scope of his primary interest.

Most mathematical programming (MP) systems, such as IBM's MPSX, CDC's OPTIMA/OPHELIE/APEX, or UNIVAC's UMPIRE, are directed at the solution of very large problems stemming from corporate or industry models. An optimization system for university use is quite different from MPSX or OPTIMA. First, the software supplied by computer manufacturers is proprietary and very expensive. Second, the majority of university users have small or medium scale problems. Third, the typical user is not inclined to solve optimization problems on the computer if he has to spend a great deal of time learning about the architecture of MP systems. More often than not, their documentation is not designed for a novice user.

Our design objectives have been to stress ease of use, expandability, and interactive optimization. Our library of MP algorithms has evolved from a batch version to an online version in a little more than two years. Our system was developed to permit the user to state his problem in English and standard MP notation, to access any available linear programming (LP), integer programming (IP), or quadratic programming (QP) codes, and to edit/store/retrieve his problem files.

2. Motivation

Our motivation arose from practical needs:

- We wanted to provide a simple to use and economical LP/IP/QP system to some 500 management, engineering and economics students

enrolled in introductory optimization courses. The fact that about 150 management students are enrolled in the evening program, prompted the development of an online version which would enable them to solve optimization problems "at their office desks" if they have a terminal available.

- The choice between CDC's OPTIMA and standard "canned" programs was not very appealing. On one hand, CDC's OPTIMA is expensive to use in the classroom because of its high set-up cost. On the other hand, the standard canned programs differ in the way they accept input data and therefore force the student to follow different instructions for each algorithm. Hence, the need for a language pre-processor to create the various tableaus required by the different algorithms and act as a common input language.
- Finally, we realized that there are many pedagogical advantages in man-machine interaction. The learning process of the computational aspects of optimization is accelerated. Also, an interactive optimization system is economical in real-time. The student needs a few runs to get an answer to his problem and can, therefore, spend more time on the modelling aspects of optimization.

3. An overview of optimization software at Northwestern University

The field of mathematical software is an emerging scientific discipline and interactive applied mathematical systems have been developed in parallel with new on-line operating systems, see e.g. [25], [33]. The most notable efforts in MP systems design and implementation of the batch processing type have been those of Beale [4], Dantzig[9], [5], and Orchard-Hays [40]. For a recent survey report on the computational aspects of MP see White [41]. In this section, we briefly describe our optimization software.

3.1 The "stand-alone" library

This library of "canned" programs comprises many algorithms of constrained and unconstrained optimization and is best described in Tables 1 and 2. These programs have been collected from several sources: some were developed locally, some were contributed by interested users, some were obtained from research laboratories or other university computer centers. We check them out and document them individually. The standalone library is tested using an archive of standard test problems (Colville [7], Haldi [20], Himmelblau [22], Trauth and Woolsey [37]) or problems contributed by our own users.

3.2 The MPOS system (Multi Purpose Optimization System)

This system was developed to permit the user to state his problem in English and standard MP notation. The user has access to the LP/IP/QP algorithms. For example, he may input the following:

WOLFE
MAXIMIZE

X1 + X2 -0.5X1*X1 + X1*X2 - X2*X2 objective function definition

CONSTRAINTS

X1 + X2 .LE. 2 constraints definition

2X1 + 3X2 .GE. 6

PRINT 1 print each iteration

OPTIMIZE

STOP stop computation

The system consists of a language pre-processor and individual overlays corresponding to the various solution algorithms. With the exception of a few assembly language subroutines, the MP system is coded in FORTRAN. The system's modular design allows for incorporation of new or improved algorithms.

OPTIMIZATION ALGORITHMS

Constrained optimization

Linear	Linear:						
	TRANSPO	Transportation algorithm (primal-dual)	[8]				
	OKA/OKA	Out-of-kilter algorithm	[8]				
	OPTIMA	CDC's LP system	[30]				
	SEXOP	Subroutines for Experimental Optimization (decomposition and GUB constraints)	[29]				
	REGULAR REVISED MINIT DUAL	2-phase simplex algorithm Revised simplex algorithm Primal-dual algorithm Dual simplex algorithm	[8] [8] [34] [8]				
	ZX2LP	Revised simplex algorithm	[24]				
Quadratic:							
	WOLFE LEMKE/LEMKE BEALE/Beale		[26] [26] [26]				
Integer:							
	BBMIP	Branch and bound mixed integer prog.	[36]				
	PRIMAL GOMORY	Glover/Young/Harris primal cutting plane Gomory's dual cutting plane algorithm	[15,21,39] [16]				
	BALAS DSZ1IP	Balas/Glover additive algorithm Lemke and Spielberg direct search alg.	[2,14] [27]				
	QAP	Graves and Whinston quadratic assignment	[17]				
Non-linear:							
	SUMT	Fiacco and McCormick SUMT algorithm	[10]				
	GRG	Abadie and Carpentier generalized reduced gradient algorithm	d [1]				
	RICGRAD	Greenstadt's ricochet gradient algorithm	[19]				
	SEEK	Hooke and Jeeves direct search alg.	[23]				
APPROX Griffith mation al	Griffith and Stewart linear approxi- mation algorithm	[18]					
	RANDOM	Random search subroutine	[38]				
Unconstrained optimization							
	FPMIN	Fletcher and Powell descent method	[11]				
	GRADMIN	Fletcher and Reeves conjugate gradient	[12]				
	GOLDSEC	Golden section search	[38]				
	ZXPOWL	Powell's method without derivatives	[31]				
	PRAXIS	Brent's method without derivatives	[6]				
		TABLE 2					

3.3 The interactive MPOS system

This system is an extension of the batch system and is designed to be used interactively at a terminal. It has editing and file manipulation capabilities, such as, generating files to be processed in batch mode when output is voluminous. The interactive system can be used in two computation modes. The "direct" mode simulates the batch version. The "assisted" mode interacts with the user (see § 5).

Detailed statistics on the use of these programs permit us to better plan for future software development or improvement.

4. MPOS from the designer's view-point

Northwestern University's Vogelback Computing Center has the following hardware/software configuration:

- CDC 6400, 65K (60 bit) words central memory, 250K Extended

Core Storage, SCOPE 3.3 Operating System and NU's own

ONLINE time-sharing system.

The need for modularity resulted in adopting an overlay program structure for MPOS:

- The main (0,0) overlay selects the algorithm and determines if computation mode is batch or online.
- The (1,0) primary overlay is the language pre-processor. It decodes statements such as

$$5.3X1 - 2X1*X1 + X2*X1$$
 or

BOUNDS

X1 .LE. 10

X2 .LE. 5

and performs syntax checking. Its main function is to produce a data file of a_{ij} , b_i , c_j , etc. for input to the different algorithms or to CDC's OPTIMA.

- The other primary overlays are the algorithm overlays.

Each algorithm overlay computes the exact amount of central memory required by the problem size. This dynamic storage allocation permits the loading of the system in less than 13000 decimal words. It also allows for stacking problems until the STOP command is encountered.

In all, MPOS includes some 60 subroutines. All but two are in FORTRAN. A full description of the system can be found in the system documentation manual.

5. MPOS from the user's view-point

We have tried to keep the number of control cards to a minimum, and make the input look like standard MP notation. All the user has to do is become familiar with a number of keyword commands (see Table 3).

```
***** PROBLEM NUMBER*22 *****
```

Example 2

```
MAXIMIZE
X1+X10
CONSTRAINTS
X1+Y2-3 = 5
-- FATAL ERROR NUMBER 4
MISPLACED SIGN OF NUMERIC CONSTANT

X1+3.5X2.LE, X5+1
-- FATAL ERROR NUMBER 3
VARIABLE ON RIGHT HAND SIDE CF RELATIONAL
*DECK TEST21
```

-- PROBLEM ABORTED DUE TO FATAL ERRORS.

Example 3

```
EDITOR PEADY
7 TEXT. --
7 MAXIMIZE
                                              ---- Enter text of QP problem
7 X1 + X2 -0.5X1X1 - X1X2 +X1X2
? CONSTRAINTS
? X1+X2 <3
? 2X1+3X2 > 6
7 OPTIMIZE
7 1E
                                                  --- Terminate text
LAST LINE 60
? LIST. -
                                                 ---Produce listing of text
10 MAXIMIZE
20 X1 + X2 -0.5X1X1 - X1X2 +X1X2
30 CONSTRAINTS
40 X1+X2 <3
50 2X1+3X2 > 6
60 0PTIMIZE
? PEPLACE/+X1/-X2/20
20 X1 + X2 -0.5X1X1 - X1X2 -X2X2
                                                - Correct '+X<sub>1</sub>' to '-X<sub>2</sub>' in line 20
7 AL, GOCP
                                                  - Execute problem
    --- QP ---
```

VERSION 1.5 VOLFE'S GUADRATIC SIMPLEX

PRØBLEM NØ. I

INITIAL TABLEAU

PASIC	CP	VALTES		
9	-1.	3.0.000		
10	-1.	6.0000		
11	- 1 -	1.0000		
12	- i -	1.0000		
Z(J)-(*(U)	-11-000		
	FINAL	SØLUTIØN AT	ITERATI ØN	4
BASIC	СВ	VALUES		
VAP.	•			
3	0.	.40000		
8	٥٠	.80000	•	Summary results
t	0.	1.8000		
5	0.	·8000 0		
7.(J)-((J)=	0.		

-1-100000 = VALUE OF ARJECTIVE FUNCTION

.0230 CP SECONDS FOR 4 ITERATIONS

```
SUCCESSEUL EMECUTION
7 NEW*CREIDS Save problem text on file QPPROB
2 LTDP
```

TITLE Any alphanumeric title

REVISED...WOLFE...BBMIP Name of the optimization algorithm

INTEGER List of integer variables VARIABLES List of variable names

MAXIMIZE Objective function definition

MINIMIZE

CONSTRAINTS Constraints definition

CONSTRAINTS n

BOUNDS Variable upper bounds

BNDALL value

BNDOBJ value Objective function upper-bound

EPSILON value Perturbation factor

TOLERANCE value Accuracy check

LIMIT n Maximum number of iterations

PRINT Print initial and final tableaus

PRINT i Print every i-th tableau

RNGOBJ Range on objective function coefficients

RNGRHS Range on right-hand side coefficients

SAVEFILE file-name Store data file
GETFILE file-name Retrieve data file

READ file-name Read alternate input file

PACKED Packed input
TABLEAU Tableau input
MATRIX Matrix input

FORMAT Variable format

MODIFY Data file modifications

BASIS file-name Input basis SAVEBASIS file-name Save basis

OPTIMIZE Initiate problem solution

END

STOP Stop run

* (any comment card)

When solving problems interactively, the user has the option between the DIRECT and ASSISTED solution modes. In the former case, he is in fact simulating the batch version. In the latter case, he interacts with the system via questions and answers. Only summary output is printed locally. A number of examples follow the online flowchart for the ASSISTED mode.


```
***** PROBLEH NUMBER 9 *****
```

Example 1

```
MAXIMIZE
       MAXIMIZE PROFIT FROM MANUFACTURE OF
          TABLES, CHAIRS, DESKS, AND BOOKCASES
       VARIABLE DEFINITIONS.
          X1 = TABLES
          X2 = CHAIRS
          X3 = DESKS
          X4 = BOOKCASES
      12X1 + 5X2 + 15 X3 + 10X4
    CONSTRAINTS
    . CONSTRAINTS DUE TO SALES SCHEDULE
    --
    X3 .GE. 15
    X4 .GE. 10
    . CONSTRAINTS DUE TO AVAILABLE RESOURCES
  . BOARD FEET OF TYPE I LUMPER
    5x1+x2+9x3+12X4 .LE. 1500
    . BOARD FEET OF TYPE II LUMBER
    3x1+2x2+5x3+10x4 .LE. 1000
    . MAN HOURS TO UTILIZE
    2x1+3x2+4x3+5x4 = 800
    OPTIMIZE
* PROBLEM NUMBER 9 *
ITERATION
                  IN VAR-
                                 OUT VAR-
                                                -WMIN=
                                                              -765.000
                                            8
             1
                          3
6
                                 CUT VAR- 7
CUT VAR- 10
                  IN VAR-
ITERATION
                                                -WEINE
                                                              -690.000
                  IN VAR-
                                                -WMIN=
ITERATION
                                                              -277.500
          4 IN VAR-
                           2 - CUT VAR-
ITERATION
ENTERING PHASE II
             5 IN VAR-
                                 CUT VAR-
                                            3
                                                -ZMIN=
                                                               3373.00
ITERATION
 * PROBLEM NUMBER 9 *
          SUMHARY OF RESULTS ....
  VARIABLE VARIABLE
                        BASIC
                                    ACTIVITY
                                                 OPPORTUNITY
     NO.
             NAME
                      NON-BASIC
                                     LEVEL
                                                   COST
                                219.0000000
            X1 . .
      1 ..
                        В
                                  84.0000000
                         8
            X 2
                                  15.0000000
                                                    --
            X3 --
      3 . . .
                         В
                                  10.0000000
                         В
                                                   3.8000000
            -- SLACK
                         N8
                                                  33.0000000
            -- SLACK
                         NB
            --ARTIF
                         NB
                                       --
                                                  -3.8000000
            --ARTIF
                                                 -33.0000000
                         NB
      8
                                  66.0000000
            --SLACK
                         В
      q
                                                   5.2000000
                         N8
            -- SLACK
     10
                                                  -1.8000000
            -- ARTIF
                         NB
```

FAXIBUM VALUE OF THE OBJECTIVE FUNCTION =

3373.000000

CALCULATION TIME WAS .0300 SECONDS FOR 5 ITERATIONS.

```
Example
                Now solve the same problem
                                                          Insert BBMIP command
Insert INTEGER list
Insert list of INTEGER var.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -1.00000000
5.00000000
-2.00000000
                                                                                                          Branch and Bound Mixed
Integer Programming
                                                                                                                                                                                                                                                                                                                                                                    .052
                                                                                                                                                                                                                                                                                                                                                                                                              OPPORTUNITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Terminate run
                                                                                                                                                                                                                    11.000
22.000
33.000
                                                                                                                                                                                                                                                      47.000
                                                                                                                                                                                                                                              44.000
                                                                                                                                                                                                                                                                                                                                                                                                                      COST
                                                                                                                                                                                                                                                                                                                                                                                                                                       :
                                                                                                                                                                                                                                                                                                                                                                                                                                              :
                                                                                                                                                                                                                                                                                                                                                                   7. TIME=
                                                                                               Srecute problem
                                                                                                                                                                                                             8, -2#
2, -2#
6, -2#
3, -2#
3, -2#
3, -2#
                         as an I.P.
                                                                                                                                                                                                                                                                                                                                                                                                                   LEVEL
3.0000000
4.0000000
4.0000000
-0.0000000
11.0000000
8.0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              7.0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .095 SECS.
                                                                                                                                                                         KOWS INCLUDING 0BJ. FN. 7
COLS. INCLUDING RIGHT-HAND-SIDE
INT. VARIABLES 7
                                                                                                                                                                                                            -100
00-100
00-100
00-100
00-100
                                                                                                                                                                                                                                                                                                                                                                 AT ITERATION
                                                                                                                                                                                                                                                                                                                                                                                                            ACT I VI TY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AT ITERATION
                                                                                                                                                                                                           222222
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUOUS SOLUTION IS INTEGER SOLUTION.
                                                                                                                                                                                                                                                                                                                                                                                          SUMMARY OF RESULTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ---- END OF PROBLEM. TOTAL TIME WAS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         OPTIMALITY ESTABLISHED AT ITERATION
                                                                                                                                                                                                                                             ROW-
                                                                                                                                                                                                                                    ROW-
                                                                                                                                                                                                                                                                                                                                                                                                          INTEG/
CONTIN
                                                                                                                                                                                                                                                                                                                                                                55.00000
                                                                                                                                                                                                           901
901
901
901
901
                                                                                                                                       ***** PRØBLEM NUMBER 2 ****
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PROBLEM COMPLETE, TYPE
STOP TO TERMINATE RUN,
OR EDIT TO MODIFY PROBLEM.
STOP
          0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       60.50000
                                                                                                                                                                                                                                                                                                                                        --- CENTINUBUS SOLUTION ---
                                                                                                                USING BEMIP
                                                                                                                                                                                                            7 5. BBMIP
7 6. INTEGER LIST
7 7.0A 0B BA BC AC AK CK
         - PROBLEM NUMBER
                                                                                                                                                                                                                                                                                                                                                                                                          BASIC/
NON-B
                                                                                                                                                                                                                                                                                                                                                                                                                                    @BJECTIVE FUNCTION=
                                                                                                                                                                                                          ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
                                                                                                                                                                          95
                                                                                                                                                                                          96
                       ENTERING EDITOR
EDITOR READY
CLEARED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TOLERANCE SET AT
                                                                                                                                                                                                                                                                                               PROBLEM NUMBER
                                               24 LINES READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                            --ARTIF
                                                                                                                                                                                                                                                                                                                                                                                                          VARIABLE
                                                                                                                                                                                                                                                                                                                                                                                                                            8 C B S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    8
                                                                                                                                                                                                                                                                                                                                                                                                                                                    6 5 6 6 G G
                                                                                               DROP
                                     Enter TEXT of problem in approx
                                              epon
                                                                                       - Objective function definition
                                                                                                                                                                                                                                                                                               Regular simpler is used by default
                                                                                                                                                                                                                                                                       Begin erecution of problem
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Problem is to be EDITed
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           55.000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    7 ITERATIONS.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2.0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     5.0000000
2.0000000
-7.0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                              3.0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0000000.1
                                                                                                                                                                                                                                                                                                                                                                                                             5.0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                              7.0000000
                                                                                                                                                                                                                                                                                                                                                           OPPORTUNITY
COST
                                                                                                                                                                                                                                                      Terminate TEXT
                                                               Variable names
                                                                                                                                          Constraints
                                                                        . K. OTHER NODES=A,B,C
                                                                                                                                                                                                                                                                                 A L.P. PROBLEM
                                                                                                                                                                                                             Bounds
                                               A L.P. PRØBLEM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     . 0220 SECONDS. FOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           6.00000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            MINIMUM VALUE OF THE OBJECTIVE FUNTION .
                                                                                                                                                                                                                                                                                                                                                                                     8.00000000
4.00000000
                                                                                                                                                                                                                                                                                                                                                                                                                               4.00000000
                                                                                                                                                                                                                                                                                                                                                            ACTIVITY
LEVEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.00000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  7.0000000
                                                                                                                                                                                                                                                                                                                                                                             3.0000000
                                                                                                                                                                                                                                                                                                                                                                                                                       7.0000000
                                                                                                                                                                                                                                                                                 AS
                                                                                         40A + 0B + 2BA + 3BC + 6AC + AK +8CK
                                                                                                                                                                                                                                                                                                                                           SUMMARY OF RESULTS
                                              * MIN-COST NETWORK FLOW STATED AS VAHIABLE LIST OA 09 BA BC AC AK CK KO. * SUNCE NODE * S. SINK NODE = K.
                                                                                                                                                                                                                                                                                 MIN-COST NETWORK FLOW STATED
                                                                                                                                                                                                                                                                                                                                                              BASIC
NON-BASIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PROBLEM COMPLETE, 1YPE
STOP TO TERMINATE RUN,
OR EDIT TO MODIFT PROBLEM,
                                                                                                                                                                                                                                                                                                                          ***** PRØBLEM NUMBER 1 ****
                                                                                                                                                                                                                                                                                                  USING REGULAR
                                                                                                CALCULATION TIME WAS
- PROBLEM NUMBER
                                                                                                                                                                                                                                                                                                                                                                VAKIABLE
NAME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     --SLACK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     --SLACK
                                                                                                                                                                                                                                                                                                                                                                                                                                                  --ARTIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           --ARIIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   --AKTIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             --AHTIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     --AHTIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             --ARTIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -- SLACK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             --SLACK
              ENTERING EDITOR
                                                                                                                                                                                                                                                                                                                                                                                          LAST LINE 240
                       FDITOR READY
                                                                                                                                                                                                                                                                                                                                                                VAKIABLE
                                                                                  MINIMIZE
                                                                                                                                                                                                                                                BPTIMIZE
                                                                                                                                                                             BEUNDS
                                         7 TEXT.
                                                                                                                                                                                                                                                                                                                                                                                                                                             DROP
                               EAKED
                                                                                                                                                                                                               BC< 10
                                                                                                                                                                                       04 × 10
                                                                                                                                                                                               0848
                                                                                                                                                                                                                       AC.2
```

Begin new problem

6. Evaluation of the system and conclusions

In the previous sections we described a software system designed to solve linear, integer and quadratic optimization problems using well established algorithms. Because of its simple structure and repertoire of algorithms, MPOS has become one of the most widely used applications programs at Northwestern University. As a result, students feel less "intimidated" by non-linear optimization models and they find it practical to experiment with extensions of LP models. Our emphasis on modularity facilitates expandability. The system is flexible enough to incorporate new algorithms. A student or researcher can "plug" into our system a new algorithm module without much concern for input/output and evaluate it with our archive of test problems.

Our system has proven to be economical from the view-points of usage and maintenance. The user needs few runs to get a solution to his problem. If, for example, an integer programming algorithm fails, the user can switch to another one by changing one card or editing a line. Because the interactive system needs a very small amount of central memory (5000 words) to load, response times are very good. Maintenance of the system is greatly simplified by the overlay structure which lends itself to "decentralized programming" activities. Good internal documentation and machine independence (of the batch version) facilitate transportability.

It is quite evident that our problem sizes are limited by the capacities of central memory and Extended Core Storage. Our system is not designed to compete with the new large-scale MP systems, such as those under development at Stanford's System Optimization Laboratory or MIT's NBER/Computer Research Center in Economics and Management Science. Users with large problems turn to APEX I and II, a commercial LP/MIP system we just obtained from CDC.

The reliability of the algorithms depends on the efficiency of the numerical methods used to implement them. For example, to speed computation time we perform row elimination procedures in assembly language. We are also studying the adoption of new matrix decomposition techniques (Bartels and Golub [3], Saunders [35]) to improve numerical accuracy.

Too often, system designers have concentrated on effective utilization of hardware and software resources with little attention paid to man/machine dialogue. Stated simply, these systems have been designed from the inside, out. To be user-effective, systems must be designed from the outside, in, because computer users come from a spectrum of individuals with different levels of knowledge and different kinds of problems. The value of this MP system will be judged by the users of MPOS and by the amount by which MPOS reduces the total time it takes a person to solve an optimization problem.

This system represents the first step toward our goal of a general interactive optimization system designed to "graft" the computer to students or researchers involved in optimization modelling. Existing algorithms are highly formalized and do not allow much human intervention and interaction. We believe that an interactive optimization system fulfills a great need in both research and teaching. Faced with a LP problem with multiple objective functions, the decision maker learns to recognize good solutions and the relative importance of (competing) objectives through sentivity analysis performed online. In fact, phases of computation alternate with phases of decision.

Although the present system excludes NLP algorithms, there are instances where the user may change solution strategy through the use of different algorithms. For example, starting with a cutting-plane method and terminating with a branch and bound. There are a number of practical and theoretical problems in non-linear optimization where mixed-strategy can lead to new insights: convergence properties of algorithms, interaction of algorithms and criteria for switching from one to

the other, solution of non-convex or ill-structured problems, best matching of an algorithm to a given class of problems. As more experience is gained with our existing system, we will have a better perspective for designing the interactive non-linear optimization system.

In closing, we can state that this operational system has pedagogical advantages, facilitates man-machine problem-solving in that it brings the union of optimization and computing. It is responsive to the user needs and background and can be used as an inexpensive tool for training users in the power and pit-falls of various optimization techniques.

Acknowledgements

We wish to thank Joseph Yozallinas for his programming efforts in the initial stages, and Robert Grierson and Irma Waye for their recent programming assistance.

References

- 1. Abadie, J. and J. Carpentier, "Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints," in [13].
- 2. Balas, E., "An additive algorithm for solving linear programs with 0-1 variables," Operations Research, 13, (1965), pp. 517-576.
- 3. Bartels, R.H., and G.H. Golub, "The simplex method of linear programming using LU decomposition," Comm. of the ACM, 12, May 1969.
- 4. Beale, E.M.L. and J.A. Tomlin, "Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables,"

 <u>Proc. 5th Intl. Conference on Operations Research</u>, Venice (1969).
- 5. Bonzon, P.E., "MPL: an appraisal based on practical experiments," Computer Science Report No. 72-267, Stanford University, California (1972).
- 6. Brent, R.P., "Algorithms for finding zeros and extrema of functions without calculating derivatives," Computer Science Report CS71-198, Stanford University, California (1971).
- 7. Colville, A.R., "A comparative study of nonlinear programming codes," IBM N.Y. Scientific Center Report 320-2949, June 1968.
- 8. Dantzig, G., Linear Programming and Extensions, Princeton University Press (1963)
- 9. Dantzig, G., et al., "MPL A mathematical programming language," Computer Science Report No. 119, Stanford University, California (1968).
- 10. Fiacco, A.V. and G. McCormick, <u>Nonlinear Programming Sequential Unconstrained</u>
 <u>Minimization Techniques</u>, J. Wiley (1968).
- 11. Fletcher, R. and M.J.D. Powell, "A rapidly convergent descent method for minimization," Computer Journal, 6, pp. 163-168,(1963).
- 12. Fletcher, R. and C.M. Reeves, "Function minimization by conjugate gradients," Computer Journal, 7, pp. 149-154, (1964).
- 13. Fletcher, R., Ed., Optimization, Academic Press, (1969).
- 14. Glover, F. and S. Zionts, "A note on the additive algorithm of Balas," Operations Research, 13, (1965), pp. 546-549.
- 15. Glover, F., "A new foundation for a simplified primal integer programming algorithm," Operations Research, 14, (1966), pp. 1045-1074.
- 16. Gomory, R.E., "All-integer integer programming algorithm," IBM Research Center Report RC-189, Jan. 1960; also in Muth and Thompson (eds.), <u>Industrial</u> <u>Scheduling</u>, Prentice-Hall (1963), pp. 193-206.
- 17. Graves, G. and A. Whinston, "An algorithm for the quadratic assignment problem," Management Science, 17, pp. 453-471, (1970).

- 18. Griffith, R.E. and R.A. Stewart, "A nonlinear programming technique for the optimization of continuous processing systems," Management Science, 7, pp. 379-392, (1961).
- 19. Greenstadt, J.C., "A ricocheting gradient method for non-linear optimization," <u>Journal of SIAM, Appl. Math</u>, <u>14</u>, pp. 429-445, (1966), also IBM Program Library No. 360D-15.3.001.
- 20. Haldi, J. "25 integer programming test problems," Working Paper No. 43, Graduate School of Business, Stanford University, California (1964).
- 21. Harris, P.M.V., "An algorithm for solving mixed integer linear programs,"

 Operations Research Quarterly, 15, (1964), pp. 117-132.
- 22. Himmelblau, D.M., Applied Nonlinear Programming, McGraw Hill (1972).
- 23. Hooke, R., and T.A. Jeeves, "Direct search solution of numerical and statistical problems," Journal of the ACM, 8, (1961).
- 24. IMSL, <u>International Mathematical and Statistical Libraries</u>, CDC 6000 Library 3, Houston, Texas.
- 25. Klerer, M. and J. Reinfelds, Eds., <u>Interactive Systems for Experimental Applied Mathematics</u>, Academic Press (1968).
- 26. Kunzi, H.P. and W. Krelle, Nonlinear Programming, Blaisdell, (1966).
- 27. Lemke, C. and K. Spielberg, "Direct search 0-1 and mixed integer programming,"

 Operations Research, 15, (1967), also Program Library No. 360 D-15.2.001, (1968).
- 28. Lemke, C.E. and J.T. Howson, Jr., "Equilibrium points of bimatrix games," Journal of SIAM, 12, pp. 413-423, (1964).
- 29. Marsten, R.M., Users Instructions for SEXOP, Subroutines for Experimental Optimization, Dept. of Industrial Engineering and Management Science, Northwestern University, (1972).
- 30. OPTIMA, CDC Reference Manual, Publication No. 60207000, 1968.
- 31. Powell, M.J.D., "An efficient method for finding the minimum of a function of several variables without calculating derivatives," <u>Computer Journal</u>, 7, pp. 155-162, (1964).
- 32. Ravindran, A., Algorithm 431: "A computer routine for quadratic and linear programming problems," <u>CACM</u>, <u>15</u>, pp. 818-820, (1972).
- 33. Rice, J., Ed., Mathematical Software, Academic Press, (1971).
- 34. Salazar, R.C. and S.K. Sen, "MINIT: minimum-iteration algorithm for linear programming," CACM Algorithm 333 (1968).
- 35. Saunders, M.A., "Large scale linear programming using the Cholesky factorization," Computer Science Report No. 72-252, Stanford University, California (1972).