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Abstract
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∗Institut für Statistik und Ökonometrie, Christian Albrechts–Universität zu Kiel, Olshausenstr. 40, D–24098 Kiel,
Germany vgolosnoy@stat-econ.uni-kiel.de
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1 Introduction

Forecasting conditional covariances in high dimensional systems of speculative returns is required
in numerous economic and financial applications as, for instance, portfolio optimization, dynamic
hedging or Value-at-Risk evaluation. Adopting a parametric framework for covariance modeling, a
multivariate GARCH model say, easily gets intractable for practical purposes since the parameter
space of such models is quite large even for small systems of vector returns. The latter caveat applies
explicitly for model versions like the BEKK of Engle and Kroner (1995), half-vec, or diagonal model
of Bollerslev et al. (1988). The class of correlation models, see Bollerslev (1990), Engle (2002), Tse
and Tsui (2002), proceeds from the separation of dynamic variance and correlation features with
the former modeled via univariate GARCH specifications. Having only a few parameters governing
news response and persistence of correlations, the dynamic conditional correlation model (DCC)
offers a parsimonious strategy to model and predict conditional covariances. For a recent overview
of multivariate volatility and correlation models the reader may consult Bauwens et al. (2006).

Though providing a feasible approach to conditional risk evaluation in high dimensional systems
the DCC model involves various sources of potential misspecification. In the first place the low di-
mensional parameter space implies strong homogeneity restrictions placed on persistence features of
all correlations characterizing a system of returns. Moreover, as any parametric model the postulated
dynamic relationship may hold only over a local time history. When applied to longer series of vector
returns, parametric specifications are likely to suffer from structural variation of the underlying true
data generating process. Thirdly, parametric volatility and correlation models are typically set out
to exploit sample information at some medium observation frequency, the daily say. Alternatively,
covariance matrices may be estimated directly from cross products of vector returns observed at
(ultra) high frequencies. Adopting the concept of realized volatility e.g. Andersen et al. (2001a,b)
illustrate that daily volatility can be estimated accurately by summing squared returns measured at
sufficiently high frequencies. Owing to the expansion of the information base employed for model-
ing dynamic correlations it is intuitive to expect high frequency models to improve the forecasting
performance offered by medium frequency approaches.

Highlighted by seminal contributions of Andersen et al. (2003), Barndorff-Nielsen and Shephard
(2002, 2004, 2006) realized (co)variance methods have seen a vast development of both underlying
statistical theory and empirical contributions to (co)variance modeling and forecasting. In compari-
son with the body of literature concerned with the prediction of realized variances, see e.g. Andersen
and Bollerslev (1998), Andersen et al. (2003, 2004), Poon and Granger (2003), Ghysels et al. (2006),
Gospodinov et al. (2006), the empirical literature on forecasting conditional covariances is up to
now rather scarce. Borrowing from the class of parametric correlation models the task of covariance
forecasting can be separated into volatility and correlation forecasting. The aim of this paper is to
elaborate efficient forecasting methods for high-dimensional correlation matrices using information
from intraday ultra high frequency observations.

Owing to lead-lag relationships between assets the estimation of realized correlation suffers from
the Epps (1979) effect describing that empirical correlations decrease when the underlying sampling
frequency increases. Additionally, non-synchronicity of price observations complicates the determina-
tion of realized covariances. Studies of Zhang et al. (2005), Oomen (2006), Hansen and Lunde (2006)
address the issue to determine an optimal sampling frequency for variance estimation in presence of
market microstructure noise. Bandi and Russell (2005) propose an optimal synchronizing frequency
to sample cross moments under non-synchronous trading. Malliavin and Mancino (2002) initiate a
frequency domain approach to estimate covariances based on the Fourier transformation. All these
studies are concerned with estimation but not with forecasting of correlations in high dimensional
systems.

In this paper we suggest dynamic correlation predictors that are feasible to handle huge fields
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of time series data such as realized correlations. Realized covariances are estimated alternatively by
means of data synchronization and the Fourier approach. We apply the Fisher’s z transformation
(cf. Hotelling, 1953) of correlations in order to get quicker convergence to normality and to control
the empirical support of correlation forecasts. Devlin et al. (1976) show that Fisher’s z serves
as a variance stabilizing transformation for a broad class of elliptical distributions. The proposed
forecasting models are in the framework of dynamic panel and dynamic factor models. Both model
families are formalized to incorporate non-modeled exogenous variables that are widely used in
related literature on forecasting (realized) variances. The estimated historical correlations serve as
explanatory variables, as well as a number of exogenous factors, typically exploited for explaining
stock market volatility. Thus our panel approach extends ideas in Sheppard (2004) conditioning price
comovement on exogenous variables while disregarding autoregressive features. As an alternative we
also consider dynamic factor models (Stock and Watson, 2002). These models concentrate on the
dynamic relationships between a set of principle components. It can be seen as an alternative to the
approach in Niguez and Rubia (2006), combining principle components with GARCH dynamics.

We contrast our approach with a number of popular techniques for correlation matrix forecasting.
In particular, we consider the dynamic conditional correlation model (DCC), an adaptive covariance
estimator (Härdle et al., 2003), the non-parametric exponential smoothing technique of RiskMetrics
(J.P. Morgan, 1997), and a functional smoothing approach introduced by Hafner et al. (2005). Re-
garding the latter two model families we observe that their main feature of smoothing historical data
could also apply to realized covariance estimators. As such, our model comparison covers competing
models exploiting the same set of underlying high frequency information.

Given the high dimensionality of our problem conventional performance statistics, such as the
mean squared forecasting error (MSFE), can hardly be applied for our purposes of forecast evaluation.
Therefore, to assess the accuracy of alternative forecasting methods economic criteria are used in this
study. We consider economic loss functions (Diebold and Mariano, 1995) and take the perspective of
an investor targeting the global minimum variance portfolio (GMVP). Conditional on this criterion
a forecasting method that provides the smallest out-of-sample portfolio variance is preferable. Using
the best available realized volatility estimator, we take it as if it were known and concentrate ourselves
solely on correlation matrix forecasting.

The empirical study is conducted on 25 most traded stocks listed in the major German stock
index, DAX. The sample period lasts 1330 trading days from Feb,01,2000 to April,29,2005. Our
findings can be summarized as follows. Firstly, we confirm that realized correlations do improve
portfolio performance compared with models that are implemented with daily data. This justifies
our forecasting approach based on ultra high frequency data. Secondly, relying on the elegant Fourier
transformation method for correlation estimation is outperformed by data synchronization in the
spirit of Zhang et al. (2005). In the third place we find that dynamic factor models and exponential
smoothing of realized covariance matrices deliver most accurate correlation forecasts at all horizons.
The informational content of both predictors appears complementary such that forecast combination
is fruitful to further reduce ex-ante uncertainty. Concerning predictive ability of exogenous variables
the DAX index return seems to be more useful than other factors, such as indicators of market
volatility or quoting intensity.

The paper is structured as follows. Section 2 reviews the methods for estimating realized co-
variance matrices. Section 3 proposes our methodology for dynamic modeling and forecasting of
conditional correlation matrices. Competing approaches to correlation forecasting are described in
Section 4. Section 5 discusses the employed measures of forecasting performance. Empirical results
are collected in Section 6. Section 7 concludes the paper and motivates some issues of future research.

3



2 Estimating realized covariances

The purpose of this paper is to investigate a class of flexible forecasting models feasible to assess
dynamic relationships of huge fields of realized correlations. As such forecasting performance of a
particular model would also be influenced by the choice and quality of the underlying estimates
of realized (cross) moments. From the perspective of empirical finance it is clearly of interest to
optimize correlation forecasts in both directions, i.e. adopting an efficient forecasting model building
upon most accurate realized covariance estimates. Therefore this Section first reviews some recent
approaches to realized moment estimation. Particular forecasting models are in the focus of Sections
3 and 4.

We consider a speculative market comprising N assets. At each day t we observe Kt = (K1,t +
1, ..., KN,t + 1)′ price quotations pi,k,t with i = 1, ..., N . The corresponding trading time points for
the ith asset are denoted by θi,0, ..., θi,Ki

. To simplify the notation we economize on the time index as
time dependence is obvious for many quantities such as the number of transactions or trade timing.
In the first place we are interested in estimating the covariance matrix of the daily N−dimensional
return vector rt, t = 1, . . . , T , having as typical elements the difference between consecutive log
closing prices. More precisely, rt = (r1,t, r2,t, . . . , rN,t)

′, ri,t = ln pi,Ki,t − ln pi,Ki,t−1. We denote and
calculate intraperiod log returns ri,k = ln pi,k − ln pi,k−1 for k = 1, ..., Ki. Our aim is to construct

the estimator R̂t of the unknown true correlation matrix Rt of considered assets and to provide
an accurate h-step ahead forecast R̃t,h. For our expositions the notation distinguishes explicitly
between ex-ante forecasts and in-sample estimates. In sample estimates of some quantity, Rt+h say,
are hereafter denoted as R̂t+h whereas conditional forecasts are indicated as R̃τ,h.

Estimating realized covariance matrices could be separated into variance and correlation matrix
estimation. Numerous studies deal with various aspects of variance estimation in presence of market
microstructure noise. Compared with the body of literature on realized variances, estimation of
realized correlations is much less investigated. The Epps effect (Epps, 1979), namely the decrease
of correlations with the increase of the sampling frequency, is a fundamental problem when calcu-
lating intraday covariances. The main reasons for the Epps effect are the non-synchronicity of price
observations and possible lead-lag relationships between asset prices. There exist two alternative
approaches to overcome the Epps effect when calculating realized covariances. The first method is
based on synchronizing the data, the second is grounded on transforming the data from the time
domain into the frequency domain. Below we sketch the latter methods in turn.

2.1 Synchronized data

Data synchronization is conducted as previous tick interpolation taking the most recent quotes (cf.
Dacorogna et al., 2001). Other sampling schemes, investigated by Oomen (2006) are not considered
in our study. Owing to market microstructure noise the choice of the sampling frequency is essential
for the properties of realized moment estimators. Low frequency sampling leads to a loss of valuable
information, while sampling at high frequencies yields biased estimators. Two avenues of efficient
sampling could be distinguished with the first targeting an optimal sampling frequency (Bandi and
Russell, 2005), while the second suggests to exploit all available information in an efficient manner
(Zhang et al., 2005).

Apart from ad-hoc sampling at a-priori chosen time intervals we estimate realized covariance
by means of the subsampling procedure advocated in Zhang et al. (2005). As initially proposed
the latter method requires to choose a-priori a global modeling parameter, the number of subgrids
denoted with G in the following. For the purpose of variance estimation Zhang et al. (2005) propose
to use G = 3 or G = 4 subgrids. Rather than relying on an ad-hoc choice, however, it is more
intuitive to determine the number of subgrids in a data driven manner. To select data driven G we
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consider an approach put forth by Bandi and Russell (2005), proceeding from the presumption that
market microstructure noise follows a first order moving average process. The latter method is now
briefly described before we return to the subsampling method.

To determine an optimal sampling frequency the data is first synchronized to a maximal sam-
pling frequency K. The obtained equally spaced log return observations are collected in a matrix
(ṙ1, ..., ṙN). Further we denote by K† a fixed sampling interval, 10 minutes sampling say, which is
likely immunized against the adverse effects of microstructure noise. Synchronized returns based
on K† are collected and denoted as (r̈1, ..., r̈N). Bandi and Russell (2005) suggest to estimate the
optimal sampling frequency for the ijth component of the covariance matrix as

K̂ij =

(
q̂ij

2Ê2(εiεj)

)1/3

, with

Ê(εiεj) = K−1

K∑

k=1

ṙi,kṙj,k, q̂ij = K†
K†∑

k=1

r̈2
i,kr̈

2
j,k −K†

K†−1∑

k=1

r̈i,kr̈j,kr̈i,k+1r̈j,k+1.

The estimator K̂ij differs for each element of the covariance matrix and, moreover, varies over time.

To balance model feasibility and optimality we will later rely on time averages of K̂ij. For the latter
mean estimators it turned out that their magnitude differed sharply for diagonal and off diagonal
components of the covariance matrix. Therefore, implementing an optimal sampling frequency we
decide to use to different average smoothing parameters for variances and covariances, i.e.

K̂v = (NT )−1

N∑
i=1

T∑
t=1

K̂ii,t, K̂c = 2(N(N − 1)T )−1

N∑
i=1

N∑
j=i+1

T∑
t=1

K̂ij,t. (1)

Having an optimal sampling frequency for the realized (co)variances at hand we use it to implement
non-overlapping subgrids for realized moment estimation as proposed by Zhang et al. (2005). Here,
the full grid of observations G consisting of K prices, is partitioned into G• = bK/K̂•c non-overlapping
subgrids G(g), g = 1, ..., G•. Then the estimated covariance matrix for each day t is given as

Σ̂
(DS)
t = (σ̂ij), σ̂ij = G•

−1
G•∑
g=1

∑

k∈G(g)

ṙi,kṙj,k −
K∑

k=1

ṙi,kṙj,k, i, j = 1, ..., N , (2)

where
∑K

k=1 ṙi,kṙj,k measures market microstructure noise.

2.2 Fourier transformation

Any synchronization scheme leads to some loss of information. Malliavin and Mancino (2002) suggest
to overcome the non-synchronicity of price observations by means of Fourier approach. The idea is to
calculate the realized covariance matrix from the Fourier coefficients of log price increments. In the
frequency domain approach, the daily trading times [θi,0, θi,1, θi,2, . . . , θi,Ki−1

, θi,Ki
] are mapped onto

the interval [0, s1, s2, . . . , sKi−1, 2π] for all assets i = 1, ..., N . For a frequency f ∈ IN , the Fourier
coefficients for log price increments d ln pi of asset i are estimated by

âi,f (d ln pi) = π−1

(
ln pi(2π)− ln pi(0) +

Ki∑

k=1

ln pi(sk−1)(cos(fsk)− cos(fsk−1))

)
,

b̂i,f (d ln pi) = π−1

Ki∑

k=1

ln pi(sk)(sin(fsk−1)− sin(fsk)).
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With F denoting a minimal sampling frequency considered for the calculation of Fourier coefficients,
âf = (â1,f , ..., âN,f )

′ and b̂f = (b̂1,f , ..., b̂N,f )
′, f = 1, . . . , F , the covariance matrix at day t can be

expressed as

Σ̂
(F )
t = 2π2F−1

F∑

f=1

(
âf â

′
f + b̂f b̂

′
f

)
. (3)

2.3 Correcting overnight bias

As outlined we are interested in the evaluation of the covariance matrix of daily log returns measured
as the difference of consecutive log closing prices. In this case a realized covariance matrix as given
in (2) or (3) should be adjusted for the overnight information flow. The bias correction accounts for
the no-trade distance between two consecutive trading days. It is possible to correct the overnight
bias for each single element of the covariance matrix, as well as for the entire matrix in one step.
For an overview of alternative methods to adjust for the overnight bias the reader may consult
Hansen and Lunde (2005). In this work we adopt a suggestion made by Martens (2002). It does not
require any exact specification of the bias structure and is easily implemented. Define the elements
of open-to-close (Σ̂oc) and close-to-open (Σ̂co) covariances as

σ̂ij,co =
T −1∑
t=1

ri,co,trj,co,t, with ri,co,t = ln pi,0,t+1 − ln pi,Ki,t,

σ̂ij,oc =
T∑

t=1

ri,oc,trj,oc,t, with ri,oc,t = ln pi,Ki
− ln pi,0.

To correct the overnight bias we scale the realized covariance matrix, given in (2) or (3), obtaining

Ŝ
(•)
t =

1′Σ̂oc1 + 1′Σ̂co1

1′Σ̂oc1
Σ̂

(•)
t . (4)

The adjusted covariance matrix Ŝ
(•)
t is used for further processing.

3 Modeling and forecasting realized correlations

3.1 The Fisher’s z transformation

Correlation measures are bounded on the interval [-1,1]. When it comes to correlation forecasting
an immediate issue is to control the empirical support of the predictors. As a means to guarantee
bounded forecasts we will rely on the variance stabilizing Fisher-z transformation, popularized by
Hotelling (1953). Additionally, the transformed correlations are supposed to achieve faster asymp-
totic convergence to normality. In the following we briefly discuss this transformation and provide a
proposition on the asymptotic features of realized Fisher-z transformed correlations.

The estimated correlation matrix R̂t is obtained by transformation of the realized covariance
matrix Ŝt, i.e.

R̂t = Ŝ∗t := (Ŝt ¯ IN)−1/2Ŝt(Ŝt ¯ IN)−1/2, (5)

where ¯ denotes element by element matrix multiplication and IN is an N ×N identity matrix. It
should be kept in mind that all realized moment estimates are model dependent throughout. To
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facilitate the notation, however, model dependence is not made explicit. Let vecl(R) denote the
operator stacking the below diagonal elements of a N ×N matrix in a N = (N2−N)/2-dimensional
column vector. The estimated time series of correlation vectors are denoted as

ρ̂t = vecl(R̂t) = (ρ̂21,t, ρ̂31,t, ..., ρ̂N N−1,t)
′.

The Fisher-transformation applied to each ρ̂ij,t yields

ẑij,t =
1

2
ln

1 + ρ̂ij,t

1− ρ̂ij,t

. (6)

Consequently, the reverse transformation is given by

ρ̂ij,t =
exp(2ẑij,t)− 1

exp(2ẑij,t) + 1
. (7)

The effect of Fisher-z and reverse Fisher-z transformations is illustrated on Figure 1.

-1 -0.5 0.5 1

-2

-1

1

2

-4 -2 2 4

-1

-0.5

0.5

1

Figure 1: Fisher-z transformation for ρ → z, left, and z → ρ, right.

Statistical theory concerning the asymptotic features of Fisher-z transformed correlations is well
developed (see Muirhead (1982), Theorem 5.1.7). In particular, the variance of transformed corre-
lation estimates does not depend on the transformed corresponding true correlation. Note that the
latter does not hold for the variance of standard correlation coefficients. Devlin et al. (1976) argue
that the distribution of centered Fisher-z transformed correlations could be quite well approximated
by a normal distribution even in case of small underlying sample sizes. Next we state the asymptotic
features of Fisher−z transformed realized correlation estimates.

The asymptotic distribution of realized covariances and correlations under rather mild smoothness
assumptions on the multivariate stochastic volatility is provided by Barndorff-Nielsen and Shephard
(2004) in Proposition 4. Here we provide a statement about the asymptotic distribution of the
realized Fisher-z coefficient, which is proven in the Appendix.

Proposition 1 Consider the Fisher-z transformation of the realized correlation coefficient based on
K intraday observations, ẑij,t = 0.5 ln{(1 + ρ̂ij,t)/(1 − ρ̂ij,t)}. The estimator ρ̂ij,t and its asymptotic
distribution are given by Barndorff-Nielsen and Shephard (2004) under weak assumptions on a mul-
tivariate stochastic volatility process. Then the asymptotic distribution of the Fisher-z transformed
random variable is given by

√
K(ẑij,t − zij,t)

L→ N (0, 1),

where K denotes the number of intraday returns, zij,t = 0.5 ln{(1 + ρij,t)/(1− ρij,t)}.
In our context the Fisher-z transformation is useful for three reasons. In the first place the

variance of the sample estimator is made independent from the true moment and convergence of the
sample estimator to normality is accelerated. Secondly, the reverse transformation guarantees that
any conditional forecast of zij,t implies a correlation forecast ρij,t bounded on the interval [−1; 1].
Thirdly, the Fisher transformation is variance stabilizing for a broad class of heavy tailed elliptical
distributions (Devlin et al., 1976).
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3.2 The forecasting design

We aim to compare alternative avenues to correlation modeling and forecasting. To focus on the
particular issue of correlation forecasting the entire analysis is based on the presumption that (real-
ized) return variances are known ex-ante. Thus, for the practical purpose of covariance prediction
we implicitly presume that an analyst has access to (efficient) variance forecasts. Alternative ap-
proaches to forecasting (realized) variances are provided, for instance, in Andersen et al. (2003)
and Ghysels et al. (2006). Concentrating on one particular sequence of realized variances and com-
bining it with competing correlation estimates immunizes the forecasting competition against the
effects of model specific realized variance estimates. Our aim is to determine a forecast of the
N = (N − 1)N/2−dimensional vector ρτ+h based on Iτ , the set of information available in the
forecast origin τ , i.e. E[ρτ+h|Iτ ] = ρ̃τ,h.

There are some general considerations concerning the choice of an appropriate model for fore-
casting time series of correlations. First noting that we jointly model a huge set of conditional
correlations any forecasting scheme has to respect the postulate of model parsimony. Second, since
conditional correlations are likely persistent (cf. Engle and Sheppard, 2001), autocorrelation features
characterizing the time series {ρij,t} should be taken into account. In the third place, the potential
influence of exogenous variables, wt, should be incorporated into the specification.

In the light of the latter considerations we concentrate on two parsimonious approaches to char-
acterize the dynamic structure of data fields, namely dynamic panel and dynamic factor models. For
both we first transform estimated realized correlation measures by means of the Fisher-z transfor-
mation given in (6) and apply the dynamic frameworks to determine the predictor of transformed
correlations z̃τ,h. Then, the latter are converted into correlation predictions via the reverse Fisher
transformation in (7). Having a matrix of correlation forecasts at hand it is combined with the future
realized variance to obtain an implied covariance matrix forecast.

The dynamic panel and dynamic factor model are now briefly discussed in turn. For both ap-
proaches we concentrate on the model representation. The practical implementation used in the
empirical analysis is discussed in Appendices B1 and B2.

3.3 Dynamic panel model

As a first method to model the dynamics of huge fields of time series data we suggest a dynamic
panel approach with random effects. In single observation and compact daywise vector notation,
respectively, this model can be written by

zι,t+h = γ + zι,tδ + w′
t+hβ + µι + νι,t+h, ι = 1, . . . , N, t = 1, ..., τ − h, (8)

zt+h = γjN + ztδ + jN(w′
t+hβ) + µ + νt+h. (9)

The following assumptions are made concerning the random individual effects and the idiosyncratic
noise: µι ∼ iid(0, σ2

µ), νι,t ∼ iid(0, σ2
ν) and µ ⊥ νt. In the compact representation jN is a N -

dimensional vector of ones, µ collects all individual effects, νt contains idiosyncratic noise terms,
and wt+h is a q-dimensional vector of exogenous variables.

The model (9) is rather restrictive in presuming cross sectionally homogeneous dynamic features.
Although it is a priori tempting to allow for correlation specific autoregressive parameters (δι) we
prefer the homogeneous panel representation to meet the postulate of model parsimony and focus on
the predictive content of the estimated random effects, see Baltagi (2006). Similar to the restrictive
nature of the autoregressive specification the iid assumption underlying the individual effects and
the idiosyncratic noise terms may also be criticized. In fact, error terms νι,t could be heteroskedastic
over the cross section or time dimension. For the purpose of consistent estimation and forecast-
ing, however, proceeding under iid assumptions is justified. Note that efficient forecasting under
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heteroskedastic noise terms requires particular a-priori assumptions on second order features which
might lead to model misspecification.

In case of one step ahead forecasting (h = 1) equation (8) formalizes a common first order au-
toregressive panel model, see Baltagi (2001). For the purpose of higher horizon forecasting we will
later also choose h = 5, 10. In this case the formalization in (8) aims to directly condition zι,t+h on
information available up to time t. Implementing the forecasting model in this way avoids to deter-
mine higher horizon predictions from an iteration over one-step ahead forecasts. From the theoretical
literature both approaches to forecasting at higher horizons could be justified. In case the employed
one step ahead model specification matches the true underlying data generating mechanism itera-
tive forecasting schemes are preferable if estimated model parameters are sufficiently precise. Direct
higher order forecasts are supposed to be more robust against model misspecification since iterating
a misspecified model is likely to loose control over ultimate forecast errors. As a consequence, the
choice of direct against iterative forecasting depends on the true model and, consequently, remains an
empirical issue. For a recent empirical comparison of both techniques in macroeconomic forecasting
the reader may consult Marcellino et al. (2006) who also review the theoretical literature in some
detail. For this study we follow a direct specification, since any parsimonious parametric panel model
is likely to suffer from misspecification in light of the huge cross sectional dimension.

To employ the model in (8) as a forecasting specification it is necessary to have some ex-ante
measure of particular exogenous variables wt collected in wt. A nonparametric approach to determine
w̃τ,h = E[wτ+h|Iτ ] is described in Appendix B3. As an alternative to (8), however, one may also rely
on lagged explanatory variables in the estimation model and condition the respective forecasts on
sample information available at the forecast origin τ . Such panel model is given by

zt+h = γjN + ztδ + jN(w′
tβ) + µ + νt+h. (10)

To distinguish between the alternative approaches in (9) and (10) we refer to a model of the latter
type as a specification with predetermined variables.

3.4 Dynamic factor models

In the recent literature on modeling huge fields of time series data dynamic factor models have been
attracting a lot of interest at least following Stock and Watson (2002). In our case the informational
content of the set of time varying correlations could be condensed by means of a parsimonious set
of (dynamic) principal components. The latter enters some autoregressive or vector autoregressive
(VAR) structure that allows conditional forecasting. In direct comparison with the dynamic panel
approach such factor models have the advantage to avoid strong parametric assumptions like uni-
form autoregressive features of all correlations. Dynamic factor model also respect the necessity of
parametric restrictions faced when jointly modeling N -dimensional correlation vectors. In compact
daywise notation the dynamic factor model reads as

z̆t+h = ΓGft+h + ξt+h, t = 1, ..., τ − h, (11)

ft+h = Φ1ft + Φ2ft−1 + . . . + Φpft−p+1 + ηt+h. (12)

In (11) z̆t is a N–dimensional vector of Fisher transformed correlations measured in terms of devi-
ations from their unconditional mean, z̆t = zt − z̄τ , z̄τ = (τ − h)−1

∑τ−h
t=1 zt. ft is a G–dimensional

vector of factors supposed to govern the dynamic structure of z̆t. The latter is specified using the
G × G parameter matrices Φi, i = 1, . . . , p. In the empirical study we consider both diagonal and
unrestricted variants of Φi. The error terms ξt+h and ηt+h are assumed to be serially uncorrelated
and independent. To determine the matrix ΓG in (11) we adopt a principal component analysis
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(PCA) decomposing the unconditional covariance matrix of z̆t, i.e.

Ω̂τ = (τ − h)−1

τ−h∑
t=1

z̆tz̆
′
t, Ω̂τ = Γ̂τ Λ̂τ Γ̂

′
τ . (13)

In (13) Λ̂τ is an estimated diagonal matrix of eigenvalues of Ω̂τ in decreasing order while the columns

of Γ̂τ contain the corresponding eigenvectors. Then, the estimator of matrix ΓG in (11) contains

the first G columns of Γ̂τ and thereby accounts for the variation in z̆t explained by G principal
components. Ex-ante forecasts of zτ+h, adjusted for the unconditional in sample mean, are given by

z̃τ,h = ΓGf̃τ,h + z̄τ , with (14)

f̃τ,h = Φ̂1fτ + Φ̂2fτ−1 + . . . + Φ̂pfτ−p+1.

The dynamic factor model in (11) does not exploit exogenous information to describe the conditional
correlations. The augmentation of (11) with contemporaneous or predetermined exogenous vari-
ables is straightforward. In the context of PCA modeling, however, one may also extract principal
components from the augmented set of time series variables zt = (z′t,w

′
t)
′. Note that along these

lines exogenous variables and transformed correlations enter jointly the dynamic modeling. For the
purpose of factor extraction the augmented empirical moment matrix Cov(zt) is used to determine
the principal components. Then, the same scheme as in (14) applies to obtain z̃τ,h. Its upper N first
elements are corresponding forecasts of Fisher transformed correlations.

4 Short summary of competing approaches

In this section we collect popular alternative approaches to covariance or correlation modeling that
have been suggested in the literature. For each approach we briefly state the underlying model and
then discuss how it is employed for the issue of correlation forecasting.

4.1 Adaptive covariance estimation

The detection of locally homogeneous multivariate covariance structures has been recently proposed
by Härdle et al. (2003) and is related to the approach of Foster and Nelson (1996). Given that
the covariance matrix of returns is constant within some (local) time window t ∈ J = [τ − J, τ [, a
convenient estimator of the second order moments using daily returns is

Σ̂τ = |J |−1
∑

t∈J rtr
′
t, (15)

with |J | denoting the length of J . Note that the presumption of local homogeneity could be jus-
tified in light of the overwhelming experience of volatility clustering documented in the empirical
financial literature. As given in (15), however, the adaptive estimator is not feasible since in practice
knowledge of a time window with homogeneous second order features is hardly available. Härdle et
al. (2003) propose a data driven approach to estimate homogeneous time intervals J . They provide
an inferential procedure where ’smoothing’ parameters are selected by fixing to a the probability of
falsely diagnosing a homogeneous time interval of length M. We estimate Ĵ using M = 60 and
a = 0.05. The adaptive covariance estimator is

Σ̂ADA,τ = |Ĵτ |−1
∑

t∈Ĵτ
rtr

′
t.

From the latter estimate an implied correlation matrix is determined as

R̂ADA,τ = Σ̂∗
ADA,τ .

10



Owing to the underlying presumption of local time homogeneity we set R̃ADA,τ,h = R̂ADA,τ , i.e. for
the purpose of correlation forecasting the adaptive method proceeds from the perspective that the
estimated local moments will prevail over the near future.

4.2 Dynamic conditional correlation modeling

Distinguishing variance and correlation features, a common representation of the conditional covari-
ance matrix is

St = (St ¯ IN)1/2Rt(St ¯ IN)1/2, t = 1, . . . , τ.

From the perspective of (co)variance modeling in the spirit of parametric GARCH-type specifications
it is clear that the parameterization of dynamic models will increase at rate O(N) since single asset
volatility processes have to be specified in some way. Facing the curse of dimensionality it has
become a convenient strategy in parametric modeling of St to separate estimation of univariate
volatility models and correlation features. The dynamic conditional correlation model (Engle, 2002)
of order (1, 1), denoted DCC(1,1), is given by

Rt = Q∗
t , Qt = R(1− α− β) + αvt−1v

′
t−1 + βQt−1. (16)

In (16) R denotes the unconditional correlation matrix that can be estimated as

R̂ =
1

τ

τ∑
t=1

vtv
′
t, vt = (Ŝt ¯ IN)−1/2rt.

Forecasting via the DCC model requires to estimate the underlying model parameters. Estimation
of DCC models is mostly undertaken in two steps with the first step addressing the estimation of the
parameters underlying the variance processes. In this study we condition correlation dynamics on
realized variances. Given that rolling forecasting schemes offer quite limited sample information (in
our case T = 250 observations) we refrain from iterative estimation of the correlation parameters.
Instead we consider 15 alternative parameter settings from the neighborhood of empirical findings
in other studies (cf. Engle and Sheppard, 2001) to indicate the potential performance of DCC type
modeling, namely

β α

.90 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

.95 .01 .02 .03 .04 .05 - - - - -

For the DCC(1,1) model one step ahead forecasts are directly available from sample information
whereas forecasting at higher horizons requires iterative forecasting. We have

R̃DCC,τ,h = Q̃∗
τ,h, with (17)

Q̃τ,1 = R(1− α− β) + αvτv
′
τ + βQτ ,

Q̃τ,h = R(1− α− β) + (α + β)Q̃τ,h−1, h = 2, 3, . . . .

4.3 Exponential smoothing (RiskMetrics)

Closely related to the adopted implementation of DCC models is to determine local correlation ma-
trices via exponential smoothing. From standardized return vectors the correlation matrix forecasts
are determined as

R̃EXV,τ,h = Q̂∗
EXV,τ , Q̂EXV,τ =

1− φ

1− φn

n∑
i=0

φivτ−iv
′
τ−i, h = 1, 2, . . . . (18)

To implement the rule in (18) we use alternative smoothing parameters φ = .99, .98, . . . , .90.
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4.4 Functional conditional correlations

Hafner et al. (2005) introduce functional models for correlation forecasting. In their semipara-
metric setting correlation estimates are determined in two steps. First conditional variances are
estimated via GARCH, then non-parametric smoothing is applied for correlation estimation. The
kernel method is based on local smoothing with respect to a conditioning variable. In time series or
regression modeling the underlying idea has been popularized by Cai et al. (2000) under the notion
of ’functional coefficient modeling’. We distinguish between conditioning on contemporaneous (wt)
and predetermined variables (wt−h). Formally the latter specifications are given as

Qc
FSV (w) = E (vtv

′
t |wt = w) , Qp

FSV (w) = E (vtv
′
t |wt−h = w) .

The respective local estimates of the latter matrices are obtained by kernel smoothing as

Q̂c
FSV (w) =

∑τ
t=1 vtv

′
t ·Hb (wt − w)∑τ

t=1 Hb (wt − w)
, Q̂p

FSV (w) =

∑τ
t=h+1 vtv

′
t ·Hb (wt−h − w)∑τ

t=h+1 Hb (wt−h − w)
,

where Hb (•) = 1
b
K

(•
b

)
, and K(·) is a kernel function. The corresponding correlation matrices are

R̂c
FSV (w) = Q̂c,∗

FSV (w) , R̂p
FSV (w) = Q̂p,∗

FSV (w) .

The candidate exogenous or predetermined factor variables wt could be some (lagged) stock index
volatility, high low daily log price differentials, term spreads, etc. Although it is possible to use more
than one factor in multivariate kernel smoothing we concentrate on univariate factor variables to
avoid the curse of dimensionality.

The practical implementation of functional conditional correlations, i.e. the choice of a kernel
function and the bandwidth parameter, is addressed in Appendix B3. Forecasting in the framework
of functional correlation models is straightforward. Distinguishing the cases with contemporaneous
or predetermined exogenous variables we have

R̃•
FSV,τ,h(•) = Q̂•∗

FSV(•), with Q̂c∗
FSV(w = w̃τ,h) or Q̂p∗

FSV(w = wτ ). (19)

4.5 Factor dependent and exponentially smoothed realized covariance
estimates

As introduced by Hafner et al. (2005), the estimation of factor dependent correlation matrices builds
upon local weighting of cross products of standardized return vectors. In a similar vein one may
also apply factor dependent weighting schemes to realized covariance matrices. Local weighting of
realized covariance matrices is likely more efficient in relation to the initial proposal by Hafner et al.
(2005) since intraday information is also exploited to determine local estimates. In this framework
static and dynamic forecasts of the correlation matrix are

R̃•
FSC,τ,h(•) = Q̃•∗

FSC(•), with Q̂c∗
FSC(w = w̃τ,h) or Q̂p∗

FSC(w = wτ ).

Similar to extending functional smoothing from standardized return vectors to estimated realized
covariances one may also apply exponential smoothing to the latter realized moment matrices. Fol-
lowing these lines correlation forecasts are

R̃EXC,τ,h = Q̂∗
EXC,τ , Q̂EXC,τ =

1− φ

1− φn

n∑
i=0

φiSτ−i. (20)

To implement the predictor in (20) we use φ = .99, .98, .97, . . . , .90.

12



5 Goodness of forecast evaluation

We employ portfolio performance measures to evaluate the performance of alternative correlation
forecasts. Due to the huge dimension of the correlation matrix, the pure statistical criteria, such as
MSFE or MAFE are hardly tractable. Thus, following Diebold and Mariano (1995) and Engle and
Colacito (2006), we concentrate on economic criteria. The latter are directly linked to an investor’s
objective function and allow to make a policy proposal based on the obtained evidence. Next, the
suggested ex-ante performance evaluation criteria are introduced in detail.

5.1 Expected loss criterion

The expected relative loss criterion is grounded on the global minimum variance portfolio (GMVP)
weights. This portfolio allows to escape from problems of asset mean forecasting. Merton (1980)
points out that the estimation of mean returns is extremely imprecise and imposes severe adverse
portfolio performance (Best and Grauer, 1991). Our approach differs from Fleming et al. (2001, 2003),
Engle and Colacito (2006) which are concerned with economic effects of covariance matrix forecasting
for investors with different preferences. Our sole purpose is to assess the performance of competing
correlation matrix predictors. A covariance matrix forecast is denoted as S̃τ,h, while the realized

covariance matrix Ŝτ+h is perceived as a true one. Since we concentrate on correlation forecasting,
the corresponding factorization of the realized covariance matrix is Ŝτ,h = (Ŝτ+h¯IN)1/2R̂τ+h(Ŝτ+h¯
IN)1/2, while that of the forecasted one is S̃τ,h = (Ŝτ+h ¯ IN)1/2R̃τ,h(Ŝτ+h ¯ IN)1/2. The realized
weights for the perfect volatility estimator and the forecasted counterparts are given by

ŵτ+h =
Ŝ−1

τ+h1

1′Ŝ−1
τ+h1

, w̃τ,h =
S̃−1

τ,h1

1′S̃−1
τ,h1

.

Then, the minimum attainable portfolio variance and the forecasted portfolio variance are

P̂ V τ+h = ŵ′
τ+hŜτ+hŵτ+h, P̃ V τ,h = w̃′

τ,hŜτ+hw̃τ,h.

By construction, the portfolio variance P̂ V τ+h is the minimal attainable variance at day τ + h. The
idea of economic forecasting criteria is based on the evaluation of portfolio volatility losses due to
not optimally chosen GMVP weights. The relative utility loss is defined as

Lτ,h =
P̃ V τ,h − P̂ V τ+h

P̂ V τ+h

. (21)

To facilitate model contrasting we consider also ratios of the latter model specific performance mea-
sure against some benchmark model denoted BEN. Loss ratios are defined as

RLRτ,h = Lτ,h/Lτ,h(BEN). (22)

For model comparisons we rely on the average loss given by

Lh = (T − T − h + 1)−1

T∑

τ=T+h

Lτ,h. (23)

The model with the smallest average loss value should be preferred. Similarly, average loss ratios

RLRh = (T − T − h + 1)−1

T∑

τ=T+h

RLRτ,h. (24)

are used to indicate if a particular forecasting scheme outperforms the benchmark procedure.
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5.2 Universal criterion

Alternative realized covariance measures imply different GMVP weights. Thus it is helpful to have
a model performance criterion offering some guidance to choose between alternative estimators. For
this purpose we construct a portfolio volatility measure based on GMVP returns,

rpt = ŵ′
t rt, t = 1, . . . , T , (25)

where ŵ′
t are GMVP weights, obtained from alternative realized covariance matrix estimators. Then,

we can calculate the empirical GMVP return variance for the sample period as

V (rp) = (T − 1)−1

T∑
t=1

(rpt − rp)2, rp = T −1

T∑
t=1

rpt. (26)

The best performing realized covariance estimate delivers the smallest empirical portfolio variance
V (rp).

6 Empirical study

6.1 Data description

Our sample comprises transaction data for N = 25 assets that constantly entered the major German
stock market index, DAX, over the period Feb,01, 2000 to April,29, 2005. The sample covers T =
1330 trading days. We analyze the full stream of transactions settled via the automatic trading
system Xetra.1 To implement correlation forecasting methods we employ rolling time windows of
length T = 250. Thus, our ex-ante forecasting comparisons are informative for a sample of T −250−h
forecasts with h = 1, 5, 10 days forecast horizon.

Complementary to autoregressive features of conditional correlations the dynamic panel and factor
model as well as the functional smoothing approach allow conditioning on exogenous information.
For this study we consider a set of conditioning variables that has been motivated in frameworks of
variance prediction (Ghysels et al., 2006) , or covariance modeling, see Hafner et al. (2005), Sheppard
(2004), Longin and Solnik (2001), Andersen et al. (2001a). The set of exogenous variables comprises
both economic and financial factors. Next we provide a short description of exogenous factors. All
variables, except for intraday DAX quotes2, are drawn from DataStream.

1. The German term spread, w1,t = rlGE
t − rsGE

t , where rlGE
t is the German 10 year government bond

rate and rsGE
t is the Euribor.

2. The German short term interest rate w2,t = rsGE
t .

3. German-US short term interest rate spread, w3,t = rsGE
t − rsUS

t , where rsUS
t is the 3 month US T-bill

rate.

4. High-low log index ranges of the Dow Jones Industrial Average (w4,t).

5. Daily Dow Jones log returns (w5,t).

6. High-low log index ranges of the DAX (w6,t).

7. Daily DAX log returns (w7,t).

1The authors thank Interdisciplinary Center for Numerical Simulation, University of Kiel, Germany, for providing
intraday data.

2Intraday quotations for the DAX were provided by the Deutsche Kapitalmarktdatenbank, Karlsruhe
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8. Realized daily standard deviations of the DAX, calculated using all available intraday observations
(w8,t).

9. The relative performance of alternative realized covariance estimators could also depend on the amount
of available price quotations. For this reason we consider an additional factor w9,t, measuring the
intensity of automatic trading over the considered sample period. Variable w9,t quantifies the deviation
of Xetra trade intensity from a cubic trend. The latter measure is obtained by aggregating the number
of trades for all assets, Lt =

∑N
i=1 Kit. Since in the period from April,01, 2000 to Oct,31, 2003 Xetra

trading times were prolonged by 2.5 hours, we standardize Lt for the differences in the trading day
length. The adjusted measure L∗t is modeled in the following way (standard errors in parentheses):

L∗t = 742.642
(33.59)

+ 2.641
(0.117)

t− 1.071 · 10−3

(8.5·10−5)

t2 − 4.063 · 10−8

(1.8·10−8)

t3 + w9,t. (27)

6.2 Empirical results: Structure

The alternative approaches to determine realized covariance matrices provided in Section 2 and the
competing devices of forecasting conditional correlation patterns given in Sections 3 and 4 allow
model comparisons at two consecutive levels. In the first place one may select from the methods
outlined in Section 2 some candidate that best exploits high frequency information while coping with
both microstructure noise and the Epps effect. For this level of model comparison we rely on the
empirical variance of the GMVP returns in (26).

Estimation uncertainty associated with realized moment measures could vary over time. As an
example one might a-priori expect specific bias corrections as in (2) or the Fourier expansions provided
in Section 2 to work the better the higher is the (time varying) number of available intraday price
quotations. Thus we provide some time specific model comparisons to indicate in how far the advice
offered by the unconditional criterion is robust over specific states characterizing market behavior
over time.

Conditional on the particular approach delivering the overall minimum variance V (rp) we contrast
the competing methodologies of correlation forecasting in a second step. At this stage we compare
low frequency approaches with modeling devices that exploit high frequency covariation. Among
the latter models dynamic panel and factor model specifications are evaluated against functional or
exponential smoothing techniques. Moreover, we address the predictive content of single exogenous
variables entering our analysis either as contemporaneous or predetermined covariates. Recall that at
this level of model comparison the same realized variances are combined with alternative correlation
measures.

6.3 Estimating realized covariances

To estimate realized covariances we follow both frequency and time domain approaches. To synchro-
nize the price quotations we choose the one minute time interval with previous tick interpolation as
the highest sampling frequency. Depending on the Xetra trading time the corresponding number of
observations is on average either K = 460 or K = 600, while the 10 minutes sampling frequency
leads to K̃ = 47 or K̃ = 61 observations for the majority of trading days. Taking smaller intervals
for the highest sampling frequency is not justified due to lacking liquidity for some assets. When
applying the Bandi and Russell (2005) estimator of an ’optimal sampling frequency’ it turns out that
the obtained estimates are significantly different for realized variances in comparison with covari-
ances. Therefore we use two different optimal sampling frequencies namely Kv = 48 for variance and
Kc = 150 for covariance estimation. Conditioning on the latter estimates subsampling as in Zhang
et al. (2005) is implemented to exploit the entire available information. We partition the full grid G
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with K observations into Gc = 3 subgrids for covariance and Gv = 10 subgrid samples for variance
estimation.

Adopting Fourier transformations does not require data synchronization but needs frequent trad-
ing for sufficient estimation precision. We choose F = 200 as the number of coefficients which cor-
responds roughly to the recommendation in Barucci and Reno (2002). A smaller choice of F should
not be used while it would increase the volatility of obtained estimators. Taking a larger number
is not reasonable given too small a number of trades. For both Fourier and data synchronization
methods, the overnight bias correction (Martens, 2002) as in (4) is conducted. This correction is
done for all realized covariances, as well as to obtain the exogenous variable w8,t, the realized daily
standard error of the DAX.

Now we describe the alternative scenarios for estimating the realized covariance matrix. Realized
variances are throughout estimated using subsampling with Gv = 10 subgrids. Concerning the
correlation matrix, we consider the following set of estimators. Providing a ’naive’ benchmark we
consider sampling at the 10 minutes frequency, denoted further as S2 method. Alternative approaches
are to use subsampling with Gc = 10 (S1) or Gc = 3 (S3). Note that subtraction of market
microstructure noise as in (2) may result in non-positive definite matrices. For this reason we do
not subtract noise

∑K
k=1 ṙt,kṙ

′
t,k from the subgrid estimators. Realized correlation measures obtained

from the Fourier approach with F = 200 (S4) complete our set of alternative moment estimators. To
assess the overall in sample performance of the alternative realized covariance estimators we consider
the empirical variances of the implied GMVPs returns, given in (26). The four estimation strategies
are ordered below according to their empirical performance measures.

Strategy V (rp)
√

V ar[V (rp)]
Subsampling with Gv = Gc = 10, see (2) S1 9.493E-05 7.561E-06
Sampling at the 10 minute frequency S2 1.103E-04 8.153E-06
Subsampling with Gv = 10 and Gc = 3, see (1) S3 1.181E-04 8.715E-06
Fourier expansions with F = 200, see (3) S4 1.363E-04 9.961E-06

Apparently, S1 delivers the smallest empirical GMVP variances and the uncertainty associated with
the empirical variance also increases from S1 to S4. Accordingly, the forecasting comparisons further
refer to this particular implementation of realized covariances.

As argued the relative performance of alternative conditional correlation measures might be sub-
jected to structural changes over time. To address the robustness of the realized covariance selection
we discuss briefly some conditional features of absolute GMVP returns (|rpt|).

Table 1 provides empirical frequencies of minimizing absolute GMVP returns. Moreover, we
document pairwise comparisons of absolute GMVP returns. Over the whole forecasting period the
preferred covariance estimator S1 delivers the smallest absolute GMVP return in 27.6% of cases, and,
appears slightly inferior to the 10 min sampling scheme (S2) minimizing absolute GMPV returns in
31.5% of all time instances. According to the corresponding standard errors the latter measure
exceeds the former with 5% significance. With respect to the empirical frequencies of minimizing the
absolute GMVP returns the remaining covariance measures (S3 and S4) perform significantly worse
in comparison to S1 and S2. In particular, the Fourier approach provides smallest absolute GMVP
returns in only 18.4% of all time instances. Although the empirical frequency of providing smallest
absolute GMVP returns favors S2, the pairwise comparisons reveal that S1 in fact outperforms all
the remaining approaches to covariance estimation. From the latter criteria it turns out that S2
outperforms each competing device significantly in more than 50% of all observations.

The latter performance measures are also provided for particular subsamples each comprising one
half of the available sample information. E.g, we split the entire sample into the first and second
half, or condition the evaluation on scenarios where the conditional realized DAX volatility (w8,t)
exceeds its unconditional median. Similarly we separate a subsample of absolute GMVP returns over
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P (min(|rpt|) Pairwise comparisons for |rpt|
S1 S2 S3 S4 S1<S2 S1<S3 S1<S4 S2<S3 S2<S4 S3<S4

Full sample
av. 0.276 0.315 0.225 0.184 0.572 0.553 0.623 0.477 0.521 0.593
σav. 0.014 0.014 0.013 0.012 0.015 0.015 0.015 0.015 0.015 0.015

1st half of the sample
av. 0.272 0.296 0.233 0.198 0.591 0.528 0.613 0.457 0.502 0.581
σav. 0.019 0.020 0.018 0.017 0.021 0.022 0.021 0.021 0.022 0.021

2nd half of the sample
av. 0.280 0.333 0.217 0.170 0.554 0.578 0.633 0.496 0.541 0.604
σav. 0.019 0.020 0.018 0.016 0.021 0.021 0.021 0.022 0.021 0.021

DAX realized variance greater than its median
av. 0.302 0.300 0.202 0.196 0.593 0.580 0.631 0.487 0.531 0.570
σav. 0.020 0.020 0.017 0.017 0.021 0.021 0.021 0.022 0.021 0.021

Trading intensity Lt greater than its median
av. 0.285 0.335 0.206 0.174 0.554 0.594 0.663 0.515 0.548 0.600
σav. 0.019 0.020 0.017 0.016 0.021 0.021 0.020 0.022 0.021 0.021

Residual terms w9,t exceeding their median
av. 0.293 0.319 0.207 0.181 0.576 0.583 0.650 0.500 0.537 0.602
σav. 0.020 0.020 0.017 0.017 0.021 0.021 0.021 0.022 0.021 0.021

Table 1: Performance of four alternative correlation matrix estimators. The left hand side panel
displays empirical frequencies of obtaining smallest absolute GMVP returns and the right hand side
panel shows pairwise comparisons. Estimation strategies cover subsampling (S1, S3) sampling at the
10 minute frequency (S2) and a frequency domain approach (S4). ’av.’ and σav. denote empirical
means and the respective standard deviations.

scenarios where the trading index (Lt) or the residuals w9,t from the model in (27) are above their
unconditional median. As it turns out all empirical frequencies listed for the full sample are quite
close to the corresponding quantities obtained due to conditioning on time, DAX volatility or the
number of trades. The empirical frequencies of minimizing absolute GMVP returns are remarkably
stable across alternative subsamples. Minor differences are observed for pairwise comparisons that,
however, do hardly justify to prefer S2, S3 or S4 over S1 for conditioning the following forecasting
exercises.

6.4 Low frequency approaches

The forecasting competitions are now conditioned on a particular sequence of realized variances,
namely S1 variance estimates. Comparing methods operating at a low (daily) frequency with high
frequency approaches, it is clear that the former suffer from using limited information. Conditioning
on realized variances, makes the following results informative on the limited information efficiency
loss due to cross moment estimation. Table 2 provides average relative losses as defined in (23)
for selected forecasting models. The comparison covers the adaptive strategy (ADA), functional
correlation estimates (FSV), DCC and exponential smoothing of standardized vector returns (EXV).
For contrasting with high frequency methods Table 2 also displays corresponding loss measures
obtained for the dynamic panel model excluding any exogenous variable (DPA).

Regarding FSV, DCC and EXV we have implemented diverse specifications depending on con-
ditioning variables or parameter choices. For these families of models Table 2 provides results for
the particular implementation that delivers the best results within its model family. As such the
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ADA FSVc DCC EXV DPA
h best wj,t fron best α, β fron best φ fron
1 2.155

(4.34)

2.276
(4.65)

w5,t 0.908
(1.19)

0.944
(1.55)

.01,.90 0.922
(1.51)

1.032
(1.59)

.99 1.029
(1.59)

0.459
(0.64)

5 2.171
(4.71)

2.697
(52.9)

w7,t 0.909
(1.19)

0.944
(1.57)

.01,.90 0.921
(1.52)

1.040
(1.62)

.99 1.037
(1.61)

0.461
(0.65)

10 2.188
(4.61)

2.235
(10.8)

w7,t 0.928
(1.28)

0.946
(1.60)

.01,.90 0.918
(1.53)

1.048
(1.65)

.99 1.043
(1.64)

0.464
(0.64)

Table 2: Low frequency models (ADA, FSV•, DCC and EXV) against the pure panel autoregression
(DPA). ’best’ and ’fron’ provide the best performing specification within a model family and the
unattainable performance frontier, respectively. Medium columns give some indication of the best
performing model. Average relative losses Lh, (23) are given for the full sample period. Standard
deviations (×100) are given in parentheses.

model comparison is somewhat ’biased’ against the ADA where only a single implementation has
been processed. Note that in reality an analyst might choose another implementation of FSV, DCC
or EXV such that the benchmark results for the model families might be hardly achieved in practical
work. Regarding the latter model families we also provide average loss measures implied by a per-
formance frontier strategy. At each timepoint we select the particular model providing the smallest
relative loss. Note that this strategy is completely infeasible in financial practice since it deserves
ex-ante information. A particular merit of performance frontiers is, however, that they indicate the
unattainable optimum of a model family in forecasting correlation patterns.

Not surprisingly, the dynamic panel formalization of realized correlations clearly outperforms all
competing approaches conditioning covariance estimates on daily information. Independent of the
particular forecasting horizon (h = 1, 5, 10), the panel model delivers an average relative error of
about 0.45 which in turn is approximately one half of the frontier of best performing FSV (0.91,
h = 1), DCC (0.922, h = 1) and EXV (1.03, h = 1) models. Regarding the frontier strategies of
these model classes the adaptive approach is clearly outperformed, obtaining an average relative loss
of 2.15. In comparison to feasible models, however, the latter performance measure can hardly be
distinguished from that of the best functional smoothing model. The latter conditions correlation
matrices on daily returns measured for the Dow Jones (h = 1) or DAX (h = 5, 10). The fact
that the conditioning variable with highest predictive power depends on the considered forecasting
horizon complicates model selection within this particular family. As a further indication of modeling
risk attached to FSV one could also regard the relatively high standard error attached to average
performance at higher forecasting horizons (h = 5, 10). The latter standard errors are vastly (by a
factor of at least 6) exceeding corresponding results obtained, for instance, for the DCC approach. In
addition, the huge loss difference between the best performing functional model and the unattainable
performance frontier could be seen as a particular disadvantage, since using FSV and selecting the
’wrong’ conditioning variable is likely to result in substantial efficiency loss. In the same vein of
argumentation, however, careful, daywise selection of the conditioning variable and model diagnosis
might promise substantial efficiency gains when adopting FSV. In comparison to functional modeling
DCC and, similarly, EXV obtain best performing models (β = 0.90, α = 0.01 for DCC, and φ = 0.99
for EXV) with an average performance close to the frontier spanned by the respective model family.
The best performing DCC model outperforms all competing low frequency information approaches.

Conditioning the comparison of low frequency methods on loss estimates obtained for subsamples,
comprising the first and second half of predictors, confirms the overall results discussed above. To
economize on space corresponding subsample specific estimates are not provided here but available
from the authors upon request.
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6.5 High frequency information

Now we compare four competing model families exploiting high frequency information, namely dy-
namic panel (DPA), dynamic factor (DFA) and extended (DFX) models, functional (FSC) and
exponential smoothing of realized covariances (EXC). The upper part of Table 3 documents the
performance of the latter model families relative to the dynamic panel model, according to (24).
First, in the left part of Table 3, we focus on the performance comparison of model variants mostly
excluding exogenous variables. Since conditioning on exogenous variables is an essential feature of
FSC it also enters model comparison at this stage.

The efficiency frontiers offered by alternative implementations of EXC or FSC both carry the
potential to improve panel based forecasting. With respect to the full sample of relative loss estimates,
the latter model families give an average loss RLRh of about 90% relative to the panel autoregression
(DPA) with both measures significantly less than unity. As mentioned before, however, the frontiers
merely indicate on the best model specific results, hardly feasible in practice. Turning the interest
on the feasible best performing model specifications within each family, FSC turns out inferior in
relation to DPA. The best performing functional smoothing model gives average measures against
the panel model between 1.05 and 1.08, which is significantly in excess of unity. Interestingly, the
best conditioning variable for this modeling approach seems to be the German short term interest
rate. The latter result is not only robust over alternative forecasting horizons but also over two
subsamples of forecast evaluation.

Assuming an analyst has ex-ante knowledge of the best performing EXC, its implementation
provides relative loss ratios that are significantly superior compared to DPA. Depending on the
forecasting horizon RLRh computed against the panel model varies between 96% and 98%. It is
noteworthy, that the best performing exponential smoothing model is not homogenous over alter-
native forecasting horizons. For one step ahead forecasting φ = 0.98 appears optimal whereas for
higher horizons the smoothing parameter deserves slight adjustment (φ = 0.97).

Dynamic factor models (DFA) offer a forecasting performance which is comparable to that of the
best performing EXC. In particular, DFA with G = 6 factors delivers relative loss ratios, RLRh,
which are slightly (but insignificantly) better than those reported for the best performing EXC.
Throughout VAR (G = 3) factor model performs weaker than the univariate AR specification with
factor dimension G = 6. Note that the latter models are characterized by an ad-hoc choice of the
dimension parameter so that the comparison with the best performing EXC model might be biased
against the factor model. We do not provide a performance frontier for the factor model, that could
be achieved via some time varying choice of G. Intuitively one may expect that the number of factors
required to explain a given degree of variation in the data is not time invariant. Summarizing the
latter considerations we conjecture that the class of dynamic factor models is promising to provide
ex-ante insight into return correlation complementary to EXC based prediction. We briefly address
the potential of combining the latter forecasts below.

The former discussion is conditional on the full sample of relative loss measures. The medium and
lower panels of Table 3 provide corresponding results conditional on the first and second half of the
forecast sample, respectively. These statistics indicate that the relative performance of competing
high frequency approaches is robust over time in most respects discussed before.
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DPA DPXp DPXc DFA DFX FSCp FSCc EXC av.
DPA – 0.544 0.463 0.364 0.380 0.664 0.615 0.402 0.042
DPXp 0.503 – 0.449 0.358 0.379 0.668 0.617 0.396 0.045
DPXc 0.576 0.522 – 0.416 0.398 0.626 0.598 0.427 0.163
DFA 0.373 0.373 0.374 – 0.506 0.700 0.703 0.507 0.162
DFX 0.399 0.404 0.395 0.466 – 0.678 0.675 0.506 0.172
FSCp 0.645 0.649 0.641 0.676 0.673 – 0.442 0.330 0.080
FSCc 0.599 0.599 0.597 0.663 0.654 0.431 – 0.352 0.078
EXC 0.416 0.415 0.415 0.491 0.528 0.356 0.370 – 0.258
av. 0.030 0.069 0.044 0.146 0.208 0.106 0.117 0.281 1

Table 4: Pairwise model comparisons at h = 1 (upper triangular) and h = 10 (lower triangular)
forecast horizon. The table gives empirical probabilities P (Lτ,h(Mi) < Lτ,h(Mj)), where Mi and
Mj are short for two particular forecasting models. For instance, the best performing DPXc model
obtains smaller h = 1 (h = 10) losses than best performing FSCc in 59.8% (59.7%) of all (full sample)
time instances. ’av.’ gives model specific empirical frequencies of obtaining the smallest loss among
the set of predictors listed in the table. The set of competing models comprises DPA, best performing
DPX•, DFA G = 6, DFX G = 6, best performing FSC• and EXC.

6.6 Exogenous variables - I

For both model classes, dynamic panel and dynamic factor models, we have also implemented model
variants that exploit the predictive content of exogenous variables. Within the class of dynamic
panel models we have distinguished model families with contemporaneous (DPXc) and predetermined
explanatory variables (DPXp). Mean relative loss ratios RLRh as defined in (24) are provided for
these model specifications in the right hand side panels of Table 3.

Dynamic factor models extracting principal components from an extended set of variables (DFX)
perform very similar as if factors were only extracted from the data field of realized Fisher transformed
correlations (DFA). The performance of dynamic factor models appears to depend more on the
distinction between VAR (G = 3) and diagonal AR (G = 6) forecasting with the latter performing
slightly better than the former.

For the dynamic panel models we obtain performance frontiers indicating that particular model
implementations could offer a considerable improvement of the DPA benchmark. For both families of
panel model implementations, DPXc and DPXp, model class frontiers obtain RLRh measures about
90% of DPA. The results, however, do not help to solve the trade off between DPXc and forecasting
of conditioning variables on the one hand, and DPXp offering likely weaker causal links but more
precise information for conditioning ex-ante predictions on the other hand.

To further characterize the performance of high frequency models Table 4 provides details on the
relative performance of the particular models listed in Table 3. The right hand side column and
the bottom line of Table 4 report how often a particular model specifications delivers the smallest
relative loss at the h = 1 and the h = 10 forecast horizon, respectively. For instance, EXC turns out
to show for 25.8% (28.1%) of forecasts the smallest relative loss at the h = 1 (h = 10) forecasting
horizon and thereby clearly outperforms the best performing FSC•. Depending on the forecasting
horizon the latter models yield smallest relative losses in about 10% of all observations. Aggregating
over (the best performing) specifications within dynamic panel models, h = 1 (h = 10) step ahead
forecasts have the smallest relative loss in about 25% (13%) of all time instances. Note that to achieve
the latter performance measure in reality an analyst needs knowledge of the particular conditioning
variable having highest predictive power on average. This may be a reason to prefer EXC for practical
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purposes. However, even for the particular models reported here an analyst is presumed to use an
optimal smoothing parameter. Factor models are more ad hoc compared to the latter model families.
At an aggregate level dynamic factor models (AR, G = 6) give smallest RLRh measures in about
33.4% (h = 1) and 35.4% (h = 10) of all ex-ante forecasts.

Table 4 also provides pairwise model comparisons by documenting the empirical frequencies that
some model Mi delivers smaller loss estimates than a competing model Mj. It turns out, for instance,
that with h = 1 step ahead forecasting the DPA delivers in 40.2% of all time instances smaller loss
than the best performing EXC. Interestingly, both G = 6 dynamic factor models, including or
excluding exogenous information, obtain better loss estimates in comparison with ’optimal’ EXC in
slightly more than one half of all time points. At the h = 10 forecast horizon extracting dynamic
factors from correlations and exogenous variables outperforms the exponential smoothing approach
in 52.8% of all considered time instances. The latter probability exceeds some benchmark level of
50% at the 10% significance level. Overall the pairwise model comparisons are quite similar when
regarding forecast horizons h = 1 vs. h = 10 as reflected by the symmetric shape of the inner panel
of Table 4.

6.7 Exogenous variables - II

To further explore the predictive power of the considered exogenous variables Table 5 documents
performance measures for the class of autoregressive panel models augmented with single conditioning
variables (DPX•). Mean average relative losses L from (23) are given for models conditioning on
the German term spread (w1,t) in the first column. All remaining results are reported relative to
this model, i.e. the averages RLRh given in Table 5 are computed from loss relations measured
against the benchmark model. Results are given for the entire forecasting period (upper panels) and
the second part of the forecasting period (lower panels). Performance measures for panel models
with predetermined variables (DPXp, 1st and 3rd panel) are contrasted with corresponding results
obtained from panel specifications with contemporaneous conditioning variables (DPXc, 2nd and 4th
panel).

Conditional on the full sample of relative loss estimates it is generally preferable to specify the
right hand side variables in predetermined form. Doing so an analyst avoids to provide conditional
forecasts of explanatory variables, w̃i,τ,h, required for the ex-ante implementation of DPXc type
models. Using the German term spread as a predetermined conditioning variable (DPXp) yields
RLRh statistics which are about 10% smaller compared with the corresponding DPXc model. The
respective standard errors indicate that this finding is significant at any conventional level.

Contrasting the losses when using other explanatory variables reveals that in the first place market
returns improve conditional forecasting. Lagged market returns carry predictive information for
conditional correlation patterns. It is worthwhile to point out that the latter predictive strength does
not die out with expanding the forecasting horizon since both the relative measures and their absolute
counterparts are remarkably stable over alternative forecasting horizons. Within both modeling
classes (DPXc and DPXp) using Dow Jones or DAX daily returns outperforms the benchmark scenario
by an average reduction of RLRh between 5.1% and 9.0%. Throughout these performance measures
are significantly smaller than unity. Other conditioning variables, as e.g. the German daily high-
low log price differential, offer similar average performance measures that cannot be distinguished
statistically from conditioning on daily returns.

Comparing full sample estimates with average performance measures obtained for the second
half of the forecasting period reveals that some of the former conclusions are not representative
for the entire sample. Now modeling correlations conditional on the contemporaneous German
term spread performs similarly as conditioning the analysis on predetermined Dow Jones or DAX
returns. Apparently, forecasting the German term spread by means of the nonparametric first order
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w1t w2t w3t w4t w5t w6t w7t w8t w9t

h Full sample: predetermined conditioning variables
1 0.506

(0.78)

1.313
(3.10)

0.998
(0.72)

0.954
(0.60)

0.934
(0.44)

0.950
(0.45)

0.934
(0.44)

1.019
(1.81)

0.940
(0.47)

5 0.524
(0.93)

1.511
(5.79)

1.158
(1.40)

0.938
(0.54)

0.934
(0.53)

0.937
(0.53)

0.934
(0.53)

0.939
(0.56)

0.935
(0.53)

10 0.504
(0.76)

1.049
(0.97)

1.073
(1.22)

0.950
(0.53)

0.949
(0.52)

0.948
(0.54)

0.949
(0.53)

0.954
(0.51)

0.950
(0.54)

Full sample: contemporaneous conditioning variables
1 0.660

(2.04)

1.233
(2.46)

1.274
(3.94)

0.916
(2.58)

0.914
(2.58)

0.903
(2.58)

0.898
(1.19)

0.892
(1.15)

0.901
(1.26)

5 0.624
(1.70)

1.218
(2.46)

1.257
(4.94)

0.908
(1.77)

0.910
(1.77)

0.909
(1.95)

0.921
(1.94)

0.944
(3.33)

0.951
(3.35)

10 0.592
(1.32)

1.168
(2.10)

1.102
(3.18)

0.912
(1.06)

0.911
(1.07)

0.912
(1.22)

0.932
(1.93)

0.931
(2.47)

0.931
(1.55)

Second half of the sample: predetermined conditioning variables
1 0.535

(1.24)

0.945
(0.84)

0.988
(1.16)

0.928
(0.63)

0.917
(0.63)

0.941
(0.65)

0.917
(0.63)

1.015
(0.79)

0.924
(0.70)

5 0.568
(1.56)

1.916
(11.1)

1.095
(1.88)

0.918
(0.87)

0.908
(0.84)

0.913
(0.85)

0.909
(0.84)

0.907
(0.90)

0.908
(0.84)

10 0.553
(1.21)

0.986
(1.32)

1.021
(2.08)

0.910
(0.99)

0.906
(0.98)

0.904
(1.01)

0.906
(0.98)

0.918
(0.95)

0.906
(1.01)

Second half of the sample: contemporaneous conditioning variables
1 0.461

(0.94)

1.493
(4.07)

1.789
(7.10)

1.036
(0.67)

1.042
(0.69)

1.021
(0.62)

1.041
(0.69)

1.011
(0.75)

1.055
(1.58)

5 0.458
(0.92)

1.518
(4.18)

1.751
(9.35)

1.034
(0.63)

1.042
(0.67)

1.023
(0.56)

1.041
(0.66)

1.019
(0.72)

1.076
(2.98)

10 0.460
(0.89)

1.436
(3.55)

1.420
(5.97)

1.037
(0.66)

1.043
(0.69)

1.028
(0.62)

1.043
(0.69)

1.012
(0.68)

1.061
(1.90)

Table 5: Including exogenous variables in panel autoregressions. The left hand side column provides
mean relative loss estimates, Lh, obtained when conditioning on the German term spread (w1,t).
Remaining factors are measured relative to term spread results obtaining empirical means RLRh as
defined in (22). Standard errors (×100) in parentheses.

autoregressions performs rather well over this subperiod in comparison with the remaining possible
conditioning variables. Using any other contemporaneously conditioning variable obtains an average
relative performance exceeding unity. Most of the latter measures are significant at reasonable levels
with the DAX realized standard error (w8,t) being the only exception.

For the second half of the sample period the lagged trading index (w9,t) has more predictive content
as for the full sample. Conditioning on the latter index gives RLRh that cannot be statistically
distinguished from conditioning on the best performing indicators.

6.8 A note on combining forecasts

A particular insight offered from the methodological literature on forecasting (cf. Aiolfi and Tim-
mermann, 2006) is that it is often preferable to combine alternative forecasts in a linear fashion
and thereby obtain a new predictor. Combination of forecasts building upon different information
sets might be more efficient than singular predictors. The focus of this paper is on single model
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Full sample 1st half 2nd half
h 1 5 10 1 5 10 1 5 10

DFX 0.433
(0.56)

0.442
(0.60)

0.448
(0.63)

0.424
(0.75)

0.430
(0.84)

0.432
(0.83)

0.443
(0.84)

0.454
(0.87)

0.465
(0.94)

EXC 0.433
(0.57)

0.443
(0.61)

0.449
(0.62)

0.424
(0.76)

0.433
(0.80)

0.440
(0.82)

0.441
(0.85)

0.453
(0.90)

0.459
(0.93)

COM 0.431
(0.57)

0.441
(0.60)

0.448
(0.62)

0.422
(0.75)

0.429
(0.83)

0.433
(0.82)

0.440
(0.86)

0.453
(0.89)

0.464
(0.93)

COM ≤ DFX 0.756 0.766∗∗ 0.748 0.744 0.774∗∗ 0.766∗ 0.768∗ 0.746 0.735
COM ≤ EXC 0.756 0.764∗∗ 0.744 0.744 0.772∗∗ 0.757 0.768∗ 0.736 0.737

Table 6: Performance of combined forecasts. Average relative loss Lh for the combined forecasting
strategy (COM), DFX (AR, G=6) and best performing EXC. Standard deviations (×100) in paren-
theses. ∗∗ and ∗ indicate significance at the 5% and 10% level. Corresponding simulated critical
values are 0.762 and 0.760 (T = 1080) and 0.768 and 0.764 (T = 540), respectively.

comparison. A final set of predictors could be subjected to an encompassing analysis, which is be-
yond the scope of this paper. It is tempting, however, to have a hint at potential complementarity
of particular forecasting models. From the preceding discussion two models show particularly good
performance, namely the best performing exponential smoother of realized covariances (EXC) and
DFX using G = 6 univariate factor predictions. Owing to the completely different underlying mod-
eling techniques (smoothing vs. PCA) it is likely that the obtained forecasts may be complementary
to some extent. Providing a first glance at the latter issue, we combine two forecasts to a third one,
denoted by ’COM’, conditional on realized relative losses in the forecast origin τ . To be precise, we
choose at each τ the particular predictor out of EXC and DFX delivering the smallest loss at τ

ρ̃COM,τ,h =

{
ρ̃DFX,τ,h if LDFX,τ < LEXC,τ

ρ̃EXC,τ,h if LEXC,τ < LDFX,τ .
(28)

For the combined forecast Table 6 displays the average relative loss Lh. It turns out that on average
COM delivers the smallest relative loss at all forecasting horizons, for the full sample. According to
the reported standard errors the given mean estimates Lh, however, do not differ in a statistical sense.
Pairwise comparisons of COM against both underlying singular forecasts show that the empirical
probability of getting a smaller relative loss from COM is significant at the 5% level for h = 5 step
ahead predictions for the full sample and its first half. In case of inefficient forecast combinations one
would expect that the empirical probability e.g. of COM≤EXC is 0.75. We determine critical values
for the empirical probabilities via 104 vector draws from the bivariate Gaussian and combining the
noise in the same manner as described above. The obtained critical values are reported in the legend
of Table 6.

Our findings indicate on the potential of combining forecast. Note that the applied strategy of
dummy forecast combination is more or less ad hoc. It reveals, however, that e.g. DFX and EXC
based forecasts could be subjected to more sophisticated combination strategies promising better
performance in comparison with the singular ingredients.

7 Conclusions

In this paper we compare empirically alternative avenues to forecasting conditional correlations with
ex-ante knowledge of future realized variances. We advocate two model classes feasible to analyze
huge fields of realized correlations, namely the dynamic panel and dynamic factor models. The
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analysis covers a performance comparison against a battery of competing specifications exploiting
sample information at medium and ultra high frequencies. At a first level of model evaluation we
contrast alternative realized covariance estimates.

For the German stock market realized covariance matrices based on subsampling with 10 minutes
subgrids (cf. Zhang et al., 2005) yields on average the best performance in terms of GMVP return
uncertainty. Dynamic or smoothing models (DCC, functional smoothing, RiskMetrics) exploiting
daily price comovements are clearly outperformed by ultra high frequency models. The dynamic
factor models turn out to perform rather accurately. Jointly with an exponential smoother of re-
alized covariance matrices they deliver the best average forecasting performance. Compared to the
latter frameworks the dynamic panel and functional smoothing of realized covariances turn out in-
ferior. The dynamic factor approach appears particularly attractive since we compare some ad-hoc
implementation against best performing exponential smoothers selected over a variety of model im-
plementations. It turns out that a very simple strategy of combining forecasts offered from the factor
model and exponential smoother gives further improvements when forecasting dynamic correlations
at higher horizons. With regard to the predictive content of exogenous variables we find that stock
index return variables appear more fruitful, on average, as other indicators of market volatility or
quoting intensity.

The paper gives a first hint at the predictive potential of dynamic factor models in the field
of correlation forecasting. The employed model specifications are ad-hoc and in the light of the
promising results deserve refinements. We regard the thorough treatment of specification issues in
this field of factor modeling and correlation forecasting as an issue of future research. Similarly, the
forecasting comparisons indicate on the potential of combining alternative predictors to obtain new
forecasts outperforming its single ingredients. Weighting competing predictors to obtain improved
correlation forecasts is another promising area for further investigation.

Appendix A

Proof of Proposition 1: The realized correlation ρij for synchronized data is estimated by

ρ̂ij =

∑K
k=1 ri,krj,k√∑K

k=1 r2
i,k

∑K
k=1 r2

j,k

,

where K is a number of intraperiod observations. The asymptotic distribution of ρ̂ij, provided by
Barndorff-Nielsen and Shephard (2004) in Proposition 3, is

√
K

ρ̂ij − ρij√
V (ρ̂ij)

L→ N (0, 1).

Let x follow the asymptotic distribution
√

n(xn − µ)
L→ N (0, σ2). According to the delta method,

for a continuous function g(xn) not involving n it follows that
√

n(g(xn)− g(µ))
L→ N (0, [g′(µ)]2σ2).

Notice that the mean and variance of the limiting distribution are the mean and variance of the linear
Taylor series approximation, i.e. g(xn) ' g(µ) + g′(µ)(xn − µ). Fisher-z transformation provides
ẑij = g(ρ̂ij) = 0.5 ln{(1 + ρ̂ij)/(1− ρ̂ij)}, thus

E(ẑij) ≈ g(E(ρ̂ij)) =
1

2
ln

1 + ρij

1− ρij

, V (ẑij) ≈ V (ρ̂ij)

(1− ρ2
ij)

2
.

Due to
√

V (ρ̂ij) = 1−ρ2
ij (Barndorff-Nielsen and Shephard, 2004), we get V (ẑij) ≈ 1, which completes

the proof.
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Appendix B

B1 Implementation of the dynamic panel model

To implement the dynamic panel model for ex-ante forecasting we proceed along the following lines.

i. The initial estimates of the variance parameters (σ̂2
µ, σ̂2

ν) are obtained from the fixed effects model.

ii. We transform the dynamic model in terms of first differences,

∆zt+h = ∆ztδ + jN (∆w′
t+hβ) + ∆νt+h,

and apply instrumental variables techniques (Anderson and Hsiao, 1982) to estimate the autoregres-
sive parameter and slope coefficients. As instruments ∆zt−1 (∆wt+h) are used for ∆zt (∆wt+h).

iii. Conditional on δ̂ and β̂, an intercept term γ̂ is determined. Corresponding model residuals contain
both random individual effects and idiosyncratic noise, i.e.

v̂it = zi,t − γ̂ − zi,t−1δ̂ −w′
tβ̂ = ν̂i,t + µ̂i.

iv. Collecting the latter residuals in an (τ − h)N -dimensional column vector v = (v′1, . . . ,v
′
τ−h)′ the

vector of random effects is estimated as

µ̂ =
σ̂2

µ

(τ − h)σ̂2
µ + σ̂2

ν

(IN ⊗ j′(τ−h))v̂.

v. Finally, for models excluding any exogenous variables, conditioning on contemporanenous or prede-
termined exogenous variables forecasts are denoted and given by, respectively,

DPA : z̃τ+h = γ̂jN + δ̂zτ + µ̂, (29)

DPXc : z̃c
τ+h = γ̂jN + δ̂zτ + jN (w̃′

τ+hβ̂) + µ̂, (30)

DPXp : z̃p
τ+h = γ̂jN + δ̂zτ + jN (w′

τ β̂) + µ̂. (31)

B2 Implementation of dynamic factor models

For the practical implementation of factor models we use up to G = 6 principal components. The
latter are modeled via univariate autoregressions with the actual lag orders determined by means
of the AIC criterion. Relying on the AIC criterion could be criticized from the perspective that
this criterion is known to be liberal. Using consistent criteria as BIC or HQ, however, implicitly
presumes existence of a true finite autoregressive order. Note that the latter is hardly realistic for
(a system of) principal components extracted from a high dimensional Fisher-z transformed vector
of realized correlations. In the case of univariate autoregressions the estimated parameter matrices
Φ̂i, i = 1, . . . , p, in (12) are of dimension 6× 6 with zero off-diagonal elements.

Alternatively, the first G = 3 principal components are modeled jointly by means of VARs with
AIC order determination. In this framework the estimated parameter matrices Φ̂i are of dimension
3×3 and not subjected to any restriction. At the first sight the vector autoregressive (VAR) approach
to model variables which are orthogonal by construction appears inappropriate. Note, however, that
orthogonality does not imply absence of serial cross correlation. As a consequence, conditional
estimates of a future factor may depend not only on its own history but also on the remaining
factors. We refrain from implementing four to six dimensional VARs owing to the involved large
parameter spaces. For both univariate and multiple autoregressions the maximum autoregressive
order is set to pmax = 6.
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B3 Nonparametric forecasting of conditioning variables

The panel based approach to correlation forecasting might require some ex-ante measure of the
vector of conditioning variables denoted as w̃τ,h. To treat the latter issue uniformly over alter-
native exogenous variables we rely on nonparametric first order autoregressions. By assumption,
E[wτ+h|wτ = w] = g(wτ ), such that

wτ+h = g(wτ ) + ετ+h,

with ετ denoting a zero mean error process. We apply the Nadaraya-Watson predictor of Nadaraya
(1964) and Watson (1964)

ĝ(wτ ) =

∑τ−h
t=1 Hb(wτ − wt)wτ+h∑τ−h

t=1 Hb(wτ − wt)
, Hb(u) = H(u/b)/b,

where H(·) is a kernel function and b the bandwidth parameter. As the kernel function we take the
quadratic kernel

H(u) =
15

16
(1− u2)2I(|u| < 1),

where I(·) denotes an indicator function. To address the trade-off between between estimation bias
and uncertainty that characterizes bandwidth selection in nonparametric regression we choose b
locally in a data driven manner as

b(wτ ) = cf̂(wτ )
−a,

where f̂(w) is a kernel density estimate for w. For density estimation we use 1.06σwT−0.2 as the
bandwidth parameter, where σ2

w is the empirical variance of wt and T = 250 the number of available
observations (Silverman, 1986) . The parameters c, a are chosen as T−0.25 and 0.25, respectively.
Jennen-Steinmetz and Gasser (1988) show that the latter choice of the local bandwidth roughly
corresponds to spline smoothing.
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