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SUMMARY

In this paper are examined some relationships between multilevel
hierarchical systems theory and four different types of optimization
problems: a decomposable mathematical program, a sequential optimization
problem, a continuous-time optimal control problem, and a welfare maxi-
mization problem involving profit distribution to consumers. In each
instance an identification of the problem is made with a multilevel
hierarchical system, a coordination principle is identified, and theorems
originating in the context of the individual problems are restated in

the terminology developed by Mesarovie for multilevel hierarchical systems.

INTRODUCTION

The work of M. D. Mesarovit and his associates (see [6] for a catalogue
of works) represents a major new framework for the structuring of many
important =echnical and economic decision problems. This work, being so
original in contents and terminology, appears to us to require at this
time further integration into some already established optimization theories.
This paper represents an attempt at such further integration, by examining
whether, or under what conditions, certain optimization problems (a decom-
posable mathematical programming problem, a sequential decision problem,
an optimal control problem, and a welfare maximization problem from
economic theory) can be coordinated by coordination principles developed by

v
Mesarovic and his associates=.



The scope of the paper is limited in the following two respects. In
the first place, we do not attempt to pass judgement about the general use-
fulness of hierarchical systems theory; we are here not concerned with
conceptual advantages or disadvantages of the systems approach as opposed
to other approaches. 1In the second place, we are here focusing essentially
on static characterizations, i.e., the coordinability or noncoordinability
of a given optimization problem by some coordination principle. In other
words, we do not discuss dynamic coordination strategies or iterative
computational procedures. 1In this, we follow Mesarovic et al [6], where
the discussion is also mainly directed towards the static concepts of

applicability and coordinability.

DECOMPOSABLE MATHEMATICAIL PROGRAMMING

Consider the following mathematical programming problem, denoted by

(P):
n
Maximize 7 £, (m,) (P)
P R
]
subject to
n
7 g.(m,) < a,
j=]- J J
m, e M, (j =1 n)
i i ] ’

where the functions fj are real-valued and the gj are vector-valued,

It is assumed that (P) has an optimal solution and the sets Mj are



bounded. The application of the interaction balance principle to (P)
will now be discussed. For that purpose, (P) must first be decomposed

by way of interaction decoupling. There are many ways in which this can
be achieved, but the following one is a natural one (and is also suggested
in Mesarovic et al [6], pp. 246-247): Namely, let each infimal decision

problem (Pj(B)) (j =1 ... 1n) be
Maximize fj(mj) + Buj (Pj(B))
subject to
gj(mj) tugsa,
(mj, uj) € Xj = {(mj, uj) t mj € Mj},
where uj is the interface input vector by which the infimal decision

problem (Pj(B)) is coupled with the other infimal decision problems. The

th . . .
j component Kj of the interaction function

n
K = (6 ), K@) .o Ky () ds Ky = 7 gy (),

i#]
where m = (ml, m, ... mn). The vector B 1is the coordination input.

Everything that is said in what follows presupposes this particular decom-

position of (P). For given B, let the set of optimal solutions to
(Pj(B)) be denoted Xg . Let u = (ul, Uy - un), and let xB denote a
pair (m, u) such that each pair (mj, uj) € X? . Finally, let M denote

the set of optimal solutions to the original problem (P). The inter-

action balance principle can now be expressed by the following proposition:



L~
8) (=) {([(m, u) = x° and u =K@] - me M.

The interaction balance principle is applicable to the problem (P) if
this proposition is true. 1If, in addition, the set of B's for which
the proposition hypothesis holds is not empty, then the problem (P) is

coordinable by the interaction balance principle.

~

Now suppose there exists some [ with some associated

~ ~ ~ ~ -~

-~ ~ ~

xB € X? X Xg X ... X Xﬁ with the property that u = K(m), where XB = (m, u).
p

That is, the coordinating condition [(m, u) = x and u = K(m)] is

satisfied for B and (m, u). The following proposition is then easy

to demonstrate:

~

~ ~

Proposition 1: If [(m, u) = xB and u = K(m)] holds, then m and B

satisfy the following saddle point optimality conditiors for (P):

~ -~ ~ ~

m = (ml, LI mn) maximizes L)

[ =]

fj(mj) -BC

. J gj(mj) - a)

[ =]

N 1

over Ml X M2 X ... XM,

n
B > 0, (2)
n ~
jzl gymy) < a, (3)
~ n ~
B (jfl gj(mj ) - a) = 0. @)

m 1is then an optimal solution to (P), and it follows that the inter-
action balance principle is applicable to (P). It is also easy to show

the following proposition.



Proposition 2: Suppose m and [ satisfy the optimality conditions

(1) - &).
Let

~ n ~

uy = 151 g (m)

i#]

and

e,
then

~

[(;, ;) = xB and ; = K(;)].

The concluszion, then, is that (P) 1is coordinable by the interaction
balance principle under precisely the same circumstanc:s as there exists a
saddle point in m and PB. For a discussion of those circumstances under
the usual concavity - convexity assumptions, see Geoffrion [4].

It may be pointed out that the decomposition of (P) into the
infimal decision problems (Pj(B)) exhibited above is a somewhat unusual
one in a mathematical programming context, since in mathematical programming
decomposition algorithms, there are usually no variables corresponding to

th .
e uy

SEQUENTIAL OPTIMIZATION

The purpose of this section is to illustrate how the interaction
prediction principle developed by Mesarovic et al can be used in a particular
N-stage sequential optimization problem. The initial state $q is given.

The output at stage n, S 417 is a function only of the output of the
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previous stage and the control m applied at stage n:
Sl T Pn(sn’ mn) ©)

where m ¢ Mn and s is the final output. Each set Mn is assumed
n

N+1
finite.
For a given initial state S1 and the process defined by (5) we

want to minimize go(sl’m) where m ¢ Mlx...x MN. Given (5) we define

the following sets recursively
s, = {5} (6)

S 41 = {s | s= Pn(sn, mn) for some s € Sn and m e Mn}. Each set
s, can be interpreted as the state space at stage n.
To develop appropriate infimal decision problems, we consider the

following set of optimization problems:

For each

seS, n=1 ... N, N
Minimize

gn(57 mn> Kn(Pn(S) mn)7 m))
over

m e Mlx sz .o xMN
where

KN(s', m) = 0 for all s' ¢ SN+1’

! - 1 1
Kn(s , m) gn+1(s > Mo Kn+1) for all s' ¢ Sn+1'
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All functions are real-valued. The g 's are the infimal objective

functions and are assumed given though no relationship to g, is specified.

The K_'s specify the interfaces between different infimal units. Note

n
that in (7) we have an entire set of optimization problems for each
given n.

Suppose that the supremal unit uses the interaction prediction mode, i.e.,

that the supremal unit specifies the value of K for each s ¢ S 41 by

a real-valued function o We obtain the following infimal decision

problem:
For each

s e S, (8)
Minimize

g (s, m, a (P (s, m)))
over

m € M

n n

Solving (8) vyields a function Qn: Sn - Mn' These functions and the

imritial stat induce a sequence {sCL mCL sCL < sCL } where
iriti S e sy q 17 M2 Sp ee mN’ N1

a

a a a
So4] = Pn(sn, mn) and s; = s

1 1’

~

Let M be the set of overall optimal controls (minimizing go). Let

[0 (01 o4 04 . . . .
m = (ml, ... mN) with o = (al, Uy - aN) being any coordination

input. Following Mesarovic et al we now say that the interaction pre-

diction principle is applicable iff the following proposition is true:

V) (Vma) {[Kn(s, ma) = an(s) for all s e Sn+1

and for n=1 ... N] » o e M.



Assuming for the moment that the interaction prediction principle is
applicable, then the question whether the system is coordinable by it
depends on the existence of a coordination input satisfying the coordinating

condition of the principle.

Proposition 3: Assuming the interaction prediction principle is

applicable, then the system is coordinable by it.

This proposition can be shown constructively: the supremal unit
first "predicts" ay = 0 for all Snt1 € SN+1 and requires the Nth
infimal problem to be solved, yielding Qy and gy’ then it '"predicts'" the
(N-l)St interface, requires the (N—l)St infimal problem to be solved,
etc. We obtain the backwards algorithm of dynamic programming as developed
by Bellman [1}, which could be expected from the definitions in (7).

The critical question is whether the interaction prediction principle
is applicable. This is of course dependent upon the relation between the
overall objective function & and the infimal objective functions 8y
as recognized by Mesarovic et al 6] (cf. Proposition 5.1 and Propositions
5.26-5.30). Observe that if the problem at hand can be formulated as a
dynamic programming problem, then the gn's are easily defined and 8
takes the place of 8o’ which immediately implies that the interaction
prediction principle is applicable,

The result here is fairly general in the sense that the interaction
prediction principle appears applicable to a larger set of problems (with the

underlying process described in (5)) than the set of problems that can be

formulated in dynamic programming terms as suggested by the following example.



Example:
Consider the following two-stage process:

2
Pl(sl’ ml) = my and

2 .
PZ(SZ’ m2) = s, + m, , with
m,eM =1{-"/2,0, "/2} fori=1, 2.
The overall objective function is given by

. 3 2 2
go(m) = 51n(ml + m2) + > mlm2 + m, + m, .

A dynamic programming recursion cannot be formulated in any obvious
way, since knowledge of the state S, is not sufficient to identify an
associated optimal value of m, in the second stage: if Sy = (nz)/4 then
an optimal associated m, 1is T2 if m = -"/2 and - /2 if m, = /2.
Increasing the state space circumvents this difficulty; this is however

artificial since it leads eventually to a complete enumeration of all

possible decision sequences.

Consider the following infimal objective functions:
2
gz(s; m-z; 0) = m2,

 ex 2 -
gl(S, m; al(Pl(s, ml))) = 51n(ml + a) + 3/2 aumy + my, i.e. al(-) = Q.

Minimization of g, and g, over M2 and Ml gives an overall optimal pair

m; = m, = 0 for 8, provided that o was predicted to be zero.
In general it is however not clear how infimal objective functions should

be constructed; the only guideline that is available is that the gn'S should

have a common minimizer m which optimizes g
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This is a decomposition in the spirit of Mesarovié et al, though
as it involves an infinite number of infimal decision problems it is
not a direct application of their framework. The functional Kt(m) is
defined for each t as the value at time t of the function y which
satisfies ; = f(y, m,t) on [O,t] with y(0) = y. (We assume for
simplicity that Kt(m) is thus uniquely defined). Let K(m) be the
cartesian product of the Kt(m), t e [0,T].

For a given B, let the set of optimal solutions to (OCt(B)) be
denoted XE. Let XB be the cartesian product of the Xi, and & be the

set of solutions to (0OC). The interaction balance principle is then

applicable iff

Vg ¢ F)(VXB € XB){[(m,u) = xB and u = K(m)] » m ¢ gﬂ. It is shown
in Peterson [8], [9] that the conditions (m, u) ¢ XB and u. = Kt(m)
imply that m 1is a solution to (OC). Therefore the interaction balance
principle is applicable to this decomposition.

In general, however, solving the problems (OCt(B)) for each t does
not yield functions (m, u) which satisfy u = K(m), and hence this
decomposition is not always useful. Conditions sufficient to ensure that
there exists a B (with B(T) = 0) such that (m, u) e XB and u = K(m)
are given by the hypothesis of an appropriate version of Pontryagin's maximum
principle (e.g. {10}, Theorem 3, page 50), and the added assumptions that
a solution to (0OC) exists, and that Bep is pseudoconcave. Under such

conditions, and for the decomposition used ere, the problem (OC) 1is

coordinable through the interaction balance principle.
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OPTIMAL CONTROL

Consider the optimal control problem (OC):

Maximize g(m) = fz L(y, m, t)dt (0C)
with respect to
m on [0, T]
subject to

y = f(y, m, t), y(0) =7y, mt € Mt.

Here L and f are known functions, T and y are known constants, Mt is
a known set of permissible m, values which may vary with time ¢, and

m and y may be vector-valued. m_ and y_ are used to denote,

t

respectively, m(t) and y(t), and y to denote the time derivative of y.
A possible decomposition of this problem results, for each t, 1in the

infimal decision problem (OCt(B)):
Maximize gtB(mt’ ut) (OCt(B))
= L(Ut; mt’ t) + Btf(ut’mt’ t) + Btut
with respect to
(ut, mt) € Xt=={(ut, mt) l mt e Mt},
where

B e T = {differentiable functions on [0, T] with B(T) = O}.
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WELFARE MAXIMIZATION

This section discusses the application of the prediction principle

to obtain Pareto-optimal states of a 'private ownership economy' (cf. [2],

(31, (71, [11).

Consider an economy with n consumers, k firms and q commodities.

With each consumer i, 1 < i < n, is associated a consumption set M, from

which a consumption vector m, is chosen; an initial resource endowment

T and a real-valued utility function g Mi - El. With the jth firm,

1 < j < k, there is associated a set Mn+j from which that firm is to
select a production vector LR Each consumer i shares a proportion
n
. . of firm j's rofits, h Zo =
Mok J '8 Protits, hence o iont

The following assumptions are made for each consumer 1i:
(1) M, = Ei (the nonnegative orthant of Eq),
(ii) each g is continuous, strictly increasing and concave.

It is assumed for each firm j that:

(iii) each Mn+' is a convex, compact subset of g4 containing

0 e Eq-
It is further assumed that
n
(iv) each of the ¢ components of the vector 7 r, is
i=1 !
positive,
k
(v) M1 + '21 Mn+j contains an open neighborhood of 0 ¢ Eq.
J:

Consider the following welfare problem, denoted (WP):
Pareto Maximize [gl(ml) - gn(mn)] (WP)

with respect to Mooy Mo

subject to

a3
a1
1
i
3
+
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Let T denote the set

{8, Qg e an+k) | B, an+j € Eq; B>0 and B # O}.

An element y of T 1is the coordination input for the following
decomposition of (WP):

For 1 <1i<n:

Maximize gi(mi) (Ci(Y))
with respect to my

subject to

k
- = . + .
B it B Ty .§ Xi,n+j 8 ntj
j=1
m M
i i
For 1< j < k:
Maximize B - mn+j (Fj(Y))

with respect to mn+j
subject to

Mots € Mo

The problem Ci(y) is referred to as the ith consumer's choice problem.
The constraining equation represents a budget constraint. The
problem F.(Y) is interpreted as the jth firm's choice problem.
J

The vector B represents a set of prices at which consumers and firms can

buy and sell commodities.
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Define
Q) = (0, ayq ... o), for yel
and
n n k
= - 2, -+ 5
g(y, m) ( iil r. iil m, j;1 LIPS mn+k)
for

(v, m) e T xMyX ... XM, where m= (m; ... m ).

For each y € I', denote by mz the solution to Ci(y) (to Fj(y), if

~

n<i=n+j<n+ k), and define m7 = (m{ Cee m1+k). Let M denote
the set of solutions to (WP)., The prediction principle (of which the
interaction prediction principle is only a special case, see MesaroviE

et al [6], p. 99) is

N

Gy e Y Tm){lay, ') = q(v)] »+ m' € M) .

In accordance with general equilibrivm theory the following definition

is made:
(mY, B) is said to be a competititve equilibrivm if q(y, mY) = q(y). Then,

N

Proposition 4: 1If (mY, B) 1is a competititve equilibrium, then m e M.

Hence the prediction principle is applicable to this decomposition of (WP).

~ ~

Proposition 5: If me M, then there exists a y ¢ ' such that

~

(mV, B) 1is a competitive equilibrium with m' = m.

This is the celebrated theorem on the existence of a competititve equilibrium
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developed by Arrow, Debreu and others. It can be proved either with an
argument based on a fixed-point theorem ([11],pp. 61-102) or by a mathe-
matical programming argument based on the existence of a saddle point
(using ideas presented in [5] and in [7], pp. 18-213},

~

Proposition 6: M 1s non-empty.

The proof of this is straightforward. The last two propositions imply that
(WP) 1is coordinable through the prediction principle.

It is interesting to note that the general equilibrium problem as
rosed in the earlier literature [2] omitted distribution of profits to
consumers, in which case the Xi,n+j terms in the problem Ci(y) vanish.
Under these circumstances, coordination of (WP) can be achieved through

the interaction balance principle.

CONCLUS ION

Our investigation has revealed that there are interesting relationships
between the hierarchical systems theory and various optimization theories.
In fact, it appears that a wide range of optimization problems can be
coordinated using coordination principles from hierarchical systems theory.
However, a particular optimization problem cannot always be coordinated
using a given coordination principle. Consider, for example, the application
of the interaction prediction principle to the decomposable mathematical
programming problem (P) discussed earlier in the paper. For that purpose,
(P) must again first be decomposed, and the simplest way may be the following:

Let each infimal decision problem (Pj(@j)) be
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Maximize fj (mj) (Pj (aj))

subject to

mJ € MJ,
where aj is the '"predicted'", or fixed, interface input vector for the jth
infimal decision problem. Let a = (al, Qy wee an). Let m? be an
optimal solution to (Pj(@j)); and let m = (m?, m; . mi). The

interaction prediction principle is now expressed by the proposition

(Va)(Vma){[m = m" and K(m) = a] + m ¢ ;ﬂ

where K(m) and & are defined as earlier. It is easy to see that this
proposition is not necessarily true for the problem (P), and hence the
interaction prediction principle is not, in general, applicable.

It is worth pointing out that we have deliberately glossed over two
difficulties associated with the application of the hierarchical systems
theorem coordination principles to different optimization problems. First,
finding that specific decomposition of a problem which allows coordination by
som= coordination principle may not be a trivial task. Secondly, even if
one has found the '"right'" decomposition, there then reamins the task of
computing through some algorithm those values of the coordination inputs for
which the coordinating condition of the particular principle holds. As
already pointed out in the Introduction,we have not given any attention

to algorithmic schemes for computing coordination input values here. Whether
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the hierarchical systems theorem will turn out to be a success in
practical appllcations may well depend on how easily these two difficulties

can be resolved.
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