ECOMNZTOR

Make Your Publications Visible.

Nachman, David C.

Working Paper

A Service of

ﬂ I I I Leibniz-Informationszentrum
° Wirtschaft
o B Leibniz Information Centre
h for Economics

On Risk Aversion and Optimal Stopping

Discussion Paper, No. 26

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and

Management Science, Northwestern University

Suggested Citation: Nachman, David C. (1972) : On Risk Aversion and Optimal Stopping,
Discussion Paper, No. 26, Northwestern University, Kellogg School of Management, Center for
Mathematical Studies in Economics and Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/220386

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/220386
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 26
ON RISK AVERSION
AND OPTIMAL STOPPING
by

David C. Nachman

November 30, 1972

DEPARTMENT OF MANAGERIAL ECONOMICS AND DECISION SCIENCES
GRADUATE SCHOOL OF MANAGEMENT

NORTHWESTERN UNIVERSITY
EVANSTON, ILLINOIS 60201



1. TINTRODUCTION

Risk aversion, the unwillingness of an individual to accept a gamble
which is actuarilly fair, has played a significant role in the development
of the economics of uncertainty. Indeed, as Arrow points out, the risk

"

aversion hypothesis offers a satisfactory explanation of "...otherwise

puzzling examples of economic behavior,'" including the buying of insurance

and the holding of wealth in the form of non-interest-bearing cash balances. 1/
Such explanations constitute the qualitative results in the economics of
uncertainty.
To obtain quantitative results in this area it is necessary to postu-
late how risk averse an individual is or how his aversion to risk changes
with certain parameters of the problem under investigation. TFor example, risk
aversion can tell us that an individual will hold cash balances, but to
investigate the change in these holdings with say an increase in total
wealth requires knowledge of how the individual's aversion to risk changes
as he becomes wealthier. In 1964 and 1965 Pratt [26] and Arrow [1] introduced
measures of absolute and relative risk aversion that permit comparisons of
individuals, one of whom is "more risk averse' than the other, and comparison
of the behavior of the same individual at varying levels of wealth. Since
then these measures have been employed to derive quantitative properties of
optimal policies in a variety of decision problems under uncertainty. E/
We continue the spirit of these investigations in this paper by studying

a class of sequential decision problems known as optimal stopping problems. 3

This class of problems is interesting for two reasons. The first and most



obvious is that the problem of timing the implementation of a given action
can be modeled as an optimal stopping problem. From optimality conditions
for the stopping problem it is then possible to deduce the effect on optimal
timing strategies of changes in the degree of risk aversion of the decision
maker or changes in his initial wealth given his risk preferences.

The second reason is more fundamental. 1In all interesting decision
problems, whether they are characterized by certainty or uncertainty, choice
involves the foregoing of alternatives and hence the incurring of opportunity
costs. The touchstone of analysis of decision problems under uncertainty is the
opportunity cost involved in foregoing an alternative with a certain outcome
for one with uncertain outcomes. This opportunity cost is a function of the
decision maker's risk preferences and is fundamental to definitions of certainty
equivalents and risk premiums. These latter concepts are in turn fundamental
to the development and value of the Pratt-Arrow measures of risk aversion.

In sequential decision problems under uncertainty difficulties arise in
the study of the trade-off between certainty and uncertainty. First, the risk
premium of static analysis does not reflect information obtained in the course
of making a sequence of decisions. Secondly, there is, in general, no temporal
measure of risk aversion, i.e., there is no way of relating risk preferences
in one period to those in the following or preceding periods. =

In attempting to solve these two problems, one would like to study a
sequence of decisions that in every period involves a binary choice between
an alternative with a certain outcome and one with uncertain outcomes and
whose reward and cost structure are sufficiently simple to lay bare these
basic alternatives. The optimal stopping problem satisfies these criteria

and from a study of this problem we have some candidates for solutions of the
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above problems. We report in this paper the first part of this study which
deals with conditional risk premiums and the utility theoretic formulation
of the optimal stopping problem under the assumption that risk preferences
are homogeneous with respect to time., =

The remainder of the paper is organized as follows. We begin in section 2
with some notation and discuss the concept of absolute risk aversion. We define
oonditional risk premiums and prove some elementary results regarding them.
Conditional risk premiums generalize the notion of static risk premium.
They provide a guide for intuition in sequential decision problems and a
tool for analyzing expectations of future rewards based on current information,

In section 3, we present the optimal stopping problem (0OSP) from a
utility theoretic point of view. There we prove a theorem relating absolute
risk aversion and optimal timing policies. The theorem states that the
more (absolute) risk averse individual will implement a given action sooner
than will the less risk averse individual. We prove the theorem using the
corditional risk premiums defined in section 2 and also using Pratt's [26,
Theorem 17.

In section 4, we apply the results of section 3 to two important questions.
The first deals with a class of simplified timing strategies we call one-
period myopic rules. The result of section 3 is shown to hold for this class
of rules and we give sufficient conditions for a rule in this class to be
optimal. The second question deals with the conjecture that the individual
who is less risk averse should in some way be rewarded for his greater willing-
ness to bear risk. This conjecture is shown to be false in general.

Throughout sections 3 and 4, the results are interpreted for the
problem of the timing of the sale of an asset. In addition, we discuss briefly
models of the random walk type for stock prices and their implications for

the timing of stock market transactions.



2. ABSOLUTE RISK AVERSION

2.1 Some Preliminaries.
Throughout this paper we will be dealing with random variables defined
on a fixed probability space (O, 7, P), where O is a set of points, J a o-algebra
of events (subsets of (), and P a probability measure on F§. A property which
holds except on a set of P-measure zero is said to hold almost surely or
almost surely P and is abbreviated a.s. or a.s.P, All random variables will
be assumed to be integrable with respect to P. ézle is a random variable
on (3, we denote its expectation by EX. 1In denoting events such as
{wW:X®) =a} we sometimes abbreviate to {w:X =a} or just (X =q).

If{%l; a ¢ A} is a collection of random variables (indexed by the set A),

M

we denote by‘f(%l; a A) the o-algebra generated by the %1. Similarly we
denote by(f(Xl,...,Xn) (or,j'n where no confusion arises) and by J(X), the

g-algebras generated by the random variables X ..,Xn and X respectively.

1
We denote by GJQBI) the measurable space where El is the real line

and Bl the Borel subsets of El.

Let X be a random variable and Y a J-measurable function taking values
in some denumerable set {yk}z=1' The conditional expectation E(X‘Y=yk)

is defined constructively as

)y = L T
k

rovided P(Y=y,) > 0. Hence
P K

y E(X| Y=y,) dP = P(Y=y,) E(X|Y=y,) = F X dp . (2.1)
' (Y=y,) k k k - (Y=y,)

In many problems, however, we are interested in conditioning expectations on
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random variables or random vectors ¥ such that P(Y=y) = 0 for all vy.
Hence, in general, we result to nonconstructive definitions like (2.1) to handle
these more difficult problems.

To be specific, let Y be a random vector taking values in the measurable
space Q?/B). We define the conditional expectations E(X|Y=y) and E(X|Y) as

any F-measurable, respectively 7 (Y)-measurable, real valued functions satisfying

,r E(X| Y=y) dr, = j XdP ,7 Be 3 (2.2)
’B (Ye B)

| E(X|Y) dP = f XdP , 7 Ae J(Y) (2.3)
YA A

where PY(B) = P(YeB) for all BeF. Since in (2.3) the only restrictions are
that A belong to # (Y) we may generalize to conditioning on an arbitrary sub-

g-algebra B of J by defining E(XLB) as any J-measurable random variable

satisfying
JE(X|-¢9) ® = | Xdp ,V Aed 2.4 &
A A
Existence of the functions required in (2,2) - (2.4) is guaranteed by the

Radon~Nikodym Theorem [ 5, p.398] and they are unique up to almost sure equiva-
lence (a.s.P in (2.3) and (2.4) and a.s.P, in (2.2)). We will use these condi-
tional expectations frequently in the sequel and we use the notation

E(X|Y), E(XLB), E(X[Y=y) to denote the equivalence class and any element

thereof. Such elements are referred to as versions of the conditional expectation.

2.2 Risk Aversion and Risk Premiums.
s . . . . 1 1 .
By a utility function in this paper we mean any function Yyw® - R which
is strictly increasing and continuous. It follows then that a utility function

is Bl - measurable. Although we are going to use such functions in the sense
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of von Neumann-Morgenstern expected utility theory, we do not require them
to be bounded as many axiom systems imply they must be, 9/ Since such functions
are unique only up to a positive linear transformation, we will assume that
U(0) = 0 for any utility function,

Let Y be a utility function, X a random variable, and b ¢ El. Suppose
E l UX) l < ®, We may think of X as a random monetary reward and b as
the initial wealth position. The risk premium m(b,X) of X under P is defined

by the equation
UGB + EX - 7 (d,X)) = EUYD + X) (2.5)

i.e., as the unique real number 11 that just makes 9 indifferent between
receiving EX - ;7 for certain and receiving the random reward X. 19/ T 1is
unique since 9 is strictly increasing and always exists (although it may be
+ ») since 9 is continuous. 711 depends on Y,b,X, and P, but, since we will
not vary P in our analysis of gambles defined on () and since dependence of 11
on Y will be noted with subscripts when more than one utility function is
under consideration, the notation 11(b,X) seems appropriate.

In defining risk aversion and absolute risk aversion properties it is
convenient to use the risk premiums definedon El. Given 9, denote by-Qu the
set of probability measures p on 031191) for which x and Y (x) are integrable.
Let m(b,p) denote the risk premium defined by (2.5){when {.7,P) = Gﬂ}ﬁl,P)).
The x is suppressed in this notation since the gamble is always the coordinate
random variable on «9;@1). The varying of p in'Qu determines different
gamhles. Note that for degenerate p,m(b,p) = 0, ¥V b ¢ El.

The utility function Y is said to exhibit risk aversion if m(b,p) = O

1
for all p ¢ Qu and all b e £ . This property of Y is easily shown to be

equivalent to concavity of Y and is the property of risk aversion mentioned in



the introduction. From (2.5) we see that the risk averse individual is
willing to accept something less than the actuarial value EX of the gamble
for certain rather than face the gamble.

Although risk aversion is a reasonable hypothesis we will not need it
for most of our analysis., Instead we will make use of comparisons of utility
functions based on m(b,p). Given two utility functions ul and uZ’ we say
that?41 is more (absolutely) risk averse than?(z, and write‘u1 zr uz,if

ﬂl(b,p) = ﬂz(b,p) for all p ¢ Qu ne and all b ¢ ?1. We say that the

1 ?42

utility function 9 exhibits decreasing (increasing) (constant) absolute risk

aversion, and write 9 is DARA (TARA) (CARA) if b, > b2 implies

1
ﬂ(bl,p) < &) () ﬂ(bz,p) for each p ¢ Qu. Again from (2.5) we see that

these definitions accord well with the intuitive meaning of the properties
inovlved.
The following result due to Pratt [26; Theorem 1] will be used in sections

11/

3 and 4 to derive some of our results. — Let?4£1,7411 denote the inverses

of?42 and ul respectively,

Lemma 1. ul = u2 if and only if?41@451(t)) is a concave function of t.

Proof: Note first that we are assuming?41 and uz dre defined on all of,?1 so
that'z/(1 is defined on the range of u;l which is all of/?l. Prat: proves the
implication?{laxgl(t)) concave in t implies Uy 2, Uy without any differentiability

assumptions on?xl and?{z. Suppose then that ul z uz. Let tl’ ty be any two

X, be the unique numbers

numbers in the range o the domain o i an et x.,
b h f 2 (the d f uzl) d1 1°%2

such that Y, (x,) = t, and 9, (x,) = t,. Given ) e [0,1] denote by Py the

probability which assigns probability A to Xy and (1-)\) to Xy By assumption,
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T OB ) = hxg  (T)x, = UL (AU G+ (1) U ()

”2(O’p>\)

Wy b (1)xy =250 AUy Ge) + (1) Uy ()

Il

and hence
WU G () + (1) 2 U () = Ay () + (T U G5y
S Uy 0 MUy O + (10 Uy (5)))
- U, 05 () + (1))

and we are done,

Although the entire analysis of this paper could be accomplished with no
further considerations of risk aversion concepts, we will find it intuitively
appealing to use the notion of conditional risk premium. Although Lemma 1
gives us the analytical tool to derive quantitative properties of optimal
stopping rules, the condition?4104£l(t)) concave in t provides little

intuitive insight. We turn now to conditional risk premiums.

2.3 Conditional Risk Premiums

It is often convenient, as will be seen here and in section 3, to condition
expectations and therefore risk premiums on J -measurable functions (random
variables and random vectors) and on sub-g-algebras of 7. Let X be a random
variable, Y a random vector taking values in the measurable space ,7), and
L a sub-g-algebra of 7. Assuming E [ U(X) l < o,  analogous to (2.5) we

define the conditional risk premiums 1 (b,X l.B) and 1 (b,X l Y = y) by

>b +EX | F)-nm,x | 5) = Ey®d + ) | B (2.6)
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UMb +EX | Yoy) - m(b,X | Y=y)) = EQO +X) | ¥ = y) 2.7y 22/

Note first that (2.6) defines (b, X I.B) as the equivalence class

(under the relation = a.s.P) of f-measurable random variables Z satisfying
-1
Z=b+EX|H -U EQO+X| B (2.8)

and that (2.7) defines 17(b,X ] Y = y) as the equivalence class (under
= a.s.PY, where PY(B) = P(Y ¢ B) for all B ¢ /#) of S-measurable real

valued functions Z' satisfying
-1
Z' =b +EX | Y=y) -y EQO +X) ] Y =y)) (2.9)

We will use the notation 1 (b,X I‘B) and 17 (b,X I Y = y) to refer to both

the equivalence class and any element thereof. Such an element will be

referred to as a version of the conditional risk premium. We define (b, X | Y)

as (b, X l Y) =m(b,X | Y = y)o Y a.s.P (where o denotes composition of functioms).
Intuitively, conditioning on the o-algebra / or the random vector Y

conveys the idea of being able to obtain some information or observation

prior to receiving the random reward X. The conditional risk premiums then

play the same role as the risk premium of (2.5) given this information. The

following lemmas provide further justification, both formal and intuitive,

for considering conditional risk premiums.,

Lemma 2. 13/

Let 9 be a utility function, /' and /' sub-g-algebras of J, and X
1
a random variable with E l?{(b + X) ] <®, be R . Then

1
(i) if X is S-measurable, then 1 (b,X |.B) =0 a.s. for all b ¢ R ;

(ii) if 7(X) and B are independent, then 11(b,X |.B) =1(b,X) a.s.;
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(1i1) if B’ B, then E@(b,X | B') | &) =mw(b, X | B') a.s.;
(iv) if Y is concave, thenm(b, X | £#) = 0 a.s., and
Ew(b, X | B) =7 (,X);
(v) if Y is concave and ' €5, then EG(b, X | £) | #') < m(b,X | &)
a.s. and hence 0 < Em(b, X | £) < Eqr(b, X | B') = 7 (b,X).
Proof: (i) If X is H-measurable, then EQ(b +X) | & ) =4(b + X)

a.s. and EX |_B) =X a,s. Hence from (2.6),

Yb +EEX | BH) -mb, X| B)) =y +X) a.s.

s b +X-mb, X|B) =b+Xa.s,

11

= m(b, X [.B) 0 a.s.

(ii) If 7(X) and & are independent, then E@Q((b + X) ldﬁ) =
E%Y( +X) a.s. and E(X | 8) = EX a.s. Hence, from (2.5) and (2.6),

b+EX—n(bX|_B)=b+EX-rr(b,X) a.s.

and the conclusion follows.
(iii) If 5’ < &, thenm(b, X | ') is H-measurable and hence

Eqeb, X | 5') | &) =m(b, X | B') a.s.
(iv) 1If 9 is concave, then

T, X | B =b+EE |5 -uEY® + %) | 5
> b+ EX |5 - BO UG + X)) | B
=b+EX|SH) -b-EX]|LH)=0a.s.,

14/

the inequality following from Jensen's inequality for conditional expectations. —
Using Jensen's inequality for expectations gives
Em(d, X| ) =b +EX - EQ (B +X) | )
< b +EX -y NEEQU®Db + X) | )N

b+ EX -y~ Lmy(b + X))

=17 (b,X)
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where we have used the fact that E(EX ‘ b)) = EX and similarly for %(b + X).

(v) 1f B' <b and Yy is concave, again using Jensen's inequality gives

EG(b,X | ) | 5') = Elb +EX | £) - W EU® +X) | 5| 5]

b+ EX | 5 - B EUMK) | B) | 5

b+ERX | S5" - 'z,(_l(E(E('z,((b +3x) |8 |8

IN

b+ EX | B - EWD X | B

= n(b,X | B) a.s.

where we have used the fact that E(E(X | .B) | B = EX | ') a.s. and

I

similarly for %(b + X). Hence from (iv) we get 0 < En(b,X ] B) < En(b,X \ AD)
m(b,X).

To interpret these results, consider a gamble X and a random variable Y
that may be observed before the value of X is known. Then E(X ! Y = y) is
an estimate lé/ of the values of X that will obtain given tr2at Y = y has been
observed. This estimate is based on knowledge of the event {w: Y(W) = y} since
this event is what can be inferred from the observation Y = y. Thus it is the
events in the c-algebra generated by Y, J (Y), that are important for the
estimate E (X ] Y = y). We should expect then that the more events in J (Y),
the better our estimate in some sense or at least the more information we have
on which to base our estimate of X.

The results of Lemma 2 bear out this conjecture, but we must be

careful to allow for the fact that information affects risk averters differently
than say risk lovers (those whose risk premium n(b,P) is non-positive and
therefore whose utility function is convex). In (i) we have perfect information,

i.e., all events that are relevant for the values of X are in .} since J (X) € 5,
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To make this a little clearer, suppose Y is a random variable that may be
observed before X is realized and that J (Y) =.. Then there is a 51-
measurable function ¢: El - El such that X = @(Y). Thus knowledge of Y is
equivalent to knowledge of X and we are in the certainty case. 1In this
light the conclusion of (i) is not so startling.

In (ii) we have the case that ./ contains no useful information regarding
X since J (X) and B/ are independent. Another example of the case when £
has no relevant information is when 5 = {Q, ¢} , when B consists of just
Q0 and the empty set @. 1In this case conditing on J is equivalent to no
conditioning since for any random variable X, E (X \ L) = EX a.s. This last
case reinforces the idea that the size of the conditioning o-algebra is
directly related to the information provided by it (except of course in the
independent case).

In case (iii) we interpret E(7(b,X I.B') I.B) as an estimate (estimator)
of the random risk premium r(b,X ] B5') given information in 5, i.e., we begin
with information in S' and then project forward on the basis of information in
b. The result in (iii) seems at first to fly in the face of our interpretation
of information and the size of the conditioning o-algebra. £ is larger than
Bb', but this additional information has no appreciable effect on the estimate.
Notice, however, that what we are estimating is the random risk premium
7(b,X \ B5') which is #' and hence .f-measurable. & already contains all
events necessary to explain or predict the values of n(b,X ]ﬁ”) and hence
the estimate is certain, i.e., E(m(b,X | 5" ] B5) - w(b,X \ B') = 0 a.s.

The case of risk aversion is interesting in that it brings out the
phenomenon that information reduces risk. From (iv) as expected m(b,X \.D) > 0,

but we have that Em(b,X 1 b)Y < Em(b,X) = n(b,X) and from (v) for
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5'ch, O<En(,X | B) <En®,X| H') <n(b,X). Thus the expected value
of the non-negative conditional risk premium is bounded above by 1 (b,X)
and decreases with increasing information until 52 J (X) at which point
from (i) E n(b,X ] £) = 0. For one who prefers risk () convex) we get
the opposite effect w(b,X) < E w(b,X 1 5" <Enm (b,X \ B£) < 0. Since the
risk premiums are non-positive for a risk lover, he would be willing to pay
some positive (non-negative) amount to receive the random reward X. Since
m(b,X | B) is the maximum amount he would pay (given ), the more information
in &, the less risk, and hence the less he would be willing to pay (in terms
of expected value of n(b,X \ﬂ)) for the gamble X.

The relationship between conditional risk premiums and absolute risk aversion

is straightforward.

16/
Lemma 3: — Let b,X”B,ul, and u2 be given and suppose E \‘ui(X) | <w, i=1,2,

If Uy > uz, then nl(b, X \ 5 E_Wz(b:x } BH) a.s.

Proof: The idea of the proof is to find risk premiums given by probability
measures on Q?lyﬁl) that equal the conditional risk premiums. To this end,
let ;(d b4 ‘ £5) be the regular conditional distribution of X given /. Then for
each w ¢ Q fixed, ; (d x 1.3) (w) is a probability on 0?1,81) and since X

and ui(X) are integrable, for almost all w, P (d x 1 5 (W) e 6&( n 6%/. Define
1 2

~

the risk premiums r, (b,P) in the usual way, i.e.,

UG+ xPEx | B @ -1 (b, P)®)

= b+ x) P x | &) ), i =1,2.

By assumption we have ﬂl(b;P) 2_w2(b,P) a.s. But since
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EQU G+ | 5) =[G+ P @x |5 as., i=1,

E(X ‘ y:) ='r x P(d x ].B) a.s.,
we have that ni(b,P) = ni(b,X \ H) a.s. i = 1,2, Hence a.s.
TTl(b;X |1 -B) = Wl(b;P) zﬂ'z(b;P) = TTZ(b;X \ -B)-

The converse of Lemma 2 is not true in general. The problem is that
(O, T ) may not be rich enough so that given z probability p on 0?1, Bl) there
is an X on (2, J ) such that Py = p, e.g., if O has only a finite number
of points. If (O, J ) = Q?l, 81), the converse is clearly true (if stated
"for all b < By").

We conclude this section with the following result.

Lemma 4 : Let X and Y be two random variables and U1’ Uz two utility

functions with E | % (X) | <w, i = 1,2, and Y 2 _U,» If Up(y) 2 EQU X) | Y=y)

a.s. Py, then % (¥) > EQ (X) | Y =1y) a.s. P,. Similarly, if

Y)
U () < EQU ) | Y =y) a.s. P, then Uy () < EQUy (X) | Y =y) a.s. Py -

Proof: The proof follows directly from Lemma 3. We illustrate with the

proof of the first statement.

Up () ZEQUE) | Y=9) =%EX | Y=y) ~m,& | ¥ =y)

I 1

> yREXR| Y=y -mE|[Y=y)2EX | Y=y -mX]Y=y)

=<

> YUYMZUEX | Y=y -7 X | Y=y) =EQ® | Y=y

1,2 and all relatioms hold a.s, P

where ni(X lYy=y) = wi(O,X ly=9v) i -

A temporal interpretation of this result is illuminating. We may consider
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Y to be a current state variable say wealth and X to be the state variable
some time in the future. Then ECui(X) i Y = y) is an estimate of future
utility given the current state is y. Lemma 4 says that if the less risk
averse individual views the future pessimistically, then so does the more
risk averse individual. If the more risk averse individual wviews the future
optimistically, then so does the less risk averse individual. Our results

on optimal timing policies in the next two sections are applications of this

17/

principle.

3. THE OPTIMAL STOPPING PROBLEM

In this section we introduce the optimal stopping problem and prove the
theorem mentioned in the introduction. We begin by defining the problem in
abstract form to facilitate references since it is in this form that the problem
appears in most of the theoretical literature. It will be helpful to keep
in mind, however, the interpretation of this problem as a model for optimal
timing decisions. Such an interpretation is made throughout this section
and section 4, TFor ease of exposition and to conserve space we consider only

18
infinite horizon problems here. 18/

3.1 Introduction and Definitionms.

A decision maker has the opportunity of observing in order a sequence of
random variables {xn; n > 1} defined on the probability space (Q, J,P). A
realization Xn(w) for w ¢ 0 is interpreted as a monetary reward at stage n.
At each stage, the decision maker may stop and accept Xn as his reward or

continue and observe X471 The decision maker is assumed to have a utility
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function Y as described in section 2.2 and initial wealth b ¢ El- He seeks
to maximize the expected utility of terminal wealth. To do so he must have
a strategy which tells him to stop observing and accept a reward.

Like most other optimization problems, the technical elements and
interpretation of the problem structure impose restrictions on the strategies
that can be considered. On the tec'nical side, at the very least we want
strategies to define terminal reward so that expected utility of terminal
wealth has meaning. We should therefore require that a stopping strategy
define terminal reward as a random variable.

On the interpretation side, there are two natural restrictions. Rexl
world decision processes involve observation or gathering of information and
implementation of actions based on that information. At the time an action
is taken, observations are historical, and actions are eventually taken.
It seems reasonable then to require that the decision to stop at stage k be
made only on the basis of information obtained about the process up to and
including stage k, i.e., on the observations Xl""’Xk’ and that a stopping
strategy should lead to action eventually, i.e., a stopping strategy should indeed
stop (say a.s.).

With these restrictions in mind, the following definition of a stopping

rule seems appropriate. Denote by ‘In the g-algebra generated by Xl""’Xn

A stopping rule for the process {Xn"jn’ n > 1} is a random variable t defined
on 0 taking values in {1,2,...,o} and satisfying (a) P(t < ») = 1, and
() {w:t@) = &} ¢ Ty k= 1,2,... <ondition (a) states that stopping must
be an almost sure event and (b) that stopping at k be an event depending only
on Xl""’xk’ i.e., the past and the present.

Conditions (a) and (b) on a stopping rule formalize the restrictions on
information and actions discussed above. The requirement that a stopping rule

t be a random variable permits us to define the stopped variable Xt in the
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following very sensible way.

1]
=

X, W) = @) if t@)
t i (3.1)

Il
8

= o if t@)

The convention Xt = on (t = ») just completes the definition of Xt but

adds nothing to the problem since P(t = e) = 0. X has the obvious interpreta-
tion as the (random) reward received by the decision maker who employs a
stopping rule strategy. That Xt is a random variable may be seen from the
identity

fw:x, @) <o} = U {ort@) =0} N {w:X @ <af) eJ
n=1

for all o ¢ ?1. 19/
We can now state the optimal stopping problem (OSP) precisely. Let

T denote the class of stopping rules t for which
E % (b +xt)'<oo (3.2)

0SPQY). Given {Xn, jh; n > 1}, %4, and b, find a stopping rule t* ¢ T, if

it exists, such that

EYd + Xe) 2 EUb + X)), ¥V teT. (3.3)

The rule t*, if it exists, is called optimal for OSP(®) or a solution
of 0SPCY).

Before we discuss the characterization of optimal rules let us interpret
the above specification of the OSP for optimal timing of a particular action,
say the sale of an asset. For an individual who has decided to sell the
asset, the decision that remains is when to sell. The Xn may be interpreted
as random price offers. The individual may, after observing Xn’ accept it or

wait one more period for another offer Xn+1 which, at that decision point, is
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random. We are assuming that what the seller can know about Xn+1 is only
what can be inferred from observing Xl""’Xn and knowledge of P.
Following a stopping rule strategy t yields a (random) selling price Xt'

Terminal wealth then is b + Xt,zﬂ/

3.2 Optimal Stopping Rules,

As mentioned in the notes to the introduction, the OSP has been studied
thoroughly from a mathematical point of view. We present below in Theorems 8§
and 9 the major results of that study applied to our utility theoretic formula-
tion of 0SP. Proofs of these results require considerable development
and we omit them to conserve space. The interested reader may consult the
sources given. All we have added in our statements of these results is the
utility function 7. The preliminary work on further defining OSP ()
mathematically is given here.

In addition to the assumption that the X are integrable we make the
following assumptions on the process {Xn, Jh; n > 1} and any utility function
Y we may use in this section and the next. Some assumptions like these are
necessary to make the problem tractable mathematically. Assumptions (Al) and
(A3) are slightly stronger than necessary. (Al) is needed in section 3.3 and

(A3) leads most directly to the optimality result we want to use.
p y
(A1) E(sup | X |) <w
n n
(A2) E iU(b‘I’Xn) \<°”) n=1,2,.
+
(A3)  E(sup Y(b + Xn) ) < o
n

The value V of 0SP() is defined as

V= sup EY(b + X)) (3.4)
teT
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Some immediate consequences of (Al) - (A3) are contained in the following

lemma. For notational convenience let Yt =Y + Xt) for all stopping rules t.

Lemma 5. Under (Al) - (A3), T is nonempty, E | Xt \ < « and E 1 Yt \ < o

for all t ¢ T, and | V \ < =,

Proof: Let t = n. Then (A2) implies t ¢ T. Now for all t ¢ T, EYt- <,

From (A3),

g s (sup Y, )
> X (= sup
=1 (t=n) K k

8

+ +

Ey, =E 1 X (t=n) Tn

It

n

+ +
E(sup Y ') = E(sup U(b + X)) < =,
n 8t

(where XA denotes the characteristic function of the set A) and hence
= EY_ + EYt- < o for all t ¢ T. The same argument with Yt+ replaced
by |xt\ shows, by (Al), that E ixt| < ® for all t ¢ T.

Again from (A3)

[o<]
V =sup EY_ = sup E 2 «y __ Y
teT t teT n=1 (t=n) 'n
® +
<sup E Iy, _ Y
teT n=1 (t=n) 'n
® +
<supE ¥ x, _y (sup Y )
teT n=1 (B 7 K

+
E (sup Y, ) <
n

Since V > EYn > - «, the proof is complete.
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The characterization of an optimal stopping rule involves the concept
of the essential supremum of a collection of random variables. Let {%1, acd}
be such a collection (indexed by the set A). The eiiggup ZG is a random
variable Z such that (a) %1 < Z a.s. for all aeA, and (b} if W is a
random variable satisfying (a), then Z < W a.s. Some properties of the ess sup

are listed here in the form of a lemma for easy reference.

Lemma 6. Let {%1; acA} be a collection of random variables. Then

(i) Z = ess sup Z_ exists and is unique a.s.;
aec A

(i1i) there exists a sequence {a }m C A such that Z = sup Z a.s.;
k’ k=1 K ak

(iii) Z is ]K%l; acA) - measurable;

(iv) 1if A' C A, then ess sup Z_ s Z a.s.;
e A'

(v) ifFeJ and W is a random variable such that W > %1 a.s. on F for each

Qe A, then W= Z a.s. on F.
Proof: [25; p. 44] and [11; Lemma 2.1]

Now let Tn denote the class of stopping rules t ¢ T such that t= n a.s.
We associate with OSPQ) the process {Sn, J 3 n> 1} where the random variables

n

Sn are defined by
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S = ess sup EQ( + Xt) \ 7))

teTn n
(3.6)

= ess sup E(Y 1 J )
teTn t n

The reason the ess sup is used in (3.6) instead of the supremum is that T ~may

be uncountable. The expression sup E(Yt } jh) is then not well defined since
te™
n

it may not be measurable and any two versions (arising from different versions

of the E(Yt ] J’n)) may differ on a set of positive probability.

Lemma 7. Sn is j'n- measurable and (A2) and (A3) imply E lSn l < w,n=1,2,...

Proof: By Lemma 6 (§ii) Sn is measurable in the g-algebra generated by the
E(Y | J ), t e T . But each E(Y | J ) is J -measurable and hence

t' n n t n n
so is S . Let {tk} T be the sequence asserted in Lemma 6 (ii). Then by

definition of S and (A3),

Y = E(Y |j)§sn=supE(Yt LT )

n n n k k n
< sup E(¥ \ T )
K by n
< E(sup Y \7 )
ko n

+ + :
Hence EYn < ESn < E(E(s;p Ym \ J n)) = E(s;p Yo ) and E | Sn \ < @,

We may interpret Sn as the optimal gain to the decision maker who has not
stopped before stage n. This interpretation is reinforced by the following

fundamental recursion relation of optimal stopping.
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Theorem 8. For each positive integer n,

(i) s = max [Yn’ eisTsup E(Yt \ jh)] a.s.
€ ntl
(ii) ess sup E(Yt \ ,Jn) = E(Sn+1 \ g/n) a.s.
teT
ntl
(iii) Sn = max [Yn’E(Sn+1 \ ‘Jn)] a.s.

Proof: (iii) follows from (i) and (ii). See {11, Lemma 3.1} and [7, Theorem 4.1]

for proofs of (i) and (ii).

An examination of (iii) of Theorem 8 together with the above interpretation of

Sn suggests the following rule as a candidate for an optimal rule. Define

the rule 7 as follows:

T) = kifsﬁmi>%®0,j=1p.”bl
and Sk(w) = Yk(w) 3.7)

l o if 5, @) > Y, @), k=1,2,...

T says stop at k if the utility of the current reward is the first such reward
that is at least as great as the conditional expectation of the opt.mal gain
from continuing, i.e., E(Sk+l ‘ Jk ).

From (3.7) we get

k-1
(T = k) = .Q (Sj > Yj) ﬂ(Sk = Yk)
j=1
and hence (1 = k) ¢ j’k ( j’n<: j_n+1’ n=1,2,...). There is no claim, however,
that P(T < ®») = 1 and we have given no condition sufficient for this to be true.

Also we have not shown that EY: < ®, That these results hold if an
|

optimal stopping rule for OSP(Y) exists is a consequence of the following

optimality theorem.
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Theorem 9. (i) If P(t < ») =1, then T is optimal for OSP(Y) and
S, = E(YT \ Ih) a.s. (1 > n), n=1,2,... (ii) if a solution t* exists for

OSP(), then 7 is also a solution and 7 < t* a.s.

Proof: See [11, Theorem 3.1] and [7; Theorems 4.2 and 4.5].

Thus if solutions exist for OSP(Y), T is also a solution and is the
minimal solution. Although there are many more results in the theory of
optimal stopping that are interesting, including sufficient condit ions for
P(T < «») =1 and methods of computing V and Sn by truncation, backward induction,
and taking limits, Theorems 8 and 9 are sufficient for our purposes in

this section. 1In section 4 we will make use of the following result.

Lemma 10: If t is any stopping rule such that
(a) EXt exists

(b) EX ) > Xn a.s. (¢t >mn), n=1,2,...,and,

n+1l ‘ jﬁ
(¢)

lim jxn +dP = 0,

n (t > n)

] Frad
then E(Xt | 7 n) > Xn a.s., (t > n),

Proof: [7; Lemma 3.3].

Note that under (Al), (a) and (c) of this lemma are satisfied. Condition (a)

was proved in Lemma 5. (Al) gives

Lim j‘lxnldP =0

(t > n)

for every stopping rule t.
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3.3 Optimal Stopping Rules and Absolute Risk Aversion.

We are now in a position to prove the basic result of this paper, Theorem 11.
From the partial ordering Zr on utility functions we get a corresponding ordering
on minimal solutions to the associated OSP's. We consider optimal stopping
problems for two utility functions ul and uz beginning with the same initial
wealth b ¢ El. Denote by T, and Ty and Si and Si, n=1,2,..., the random

1
variables defined in (3.7) and (3.6) for OSPCUI) and OSP(MZ) respectively,

l)
Theorem 11. If ul > rx2’ then Ty > Tl a.s.

Proof: 1t suffices to show that {w:TZQD) = n} CZ{w:TlQn) < n} a.s. We will

prove this first using conditional risk premiums and then using Lemma 1.

2
. : . " (b 4+ _ .
First Proof: By definition of Tos X(T2=n) 42( Xn) X(T2=n) Sn Hence for

each t ¢ Tn’

x(Tzzn) Uy (b + X ) > X(T2=n) EQy (b + X)) \ T ) a.s.

(b+EX, | 7)) -m®, X | 7)) as. (3.8)

B X(T2=n)u2 n

By monotonicity of uz then for each t ¢ Tn’

b+X >b+ERX, ] T - my X | T (3.9)

a.s. (T2 = n). From Lemma 3, by assumption rrl(b,Xt ‘ jn) > rrz(b,Xt 1 jﬁ)

a.s. for eacht ¢ giHence from (3.9), for each t¢ Trl

7 - = 7 3.10)
b+X = b+EX, |7T) nib,xt | 7 (

a.s. (., = n). By monotonicity of ul’ then for each t ¢ Tn,



24—

Y G +X) > U ®+EE |70 - m®, X [T ))

= EQ G +X) [T (3.11)

vhere the inequality holds a.s. (72 = n) and the equality a.s. From (3.11) and
1 ° 1 -

.S. iy = i.e. + =
Lemma 6 (v) we get‘ul(b + Xn) > %] a.s (72 n), i.e ,141(b Xn) S A

a.s. (72 =n). By definition of v, thenT. < n a.s. (12 n) and we are done.

1 1

Second Proof: From (3.8), for each t ¢ T ,

n
-1
+ .S. = .
b+X > U EUOG+FX) T ) as.(t, =n (3.12)
and hence
-1 i
v, X)) o2 U QU EQDLFX) 1Jn) ) ) a.s. (r, =) (3.13)
By Lemma 1 and Jensen's inequality, we get from (3.13) that for each t =« Tn’
-1 _ _
'ul(b +X) oz EQU QU U0 +X) D)) \en) a.s. (r, =n)
= 7 14
EQuGb +X) [ 7)) (3.14)
which is (3.11).
The following two corollaries are immediate.
Corollary 12.1f Ul z. Uz and solutions to OSPCMl) and OSPCMZ) exist, then
solutions £ and t2 exist such that ti solves OSP Cui% i= 1,2,and
S - -
t1 t2 a.s. If t2 solves OSP (uz), then there is a solution t1 to OSPQul)

<
such that t1 t2 a.s.

Proof: Followsfrom Theorems 9 and 11.

Corollary 13, Assume 9 is DARA and consider 7 defined in (3.7) for OSP(®) as a

function of b. Then 7(b) is a.s. nondecreasing in b.

Proof: Let uz(g) = U(xtk) for k > 0 and‘ul(x) = %Y%(x) and apply Theorem 11.

To complete the work of this section, we need a partial converse of the

last statement in Corollary 12 and a sharpening of the inequality T, <7, a.s.
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in Theorem 11. We have found no conditions where the existence of a solution
to OSPCul) implies the existence of one for OSPCM2) save those that guarantee
existence for both problems. Given the results of Theorems 9 and 11 we should

not expect to do so, but we defer any further discussion for future research.

We can sharpen the inequality of Theorem 11, by defining the relation > .

obvious way. Given two utility functions ul and Ué we say that U1 is strictly

more risk averse than Y, and write ul > r.uz; if ul > r‘UZ and

7,(b,p) > nn,(b,p) for all non-degenerate p ¢ & N & and all b ¢ El. By the
1 2 ul uZ

same methods used to prove Lemma 1 ~ we have u1>} uz if and only if

ulcugl(t)) is strictly concave in t. To conserve space we will prove the

-1
desired result using the strict concavity of u1cu2 ().

Theorem 14. Suppose U >, UZ and a solution to OSPCul) exists, If there

exists an n > 1 with P(T1 =n) > 0 and

BTy zm N EQ O+ le) \ T Fy b+ le))) > 0 (%)
then P(T1 < Tz) > 0.
Proof: Let T, = max (n,Tl). Then Ty is a stopping rule since Ty is by
Theorem 9 (ii) and we have ECul(b+ X Tl) \ jh) = E(Ml(b + XT ) ‘ jﬁ) a.s.

1
(Tl > n). By Theorem 9 (i), then a.s. (Tl > n)

1 ;
Up (b + X)) <8, = EQu® X ) |7
=EQ OB+ X ) | )

1

= -1 &
b+X £y EQ +an1) | 7

= Uy O+ XIS U000 Gyt +ET ) | 7))
1

in the



-26-

‘1 ~
<E U QU U+ X Tl))) | 7))
- EQ,G+x7) | 7)) <s] ()
2 T n° = n
where the strict inequality follows from strict convexity of‘uzCu;l(-)) and (%),

and the last inequality from the fact that Ty € Tn' From Theorem 11,

(Tl >n) C (T2 > n) and from (*%) we get ('r1 > n) < (T2 > n) which gives

(Tl n) CZ(TZ >mn). P(r, =n) > 0 then gives the conclusion.

1
Note that the hypotheses of Theorem 14 rule out the case where the X are
independent and identically distributed. Indeed, we have the following result.
Denote by OSP(X) the optimal stopping problem when the utility function is
linear and by T and S  the random variables associated with O0SP(X) by (3.7)

n
and (3.6).

Corollary 15. 1I1f the Xn are independent and identically distributed and T

solves OSP(X% then T solves 0SP() for any utility function % for which a

solution to OSP(Y) exists.

Proof: TFor convenience we assume b = 0. For any utility function %9 (including
the linear utility function X), U(Xt) is independent of Xl""’xn for each

te To4q- Hence ECM(Xt) l,? ) = E u(Xt) a.s. and by Theorem 8 (ii),

n

1
~
1]

b1 \ Jn ess sup ECM(Xt) 1 Jh)

teTn+1

sup E u(xt) = sup E ’U(Xt) =V,
teT teT
nt+1

since the Xn are identically distributed. Hence T(w) = first positive integer k such

that X, (»)=V-Let T be the rule given by (3.7) for OSP(Y) and W = u'l(v).
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By assumption and Theorem 9 (ii), T ¢ T and T solves OSP(Y). Hence V > EXT > W
and thus = > XT a.s. Then YX ;) Z_U(XT) a.s. and Eu(%r) > E U(XT). Since

TeT, EYX =) =EY(X ) =V and T solves 0SP().

3.4 An Example.

We close this section with an example. Let O = {wl,wz,wB,wa}, J = 20 (the

power set of Q) and P = (pl;Pz:P3;P4) where PQDi) =Py >0, 1i=1,...,4 and

4

Zp, =1. Let X)Xy, Xq5%, 5 Xg be any real numbers with 0 < x1< Xy< Xgq < X, < X

i=1 * 5

We define a random variable on () by giving a 4-tuple of these numbers that

indicate the values the random wvariable takes on wl""’w4' Let

>
|

1 = (gr%pa%g0%,)

>
!

9 T (Xpxyrxy,x)

(X3:X3:X2)X2)

w
!

Xy & (XpoXg%,,%4)

X =0, n>5
n 2

Let Ul and UQ be two utility functions with Ul > UQ. Tables 1 and 2 give

the values of Si and Si respectively.
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TABLE 1
i Ll)l Ll)z Ll)3 UJA
1
l E
H 1 " "
SZ : 'L(l(X3)
l Z 1" ] " 1"
S5 '
!
S S VR 2, (x0) " "
4 i1 1'75
!
1 I
S, n>5 | 0 0 0 0
v TS0
TABLE 2
| W, Wy W,
2 A A (x,) (x,)
51 2 2 Uy (%, Uy (%,
2 L1} "n 1"
52 Uy (x4)
2 1 n 1] 131
53
SZ ( ) ( ) " 1]
4 Uy (%9 Uy (g
2
S, n>5 0 0 0 0
n >

These tables were construcred by backward induction using Theorem 8 (iii)

and the assumption that
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p]. 'L(l(XS) - 'L(l(X:.)) B
P, U (xg) Ul T L

which implies that
- -

1
Py TPy

- E(s, | Ty @) = U (xy)

This can clearly be done since B_ > 0. From Pratt [26, Theorem l(e)] we

1
have that
. _ ?/(2 (XS) - UZ (X3)
2 Gy S UG 1
and hence
Uy (x )P, + U, (x)P
A = 271701 275782 - E(Si 1 jj) (wl)

2 pl+p2

E(S, | 7)) > 2 (xq).

Computing 7, and T from Tables 1 and 2 we have

1 2
TABLE 3
w, w, W, w,
T 3 3 1 1
Ty 4 4 1 1

We will use this example again in Section 4.2,
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4, SOME APPLICATIONS,

In terms of the interpretation of the OSP for optimal timing decisions,
the results of section 3.3 say simply that the more risk averse indiwvidual will
implement a given action at least as soon as will the less risk averse indivi-
dual. Not much more can be said about the effect of risk aversion on
optimal timing strategies. There are, however, two questions related to
timing strategies that need attentioﬁ. The first concerns the effect of
risk preferences on a class of simplified, perhaps non-optimal timing
strategies. The second concerns the effect of risk preferences on the values
of the stopped reward. We consider these questions in this section. For

convenience we assume b = 0 throughout.

4.1 One-period Myopic Rules.

The optimality properties of the rule T of (3.7) are intuitive,
but it is unlikely, except in very special cases, that T could actually be
computed for infinite horizon problems. A rule similar to T is optimal for
finite horizon problems and can be computed by backward induction, 21/ but for
most problems only at great expense. It is natural then to ask if the results
of section 3.3 hold for any class of simpler, perhaps non-optimal rules. The
answer is yes for at least one class of such rules worth considering, which we
call one-period myopic rules.

It may be that an individual (a firm, consumer, investor, etc.) does not

have sufficient resources including time and computational capacity to compute

the sn involved in some timing decision. For example, after observing Xl""’Xn

it may be that the only estimate of future gain he can come up with is

ECU(XH+1) i jh) or ECu(Xn+1)| Xn), i.e., the expected utility of the next

reward given knowledge of Xl""’Xn or Xn respectively. We define the class
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M of one-period myopic rules to be the collection of rules t of the form

k if u(xj) < E(?,((Xj+1) \ ﬁj), i=1,...,k-1

t(w) = and (X)) = EQUE, ) |5 4.1

® if YK ) < EUE ) \ By k= 1,2,...

for some sequence Lﬁn; n > 1} where ﬁﬁ is a sub-c-algebra of jh for each n.
Clearly if t € M and P(t < @) = 1, then t is a stopping rule. If we
denote by M the subset of M of rules that are stopping rules, then under
(A2) MC T. A rule in M bases the decision to stop or continue one more period
on the utility of the current period reward and the expected utility of the
following period reward given some subset of the information available in the
current period. There are conditions under which an element of i solves
0SP(Y) and we give one such result in Proposition 17. First, however, we prove
an easy corollary to Theorem 11.
Let ﬂBn; n > 1} be a sequence of sub-o-algebras of j;Bﬁ:.Tn,n=1’2,,,,, and

define the rule \b
e AEUXD CEUE L) [ 80, 5 =1kl

\ (@) = and Y(X)) = EQUEX, ) l &) (4.2)

@ if YK < EUE L) 180, k=1,2,...

A simply says stop at k if k is the first positive integer such that utility
of current reward Xk is at least as great as expected utility of next period's

reward Xk+1 given knowledge of events in ﬁkf Consider X\, and Az given by

1
(4.2) for utility functions Uy and'uz.

Theorem16: If‘z,(1 > r‘uz, then kl g.kz a.s.

Proof: We prove this result using Lemma 1, but the first proof of Theorem 11
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is also applicable (see also Lemma 4). The method of the second proof is used to
conserve space. On (1, = n),
Upg (X)) 2 EQU (X 1p) | B)
- X >t EQUE LD | 5
S g () 2 UGB, L) | B )))
B @ Uy ) | B

v

1

E (,L(l (Xn+1) | ﬁn)

= (kl < n) C (AZ = n) a.s.

Now consider the case where A is given by (4.2) for ﬁﬁ = j%, n=1,2,...,

i.e., A uses all the information available up to time n, but projects only to
period n + 1. Let A_ = {w UE ) 2 EQUE ) \ J'n)}. In addition to (A2)

and (A3) we assume the following:

(AL) X >0a.s., n=1,2,..., and 1lim X_ = 0 a.s.;

o«
(A5) An (- An+1,n =1,2,..., and O = U A a.s.

Proposition 17. Under (A2) - (A5), X solves O0SP(y).

Proof: This is a special case of [7; Theorem 3.3].

Condition (A5) is the key to the optimality of Aand we could not expect
one-period myopia to yield an optimal strategy without such an assumption.

(A4) is a little stronger than necessary, but we use it because of its
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interpretation for the optimal timing of the sale of an asset. In such a
problem the random price offers are non-negative. The second half of (A4)

is a uniform integrability condition that makes proving optimality a little
easier, but may be interpreted as indicating that the asset eventually becomes
valueless.

The market prices for assets like capital equipment subject to physical
deterioration or technical obsolescence, commodities like perishable farm
produce, and certain financial assets and options with a fixed horizon
maturity, would satisfy assumption (A4). The market prices of common stocks
that follow a postulated random walk model, will not in general satisfy (A4).
These models, however, have more significance for the second question of this
section and we postpone a discussion of them until we have taken up this

question.

4.2 Risk Preferences and Stopped Variables

One is tempted to conjecture that because the less risk averse individual
is more willing to bear risk, his reward should in some sense be greater than
that of the more risk averse individual. Such a conjecture is relatively
easy to formulate, but quite difficult to prove in general and we give only
partial answers here. First we must settle on what we mean by '"in some sense
greater".

An immediate candidate is X_ > X a.s. where ™1 and T, are given by

27 "1
(3.7) for OSP(ul) and OSPCMZ) respectively. But this condition makes no sense
since XT2 > XTl a.s. = ul(XTz) Elul(XTl) = E ul(XTz) > E ul(XTl) and T, is
as good a strateyy for %; as Ty. Indeed, if XT2 > XTl a.s. and P(XTI# XTz) >0
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then T, is not optimal for ul (providing T, € T). The next most likely
candidate, EX_T2 > EXTl, does have some reasonable implications, but is not
true in gemeral. We give below conditjomns on U;,U, and {Xn ,Tn; n > 1} for
EXT > EX’r and EX’r > EX’r , and an example when EXT > EX’r .

2 1’ 1 2 1 2
Lemma 18. If ul > . uz, P(T2 < ®) =1, and if

E(XTZ \ J) 2 X a.s. (1 =10), n=1,2,...,

then EX,r > EX

2 1
Proof: From Lemma 5 , E | X% l < @, and from Theorem 11, T = T
9 1 2
Hence
EX = dp + X dp
T2 sz sz
< <

I It
5
=) N
™8 oL
— g
—
- I
N
[« N
|
o
W8
B =
s
™ 8 =2
— N
[a W
rd
—
~
e
N
4
s}
g
[a W
rd

> 5 X dp = X dP = EX_ ,
n=1 n 1 1
CT1= n) Q
/

and the proof is complete. 22

(4.3)

a.s.
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The condition (4.3) of the lemma is a special case of a condition
. 23/ . . .
called admisszbility of a stopping rule. — A stopping rule t is said to

be admisszble for {Xn’jﬁ; n > 1} if EXt exists and

E(X, | J) zX a.s. (£>mn), n=1,2,..., (4.4)

Since (4.4) holds with equality on (t = n), and since 7, < T, a.s., if 7, is

1 2 2

is

admissable for {anfh; n > 1}, then (4.3) holds. Whether or not To

admissable for {Xn’Jﬁ; n > 1} (or satisfies (4.3)) does not depend on the
relation 9y = _ uZ' We give now two conditions which guarantee the
admissability of 7, The first depends on the risk aversion of Uy itself and
the second on the '"fairness'" of the process {Xn’Jﬁ}' We then show that if
the process is "unfair'", we get EXT > EX

1 To

Proposition 19. TIf uz is concave and P('r2 < w) =1, then T2 is admissable

for {X 7 5 n > 1}.

Proof: By Theorem 9(i), T, is admissable for {UQ(Xn)’jﬁ; n> 1}, i.e., for

n>1

EQ (X ) \ T 2 UE) a.s. (1, > n) (4.5)
2

Hence a.s. (72 > n)

-1 —
X_ guz (E(uz(x,rz) \ 7

< E(XTZ ! 7))

since uz is convex.
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lLemma 10 gives sufficient conditions for a stopping rule to be

admissable and the next result follows from it directly.

Proposition 20, If P(T2 < @) =1 and {Xn’jﬁ; n > 1} is a submartingale, then

T, is admissable for {Xn,jh; n > 1}.

We have, however,

Proposition 21. 1If ul . uZ and {Xn’jﬁ; n > 1} is a supermartingale, then

X, and XT are integrable and EXT > EX

1 2 1 T

2

Proof: By Theorem 11, 7., < T, a.s. Also

1 2

X > - Xn > inf (- Xk)= - SEP Xk

> - sup \ X \
n " X k

and by (Al), Xn is bounded below by an integrable random wvariable. These are

the hypotheses of [20; Theorem 28, p. 90]. The conclusion is that XT s XT

1 2
are integrable and X_ > E(X | 7 ) a.s. where 7 is the o-algebra of
Ty Ty Ty Ty
events A such that AN (Tl =n) € jﬁ for each n > 1. Taking expectations

we get EX. > EEE_ | 7)) = EX
"1 T2 1 T2

Corollary 22. If U; > . Uy, P(r, <®) =1, and if {Xn’jﬁ; n > 1} is a

martingale, then EX_ = EXT .
2 1

Proof: Follows directly from Propositioms20 and 21 and Lemma 18.

To show that we may indeed have EX_ > EXT , consider the example of
1 2
section 3.4. If ul > c UQ we have, again from Pratt [26; Theorem 1 (e)], that
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'2/(2 (XS) - 'U\Z (X3) ~ ul(xs) - ul(x3) _

It is possible then, say if uZ is strictly convex and ul concave, to pick

Py and P, so that

B (4.6)

In this case Tables 1, 2, and 3 remain unchanged and we have

EX. - EXT = (Pl + pz)x3 + (p3 + p4) X

1 2 4

- (py¥) T Pyxg) - (py T p,) %,
(pl + pz)x3 = (plxl + PZXS) > 0

by (4.6).

4.3 Stock Market Models

We propose in this section to draw some implications of our work for stock
market transactions under the assumption of an efficient market in common
stocks and in particular under the assumptions that successive price changes
or successive percentage price changes are independent, i.e., the random walk

24
models of stock price behavior. 24/ Some applications of stopping rules have

been made to problems of when to exercise options to buy and sell common stocks, ——

We will concentrate on the problem of when to sell a given fixed number of

shares of a particular common stock. We wish to examine the expected selling
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price under the relation > r

The concrete form of the efficient market model postulates that

EX g |8 = [L+EC ;[ 2] X 26/ (4.7)

where X is t i f th k i =
0 is the price of the stock at time n, Zn+1 (Xn+1

- X)/X and b
Sn n n
is a symbol which represents whatever information is available at time n.
To make (4.7) meaningful we assume the Xn are, as before, random variables
defined on (Q,7,P) and that the ﬁh are an increasing sequence of sub-o-algebra

of 7 such that ]5 c;ﬁn, n=1,2,,.. (By increasing we mean.ﬁn c B ,n=1,2,...).

n+1
A1l our results up to this point hold for a process {Xn,ﬁn; n > 1} where
55_C3ﬁh and the_Bn are increasing. In defining stopping rules for this
process we would then require (t=n) e ﬂh' Since we are dealing with a fixed
number of shares, we may assume Xn represents the total selling price for
this fixed number.

What we would like to conclude is that a '"favorable" market in common
stbcks rewards those more willing to bear risk relatively, and that an "unfair"
market rewards those less willing to bear risk relatively. Therefore we confine

ourselves to the cases when

(C1) E@_ | P ) >0 a.s.

t
o
W
[}

(C2) E(zZ | b o) o=

ntl

(C3) E(Zy4q | P, ) <0  a.s.

These cases specify {Xn,ﬁn; n > 1} as (Cl) a submartingale, (C2) a martingale,
and (C3) a supermartingale.
Even though we limit ourselves to (Cl) - (C3), we cannot apply Proposition 20

and Lemma 18, Proposition 21, and Corollary 22 to these cases without some
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qualifications. There are two technical problems involving the assumption
(Al). This assumption is quite strong, implying among other things that the
process {Xn’ﬁh; n > 1} is uniformly integrable, a property not possessed
by many processes satisfying (4.7) and either (Cl), (C2), or (C3).

The first problem is that Lemma 18 and Proposition 21 are based on the
conclusion of Theorem 11 that T < T, a.s. The proofs we have given for
Theorem 11 are in turn based not only on (A2) and (A3) which seem reasonable
in order to define OSP(Y) in a tractable manner, but in a very crucial way
on (Al). Recalling the definitions of the risk premium (2.5) and conditional
risk premiums (2.6) - (2.9), it was specifically assumed that the random
variable involved had a finite expectation. In using conditional risk
premiums (or Jensen's inequality) in the proof of Theorem 11, it was necessary
then to have conditions which insured that each stopped variable had a finite
expectation. The proof of Lemma 5 uses (Al) to insure this.

The second problem is that the proofs of Propositions 20 and 21 depend,
as we have stated them, directly on (Al). Proposition 20 depends on (a) and (c)
of Lemma 10 being satisfied, which they are under (Al) as we have noted.
Proposition 21 requires that the X be bounded below by an integrable random
variable which requires an assumption like (Al).

The first problem concerning the conclusion of Theorem 11 can be repaired
completely using certainty equivalents. The stumbling block in using risk
premiums is that we need EX to be finite in order to define w(X) = EX - u-l(E UEK))
since if E } UEX) \ < e and EX = @, then n(X) = @ and EX - 1 (X) is undefined.
The quantity EX - m(X) is a certainty equivalent of the gamble X. Define
C(b,X) = u_l(E UMb + X)) - b when E Y(X) exists. Using the certainty equivalents

C(b, X \ 5 = u—l(ECu(b + X) ‘ B5)) - b, Theorem 11 remains true if we redefine
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>, as follows. Let C(b,p) denote the certainty equivalent of the coordinate
random variable on @1 whose probability is the measure p and initial wealth
is b ¢ Rl. Denote by 65 the collection of probability measures p on 0?1/31)

such that FU(x)dp exists. We say Yy = r* Uy 1f C2(b,p) > Cl(b,p) for all

P € 6;1 N 5&2 and all b e Rl. The first proof of Theorem 11 now goes through
with > . replaced by > r* and E(Xt \ jh) - ni(b, Xt \ jh) replaced by

Ci(b’Xt l jh), i = 1,2. Throughout the rest of this section, therefore. we
assume T4 < T, a.s.

The second problem can be handled in several ways. Certain decompositions
of submartingales yield sufficient conditions for 7, to be admissable, but
these conditions boil down to those of Lemma 10. Conditions similar to those
of Lemma 10 can be used to handle the case (C3). The interested reader is
referred to [7; Chapter 2] and [5; Chapter 5].

If we confine ourselves further to random walk models of stock prices we

can obtain some interesting results. The two models we have in mind are the

absolute and relative random walks. The absolute random walk specifies that

X o1 =X +Y . ,n=12,...
_ (4.9)
Xp =4
where Yl’ 9.+ are independent random variables. (4.7) in this case becomes
| =
E(Xrﬁ-l ! ﬂh) Xn + EYr1+1

_>_)=)§_OJ

and {Xn,ﬁn; n > 1} is in case (Cl), (C2), or (C3) according as EYk
k = 2,3,... Although this model allows for negative prices, it offers an
interesting application of Wald's lemma [7; Lemma 3.1].

Suppose Y, ,Y,,... are also identically distributed with common mean u,\u\ < @,

Wald's lemma then says that for any stopping rule t such that EX, exists,
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EX,_ = uEt (4.10)

provided . = 0 and Et = » do not both hold. We then have

Corollary 23. 1If EX and EX exist, then
"1 T2

EXTl = RET, > C) K uETz = EXT2

provided y < 0 (@ < O, ET1 < =, and P("r1 # T2) >0) @>0)@w >0, ET1 < o, and
P(T # Tz) > 0). Ify =0 and ETZ < o, then EX = ExT = 0,
1 2
Proof: Follows directly from (4.10) and Ty g_Tz a,s. (® ET1 < ETZ)'
The relative random walk specifies that

ol (1 + Zn+1) Xn, n=1,2,

X, 2 0 given .11
where X1,22,23,... are indepenlent with Zk >-1, k =2,3,... (4.7) in this
case becomes

E(X_ i, ] b= (1+EZ )X

and [Xn,Bn; n > 1} is in case (Cl), (C2), or (C3) according as EZk >, =, <0,
k=2,3,... This model yields no specifically useful structure, but does give

non-negative prices. When prices are non-negative, the hypotheses of

[20; Theorem 28, p. 90] are satisfied and hence (C3) = EX_ > EXT .
1 2

In handling cases (Cl) and (C2) for non-negative prices one must either
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appeal to hypotheses like those of Lemma 10 or to economic restrictions

on the selling problem that imply these hypotheses. For example, it may be
that the individual who is selling the shares is required to sell if the
price goes above some fixed constant or before some fiXed date. Restrictions

like these yield reward sequences that satisfy the hypotheses of Lemma 10.



2.

FOOTNOTES
[ 1 :p-29 ]

See for example [2]. [3], ([18]. [19], (213, ([22], [247, [27], [30}, {317,
[32], and [34].

The theoretical and applied literature on optimal stopping problems is
quite extensive. For the latter see [4], [6], [8], [13], [14], [15],
{16}, [17]. and [33]. Our references to theoretical literature will
be confined, for the most part, to [7] and [11], the former being a
recent thorough treatment of the entire theory including an extensive

bibliography.

Examining risk aversion properties of derived utility functions works

in certain special cases, e.g.. [24].

The entire study, including temporal risk aversion relations, constitutes

the heart of my thesis [23].

By integrable we mean I ? X E d P < o . When we say that the expectation

of X exists we mean that either X' is integrable or X~ is integrable

(where Xt = max (X. 0) and X = max (-X, 0) ).

A random vector is a function, say Y, mapping 0 into some measureable
space say (R. B), that is J- measurable (again, J(Y) denotes the c-algebra

generated by Y). Thus a random variable is a real salued random vector.

See [5 * Chapter 4] for these definitions and further motivation. We will
make free use of the concepts and results of this chapter of Brieman

throughout the rest of the paper.

See [1] and [10] for axiom systems which imply boundedness of the utility

function. For an axiom system that does not see [8: Chapter 7].



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

-2-

Notice that E | Y (X) | <o implies E U (b + X) exists for all b ¢ R,
i.e.,either E Y (b + X)+ <o or EUY (b + X) " < ». For b> 0,
% (b +X) <% (X)” and hence EY (b + X) <E %Y (X) < o and for
b<0,% b +xX) <y &7 and hence Ey b + )T <EY TS » .

Proofsmay also be found in [12; Theorems 85 and 92].

Again we allow for the conditional risk premiums to take on the values + =,
Similar results obtain for the conditional risk premium = (b, X \ Y =y).
See [20; p. 29] for a proof.

Actually E (X ] Y =y) is an estimator of X since it is a function of
the observation y. Strictly speaking, all references in the text
should be to E (X ! Y = y) as an estimator of X, but the qualification
of E(X 1 Y = vy) as a function of y as an estimator and for a particular

y as an estimate seems cumbersome.
Similar results hold for m(b, X | Y = y).

This principle is also important in defining temporal risk aversion

relations in [23].
For the finite horizon case see [7] and [23].

Xt is a random variable defined on 2, but we have given no conditions
which ensure that Xt is integrable. This is a temporary departure
from our assumption that all random variables are integrable. To
state the 0 S P as we have below, and indeed to characterize solutions
to the 0 S P we do not need that Xt be integrable. The proof of our
basic results in sections 3.3, 4.1, and 4.2 are simplified greatly,
however, if E } Xt E‘i = for each t ¢ T. This condition is ensured

in section 3.2 and relaxed somewhat in section 4.3.



20.

21.

22.

23.

24,

25.

26.

Clearly we can incorporate a (posgibly random) observation cost Cn with
' - T\
rewards Xn' Then Xn = Xn 2,Ck’
k=1
[7; Chapter 3].

Notice that we get EX% > EX% if (4.3) holds for each n and with strict
2 1

inequality for some n with P(’T1 =n) > 0.

[7; p. 64].

See [ 9] for an excellent survey of both the theoretical and empirical

literature on efficient market models of stock price behavior.

r6], [28], [29], and [33].

(9; p. 384).
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